High-density QCD in heavy ion collisions

Carlos A. Salgado Università di Roma "La Sapienza" and INFN Roma

> Cracow School of Theoretical Physics June 14 - 22, 2007, Zakopane, POLAND

<u>carlos.salgado@cern.ch</u> <u>http://csalgado.web.cern.ch</u>/

Zakopane, June 2007

Zakopane, June 2007

0. What do heavy-ion collisions do?

Zakopane, June 2007

0. What do heavy-ion collisions do?

Study QCD under extreme conditions High densities High temperatures

Zakopane, June 2007

1. QCD matter

Zakopane, June 2007

QCD is the theory of strong interactions.

 \Rightarrow It describes interactions between hadrons (p, π , ...)

- Asymptotic states.
- Normal conditions of temperature and density.
- Nuclear matter (us).
- Colorless objects.

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - → Fundamental particles.

charge=+2/3	u (\sim 5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (\sim 10 MeV)	s (~100 MeV)	b (\sim 5 GeV)

Colorful objects. color = charge of QCD ---- vector Similar to QED, but gluons can interact among themselves

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
 - → Fundamental particles.

charge=+2/3	u (\sim 5 MeV)	c (~1.5 GeV)	t (~175 GeV)
charge=-1/3	d (\sim 10 MeV)	s (~100 MeV)	b (\sim 5 GeV)

Colorful objects. color = charge of QCD ---- vector Similar to QED, but gluons can interact among themselves

Gluons carry color charge — This changes everything...

Zakopane, June 2007

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
- \Rightarrow No free quarks and gluons: Confinement.

QCD is the theory of strong interactions.

- \Rightarrow It describes interactions between hadrons (p, π , ...)
- \Rightarrow Quarks and gluons in the Lagrangian
- \Rightarrow No free quarks and gluons: Confinement.
- \Rightarrow Strength smaller at smaller distances: Asymptotic freedom.

Zakopane, June 2007

In quantum field theory, the vacuum is a medium which can screen charge (quarks or gluons disturb the vacuum)

High-density QCD in heavy ion collisions 6

Zakopane, June 2007

- In quantum field theory, the vacuum is a medium which can screen charge (quarks or gluons disturb the vacuum)
- → Confinement ⇒ isolated quarks or gluons = infinite energy

- In quantum field theory, the vacuum is a medium which can screen charge (quarks or gluons disturb the vacuum)
- ⇒ Confinement ⇒ isolated quarks or gluons = infinite energy
- Colorless packages (hadrons)
 vacuum excitations

- In quantum field theory, the vacuum is a medium which can screen charge (quarks or gluons disturb the vacuum)
- ⇒ Confinement ⇒ isolated quarks or gluons = infinite energy
- Colorless packages (hadrons)
 vacuum excitations

→ Masses

	mass (GeV)	$\sum q_m$ (GeV)
р	~1	$2m_u + m_d \sim 0.03$
π	~0.13	$m_u + m_d \sim 0.02$

Zakopane, June 2007

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

\Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + Kr$$

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

\Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + Kr$$

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

\Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + \frac{Kr}{r}$$

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons.

A way of visualizing a meson \longrightarrow a $q\bar{q}$ pair join together by a string

\Rightarrow Colorless object

 \Rightarrow The potential between a $q\bar{q}$ pair at separation r is

$$V(r) = -\frac{A(r)}{r} + Kr$$

 \Rightarrow When the energy is larger than $m_q + m_{\bar{q}}$ a $q\bar{q}$ pair breaks the string and forms two different hadrons.

 \Rightarrow In the limit $m_q \rightarrow \infty$ the string cannot break (infinite energy)

In the absence of quark masses the QCD Lagrangian splits into two independent quark sectors

$$\mathcal{L}_{\rm QCD} = \mathcal{L}_{\rm gluons} + i\bar{q}_L\gamma^\mu D_\mu q_L + i\bar{q}_R\gamma^\mu D_\mu q_R$$

⇒ For two flavors(i = u, d) L_{QCD} is symmetric under SU(2)_L × SU(2)_R
 ⇒ However, this symmetry is not observed
 <u>Solution</u>: the vacuum |0⟩ is not invariant

 $\langle 0|\bar{q}_L q_R|0\rangle \neq 0 \longrightarrow \text{chiral condensate}$

Symmetry breaking
 Golstone's theorem => massless bosons associated: pions

Zakopane, June 2007

So, properties of the QCD vacuum

confinement chiral symmetry breaking

Zakopane, June 2007

So, properties of the QCD vacuum

confinement chiral symmetry breaking

Is there a regime where these symmetries are restored?

QCD phase diagram

Zakopane, June 2007

Asymptotic freedom: quarks and gluons interact weakly

(a) small distances \rightarrow increase density (a) large momentum \rightarrow increase temperature

Phase transition?

Zakopane, June 2007

Asymptotic freedom: quarks and gluons interact weakly

(a) small distances \rightarrow increase density (a) large momentum \rightarrow increase temperature

Phase transition?

Zakopane, June 2007

These phases could exist in several situations

⇒ The early Universe some µs after the Big-Bang
 ⇒ order of the transition has cosmological consequences
 ⇒ In the core of neutron stars
 ⇒ In experiments of heavy-ion collisions

real data from STAR @ RHIC

Heavy-ion collisions, some history...

Landau (1953) applies hydrodynamics to hadronic collisions. <u>Assumptions</u>

- Large amount of the energy deposited in a short time in a small region of space (little fireball) with the size of a Lorentz-contracted nucleus
- ⇒ Created matter is treated as a relativistic (classical) ideal fluid Equation of state $P = \epsilon/3$
- The hydrodynamical flow stops when the mean free path becomes of the order of the size of the system: freeze out
- \Rightarrow Normally, the condition is $T \sim m_{\pi}$

In this model the multiplicity $\langle n \rangle$ is proportional to the entropy. Check that for an isoentropic expansion $\langle n \rangle \sim (\sqrt{s})^{1/2}$. [This is in rough agreement with data]

Zakopane, June 2007

More on hydrodynamics

Equations of motion of a relativistic fluid

 $\partial_{\mu}T^{\mu\nu} = 0$

 \Rightarrow Where, the energy-momentum tensor for an perfect fluid is $T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu}$

here ϵ is the energy density, p the pressure and u^{μ} the flow velocity

- \Rightarrow The system is closed with an equation of state, ex. $P = \epsilon/3$
- \Rightarrow The initial conditions need to be fixed

Hydrodynamics is one of the most active field of research in HIC

Main goal: check the degree of thermalization of the system

Bjorken model (1982)

Assume infinite nuclei (in transverse plane)

🔌 Define rapidity

$$y = \frac{1}{2}\log\frac{t+z}{t-z}$$

At asymptotic energies, boost invariance tells that properties cannot depend on rapidity, but only on proper time. So, initial conditions

$$p(\tau); \ \epsilon(\tau); \ u^{\mu} = \gamma^2(1, 0, 0, z/t)$$

⇒ The hydrodynamic equation is now $\frac{d\epsilon}{d\tau} + \frac{\epsilon + p}{\tau} = 0$ ⇒ And the solutions are

$$\epsilon(\tau) = \frac{\epsilon_0}{\tau^{4/3}}$$

Ex. Check these equations; check that the entropy per unit rapidity is constant; check that the temperature drops as $\tau^{-1/3}$

Zakopane, June 2007

PbPb @ the LHC in hydro

Evolution of the temperature with time [simulations by V. Ruuskanen and H. Niemi]

time: 2.0000

Zakopane, June 2007

PbPb @ the LHC in hydro

Evolution of the temperature with time [simulations by V. Ruuskanen and H. Niemi]

time: 7.5000

Zakopane, June 2007

PbPb @ the LHC in hydro

Evolution of the temperature with time

[simulations by V. Ruuskanen and H. Niemi]

time: 20.0000

Zakopane, June 2007

QCD thermodynamics

Zakopane, June 2007

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

[Cabibbo and Parisi 1975]

First lattice calculation found a first order phase transition

Zakopane, June 2007

First lattice calculation found a first order phase transition
 Including quark masses probably not a first order

First lattice calculation found a first order phase transition
 Including quark masses probably not a first order

 \Rightarrow Present status: several different phases found.

Zakopane, June 2007

First lattice calculation found a first order phase transition
 Including quark masses probably not a first order

 \Rightarrow Present status: several different phases found.

Zakopane, June 2007

QCD thermodynamics I

In the grand canonical ensemble, the thermodynamical properties are determined by the (grand) partition function

$$Z(T, V, \mu_i) = \operatorname{Tr} \exp\{-\frac{1}{T}(H - \sum_i \mu_i N_i)\}$$

where $k_B = 1$, H is the Hamiltonian and N_i and μ_i are conserved number operators and their corresponding chemical potentials.

 \Rightarrow The different thermodynamical quantities can be obtained from Z

$$P = T \frac{\partial \ln Z}{\partial V}, \quad S = \frac{\partial (T \ln Z)}{\partial T}, \quad N_i = T \frac{\partial \ln Z}{\partial \mu_i}$$

 \Rightarrow Expectation values can be computed as

$$\langle \mathcal{O} \rangle = \frac{\operatorname{Tr}\mathcal{O}\exp\{-\frac{1}{T}(H - \sum_{i} \mu_{i} N_{i})\}}{\operatorname{Tr}\exp\{-\frac{1}{T}(H - \sum_{i} \mu_{i} N_{i})\}}$$

Zakopane, June 2007

QCD thermodynamics II

In order to obtain Z for a field theory with Lagrangian \mathcal{L} one normally makes the change -it = 1/T, with this, the action

$$iS \equiv i \int dt \mathcal{L} \longrightarrow S = -\int_0^{1/T} d\tau \mathcal{L}_E$$

and the grand canonical partition function can be written (for QCD) as

$$Z(T, V, \mu) = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A^{\mu} \exp\{-\int_{0}^{1/T} dx_{0} \int_{V} d^{3}x(\mathcal{L}_{E} - \mu\mathcal{N})\},\$$

where $\mathcal{N} \equiv \bar{\psi} \gamma_0 \psi$ is the number density operator associated to the conserved net quark (baryon) number.

Additionally, (anti)periodic boundary conditions in [0, 1/T] are imposed for bosons (fermions)

$$A^{\mu}(0, \mathbf{x}) = A^{\mu}(1/T, \mathbf{x}), \quad \psi(0, \mathbf{x}) = -\psi(1/T, \mathbf{x})$$

Zakopane, June 2007

QCD thermodynamics III

In order to solve these equations

- \Rightarrow Perturbative expansion
 - $\sim \alpha_S(T)$ small for large $T \longrightarrow$ bad convergence, but some results obtained.
- \Rightarrow Lattice QCD
 - **Discretization in** (1/T, V) space
 - \checkmark Contributions to Z are computed by random configurations of fields in the lattice
 - Most of the results for $\mu = 0$, results for small μ only recently available.

First example: equation of state

Naïve estimation:Let's fix $\mu = 0$, the pressure of an ideal gas (of massless particles) is proportional to the number of d.o.f: $P \propto NT^4$

Zakopane, June 2007

EoS with physical units

Zakopane, June 2007

Convergence for very large temperature

Zakopane, June 2007

Phase transition: order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

First order: discontinuity in the order parameter

Zakopane, June 2007

Phase transition: order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

Second order: discontinuity in the derivative

Zakopane, June 2007

Phase transition: order parameters

In order to know whether the change from a hadron gas to a QGP is a phase transition or a rapid cross-over order parameters are needed

Cross-over: continuous function

Zakopane, June 2007

Order parameters in QCD I

Zakopane, June 2007

Order parameters in QCD II

<u>Confinement</u>: for $m_q \rightarrow \infty$ the order parameter is the potential

Zakopane, June 2007

However...

When masses are taken into account the potential is screened even below T_c

Light $\bar{q}q$ pair creation breaks the string

Zakopane, June 2007

Influence of the quark masses

For physical masses, most likely cross-over

Zakopane, June 2007

Finite baryochemical potential

Lattice calculations very challenging at finite μ_B

- \Rightarrow Order of the transition depends on μ_B
- Possible critical point at experimental reach
- Still a lot of uncertainties exist

Zakopane, June 2007

Where are the HIC?

Statistical models fit particle abundances and obtain (T, μ_B) at freeze-out

model dependent

Zakopane, June 2007

Some extra results and interpretations

Zakopane, June 2007

Bound states above T_C

Zakopane, June 2007

A hadron resonance gas can describe the lattice results

[Karsch, Redlich, Tawfik 2003]

Notice that including more and more particles and resonances in the particion function increases the number of degrees of freedom

Zakopane, June 2007

Below T_C

A hadron resonance gas can describe the lattice results

[Karsch, Redlich, Tawfik 2003]

Notice that including more and more particles and resonances in the particion function increases the number of degrees of freedom

Zakopane, June 2007

Below T_C

A hadron resonance gas can describe the lattice results SB limit ~20% dissagreement 14.0 8.0 ϵ/T^4 $(\epsilon-3P)/T^4$ Deviation from ideal gas ŦŦ 7.0 12.0 $\epsilon = 3P$ for $T \lesssim 2T_C$ 6.0 Ŧ 10.0 5.0 8.0 4.0 Ŧ 6.0 3.0 4.0 2.0 T/T_{c} 1.0 2.0 Ŧ T/T_{c} 0.0 0.0 1.0 1.5 3.5 0.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 3.5 0.5

[Karsch, Redlich, Tawfik 2003]

Notice that including more and more particles and resonances in the particion function increases the number of degrees of freedom

A possible picture of hot QCD

[Taken from Hatsuda, J/Ψ workshop BNL, May 2006]

Zakopane, June 2007

Summary I

⇒ QCD vacuum: Confinement & chiral symmetry breaking

- \Rightarrow Other states of matter possible?
- \Rightarrow Theory \longrightarrow Different phases exist!

(for small μ_B) Lattice + perturbative + models

- \Rightarrow Transition hadron gas \leftrightarrow quark gluon plasma.
- \Rightarrow Order of the transition depends on quarks masses. For realistic masses, most probably crossover at $\mu_B = 0$.
- ⇒ Properties close to T_c different from a gas: Strongly coupled QGP? Indications of bound states above T_c
- \Rightarrow Heavy ion collisions experiments attempt to study this region.