# **Dark Matter**

Leszek Roszkowski

CERN, CH & Sheffield, UK

shining Universe

#### shining Universe



#### shining Universe



#### dark Universe

#### shining Universe



#### dark Universe







#### evidence for DM

- evidence for DM
- properties of DM, WIMP

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM
- SUSY neutralino most popular candidate

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM
- SUSY neutralino most popular candidate
- relic abundance
- detection rates

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM
- SUSY neutralino most popular candidate
- relic abundance
- detection rates
- results in specific SUSY models

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM
- SUSY neutralino most popular candidate
- relic abundance
- detection rates
- results in specific SUSY models
- WIMPS and E-WIMPs

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM
- SUSY neutralino most popular candidate
- relic abundance
- detection rates
- results in specific SUSY models
- WIMPS and E-WIMPs
- axino

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM
- SUSY neutralino most popular candidate
- relic abundance
- detection rates
- results in specific SUSY models
- WIMPS and E-WIMPs
- axino
- gravitino

- evidence for DM
- properties of DM, WIMP
- particle candidates for DM
- SUSY neutralino most popular candidate
- relic abundance
- detection rates
- results in specific SUSY models
- WIMPS and E-WIMPs
- axino
- gravitino
- summary

among the oldest puzzles in cosmology



among the oldest puzzles in cosmology

visible mass not enough to bound it

Zwicky ('33): Coma cluster

among the oldest puzzles in cosmology

#### flat rotation curves



- Zwicky ('33): Coma cluster
- spiral galaxies

among the oldest puzzles in cosmology

#### Milky Way (Klypin, et al.)



- Zwicky ('33): Coma cluster
- spiral galaxies

Zwicky ('33): Coma cluster
spiral galaxies
clusters of galaxies

among the oldest puzzles in cosmology

#### hot gas, $\sim 10^8~{ m K}$



Swicky ('33): Coma cluster

- spiral galaxies
- clusters of galaxies
- colliding clusters: Bullet cluster

among the oldest puzzles in cosmology

#### Bullet cluster, 2006





among the oldest puzzles in cosmology

#### inferred DM distribution





#### Zwicky ('33): Coma cluster

- spiral galaxies
- clusters of galaxies
- colliding clusters: Bullet cluster

#### DM separated from baryons



#### among the oldest puzzles in cosmology

#### images of distant objects



- Zwicky ('33): Coma cluster
  - spiral galaxies
- clusters of galaxies
- colliding clusters: Bullet cluster
- gravitational lensing

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- colliding clusters: Bullet cluster
- gravitational lensing
- strong gravitational lensing: arcs

among the oldest puzzles in cosmology

#### arc images of distant quasars



#### among the oldest puzzles in cosmology

#### 3dim DM distribution, Massey, et al, 2007



- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- colliding clusters: Bullet cluster
  - gravitational lensing
- strong gravitational lensing: arcs
- weak lensing



among the oldest puzzles in cosmology

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- colliding clusters: Bullet cluster
- gravitational lensing
- strong gravitational lensing: arcs
- weak lensing
- CMB: precision measurements

### **Cosmic Pie**

#### Matter and Energy in the Universe: A Strange Recipe



Dark Energy: 67 ± 6%

#### Freedman+Turner (0308)

⇒ most matter non-baryonic (DM problem)

#### Matter and Energy in the Universe: A Strange Recipe



Dark Energy:  $67 \pm 6\%$ 

⇒ most matter non-baryonic (DM problem)

 $\Rightarrow$  DM is cold (CDM) or possibly (?) warm

#### numerical simulations of LSS



⇒ most matter non-baryonic (DM problem)

 $\Rightarrow$  DM is cold (CDM) or possibly (?) warm

⇒ no electric nor (preferably) color interactions

- limits on exotic elements (anomalous nuclei)
- DM is **DARK**

⇒ most matter non-baryonic (DM problem)

 $\Rightarrow$  DM is cold (CDM) or possibly (?) warm

⇒ no electric nor (preferably) color interactions

- limits on exotic elements (anomalous nuclei)
- DM is **DARK**

#### plausible choice $\Rightarrow$ WIMP

#### weakly interacting massive particle
favored scenario: DM is made up of:

Weakly Interacting Massive Particles

- Weakly Interacting Massive Particles
- stable

- Weakly Interacting Massive Particles
- stable
- slow (cold)

- Weakly Interacting Massive Particles
- stable
- slow (cold)
- relic from the Big Bang

favored scenario: DM is made up of:

- Weakly Interacting Massive Particles
- stable
- slow (cold)
- relic from the Big Bang

#### WIMP: some new, unknown particle

favored scenario: DM is made up of:

- Weakly Interacting Massive Particles
- stable
- slow (cold)
- relic from the Big Bang

#### WIMP: some new, unknown particle

...How weak can weak be?

- WIMPs decouple from thermal equilibrium
- $\checkmark$  freeze–out when  $\Gamma \lesssim H$



- WIMPs decouple from thermal equilibrium
- freeze–out when  $\Gamma \lesssim H$

WIMP relic abundance



 $\sigma_{ann}$  – c.s. for WIMP pair–annihilation in the early Universe v – their relative velocity,  $\langle \ldots \rangle$  – thermal average

- WIMPs decouple from thermal equilibrium
- freeze–out when  $\Gamma \leqslant H$

WIMP relic abundance



 $\sigma_{ann}$  – c.s. for WIMP pair–annihilation in the early Universe v – their relative velocity,  $\langle \ldots \rangle$  – thermal average

 $\sigma_{
m ann} \sim \sigma_{
m weak} \sim 10^{-38}\,{
m cm}^2$  gives  $\Omega h^2 \sim 1$ 

- WIMPs decouple from thermal equilibrium
- freeze–out when  $\Gamma \leqslant H$

WIMP relic abundance



 $\sigma_{ann}$  – c.s. for WIMP pair–annihilation in the early Universe v – their relative velocity,  $\langle \ldots \rangle$  – thermal average

 $\sigma_{
m ann} \sim \sigma_{
m weak} \sim 10^{-38}\,{
m cm}^2$  gives  $\Omega h^2 \sim 1$ 

A hint? Possibly, but...

well–motivated particle candidates s.t.  $\Omega_{\rm DM} \sim 1$ 





• neutrino  $\nu$  – hot DM

 $\mathcal{O}(0.01\, ext{eV}) \lesssim m_
u \lesssim ext{few eV}, ~~\sigma \sim \sigma_{weak}$ 



(LEP)  $\mathcal{O}(100\,{
m GeV}) \lesssim m_\chi \lesssim \mathcal{O}(1\,{
m TeV}), \ 10^{-5}\,{
m pb} \gtrsim \sigma \gtrsim 10^{-12}\,{
m pb},$  or less



("LW bound")  $\mathcal{O}(1 \text{ GeV}) \lesssim m \lesssim \mathcal{O}(300 \text{ TeV})$  (unitarity),  $10^{-5}$  pb  $\gtrsim \sigma \gtrsim$ ????



 $m_a \sim {\cal O}(10^{-5}\,{
m eV}), ~~\sigma \sim (m_W/f_a)^2\,\sigma_{weak} \sim 10^{-16}-10^{-22}\,{
m pb}$ 



 $\mathcal{O}(1\,\mathrm{keV}) \lesssim m_{\widetilde{a}} \lesssim \mathcal{O}(1\,\mathrm{TeV}), ~~\sigma \sim (m_W/f_a)^2 \,\sigma_{weak} \sim 10^{-16} - 10^{-22}\,\mathrm{pb}$ 



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $\checkmark$  axino  $\widetilde{a}$
- $\bullet$  gravitino  $\widetilde{G}$

 ${\cal O}(1)\,{
m keV} \lesssim m_{\widetilde{G}} \lesssim {\cal O}(1)\,{
m TeV}, \; (M_{
m SUSY}), \;\;\; \sigma \sim (m_W/M_{
m P})^2\,\sigma_{weak} \sim 10^{-36}\,{
m pb}$ 



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $\checkmark$  axino  $\widetilde{a}$
- gravitino  $\widetilde{G}$
- wimpzilla

 $m\sim \mathcal{O}(10^{13})\,\mathrm{GeV},~\sigma$  unrestricted



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $\checkmark$  axino  $\widetilde{a}$
- gravitino  $\widetilde{G}$
- wimpzilla

...plus: sterile (RH) neutrino or sneutrino, lightest Kałuża-Klein particle, etc, etc



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $\checkmark$  axino  $\widetilde{a}$
- gravitino  $\widetilde{G}$

wimpzilla

#### vastly different ranges of mass and $\sigma,$ all give $\Omega \sim 1$

reason: different production mechanisms after the BB



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $oldsymbol{s}$  axino  $\widetilde{a}$
- gravitino  $\widetilde{G}$
- wimpzilla

#### solution of DM: must go beyond SM!

• WIMP mass  $m_{\chi}$ 

• WIMP mass  $m_{\chi}$ 

 $\checkmark$  relic abundance  $\Omega_{\chi}h^2$ 

- $\checkmark$  WIMP mass  $m_{\chi}$
- $\checkmark$  relic abundance  $\Omega_{\chi}h^2$
- detection: interaction rates

• WIMP mass  $m_{\chi}$ 

- $\Leftarrow$  f'n of model parameters
- $\checkmark$  relic abundance  $\Omega_{\chi}h^2$
- detection: interaction rates

#### DM, L. Roszkowski, Zakopane, June '07 – p.1

#### **DM: What We Need to Know...**

 $\checkmark$  WIMP mass  $m_{\chi}$ 

- $\Leftarrow$  f'n of model parameters
- $\checkmark$  relic abundance  $\Omega_{\chi}h^2$
- can now be computed accurately in terms of model's parameters
- detection: interaction rates
  - ON ← likewise

- $\checkmark$  WIMP mass  $m_{\chi}$
- relic abundance  $\Omega_{\chi} h^2$ 
  - can now be computed accurately in terms of model's parameters

 $\Leftarrow$  f'n of model parameters

- specific predictions strongly model-dependent
  - ...may be a virtue

#### **WIMP Relic Abundance**

- WIMPs decouple from thermal equilibrium
- freeze-out when  $\Gamma \leq H$

Boltzmann Eq.



$$rac{d\,n_\chi}{d\,t} = -3Hn_\chi - \langle \sigma_{ann}v
angle \left[n_\chi^2 - \left(n_\chi^{eq}
ight)^2
ight]$$

 $n_{\chi}$ - actual no. density of  $\chi$ 'sHubble H = 100 h km/s/Mpc $(n_{\chi}^{eq})$ - no. density of  $\chi$ 's in equil. $n_{\chi}^{eq} \propto \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$  $\rho_{\chi} = m_{\chi} n_{\chi}$ v- relative velocity $\rho_{crit} = 3H^2/8\pi G$  $\langle \ldots \rangle$ - thermal average $\langle \sigma_{ann} v \rangle = \frac{\int dE_1 dE_2(\sigma_{ann}v)e^{-E_1/T}e^{-E_2/T}}{\int dE_1 dE_2e^{-E_1/T}e^{-E_2/T}}$ 

$$\Omega_{\chi}=
ho_{\chi}/
ho_{crit}$$

# **Input from particle physics...**

# **Input from particle physics...**

 $\sigma_{ann}$ 

# **Input from particle physics...**

 $\sigma_{ann}$ 

 $\Rightarrow$  need to select specific model

#### **To SUSY or not to SUSY?**



#### gauge couplings "run" with energy




#### **Two basic approaches:**

general MSSM

- general MSSM
- unification based:

- general MSSM
- unification based:
  - Constrained MSSM (CMSSM)

- general MSSM
- unification based:
  - Constrained MSSM (CMSSM)
  - Non-unified Higgs mass (NUHM)

- general MSSM
- unification based:
  - Constrained MSSM (CMSSM)
  - Non-unified Higgs mass (NUHM)
  - **SO(10)–GUT**
  - **.**..



...supersymmetrized SM + R-parity

...supersymmetrized SM + R-parity

 $\ \ \, \text{gauginos} \ \ \, M_1\overline{\widetilde{B}}\widetilde{B}+M_2\overline{\widetilde{W}}_a\widetilde{W}_a+m_{\widetilde{g}}\overline{\widetilde{g}}_b\widetilde{g}_b$ 

...supersymmetrized SM + R-parity

 $\ \ \, \text{gauginos} \ \ \, M_1\overline{\widetilde{B}}\widetilde{B}+M_2\overline{\widetilde{W}}_a\widetilde{W}_a+m_{\widetilde{g}}\overline{\widetilde{g}}_b\widetilde{g}_b$ 

At  $Q=m_Z$  :  $M_1\simeq 0.5M_2,\,M_2\simeq 0.3\,m_{\widetilde{g}}$ 

• higgsinos  $\mu H_b H_t + h.c.$ 

...supersymmetrized SM + R-parity

- higgsinos  $\mu H_b H_t + h.c.$

...supersymmetrized SM + R-parity

- Image higgsinos  $\mu \widetilde{H}_b \widetilde{H}_t + h.c.$
- Higgs  $\mu^2 \left( H_b^2 + H_t^2 \right) + \dots \qquad \tan \beta = \frac{\langle v_t \rangle}{\langle v_b \rangle}$
- squarks and sleptons  $m_{\widetilde{q}_i}^2 |\widetilde{q}_i|^2 + m_{\widetilde{l}_i}^2 |\widetilde{l}_i|^2$

...supersymmetrized SM + R-parity

- Image in the image is a set of the image
- Higgs  $\mu^2 \left( H_b^2 + H_t^2 \right) + \dots \quad \tan \beta = \frac{\langle v_t \rangle}{\langle v_b \rangle}$
- squarks and sleptons  $m_{\widetilde{q}_i}^2 |\widetilde{q}_i|^2 + m_{\widetilde{l}_i}^2 |\widetilde{l}_i|^2$
- 3-linear SUSY breaking terms

...supersymmetrized SM + R-parity

- Image higgsinos  $\mu \widetilde{H}_b \widetilde{H}_t + h.c.$
- Higgs  $\mu^2 \left( H_b^2 + H_t^2 \right) + \dots \quad \tan \beta = \frac{\langle v_t \rangle}{\langle v_b \rangle}$
- squarks and sleptons  $m_{\widetilde{q}_i}^2 |\widetilde{q}_i|^2 + m_{\widetilde{l}_i}^2 |\widetilde{l}_i|^2$
- 3-linear SUSY breaking terms

...supersymmetrized SM + R-parity

At  $Q=m_Z$ :  $M_1\simeq 0.5M_2,\,M_2\simeq 0.3\,m_{\widetilde{g}}$ 

- Image in the image is a set of the image
- Higgs  $\mu^2 \left( H_b^2 + H_t^2 \right) + \dots \quad \tan \beta = \frac{\langle v_t \rangle}{\langle v_b \rangle}$
- squarks and sleptons  $m_{\widetilde{q}_i}^2 |\widetilde{q}_i|^2 + m_{\widetilde{l}_i}^2 |\widetilde{l}_i|^2$
- 3-linear SUSY breaking terms

"neutralino"  $\chi$ : lightest mass e'state of  $(\widetilde{B}, \widetilde{W}_3^0, \widetilde{H}_t^0, \widetilde{H}_b^0)$ 

...supersymmetrized SM + R-parity

At  $Q=m_Z$ :  $M_1\simeq 0.5M_2,\,M_2\simeq 0.3\,m_{\widetilde{q}}$ 

- Image in the image is a set of the image
- Higgs  $\mu^2 \left( H_b^2 + H_t^2 \right) + \dots \quad \tan \beta = \frac{\langle v_t \rangle}{\langle v_b \rangle}$
- Squarks and sleptons  $m_{\widetilde{q}_i}^2 |\widetilde{q}_i|^2 + m_{\widetilde{l}_i}^2 |\widetilde{l}_i|^2$
- 3-linear SUSY breaking terms

"neutralino"  $\chi$ : lightest mass e'state of  $(B, W_3^0, H_t^0, H_b^0)$ Majorana fermion ( $\chi^c = \chi$ ) stable, massive  $\Rightarrow$  LSP

 $\sigma_{ann}(\chi\chi \rightarrow \text{SM particles})$ :

 $\sigma_{ann}(\chi\chi \rightarrow \text{SM particles})$ :

• pair annihilation

 $\chi\chi 
ightarrow lar{l}, qar{q}, \ldots$ 

 $\Leftarrow \text{dominant: } \textit{t-channel exchange of lightest } \tilde{\textit{l}}$ 

 $\sigma_{ann} \propto 1/m_{ ilde{l}}^4$  for  $\chi pprox \widetilde{B}$ 

 $\sigma_{ann}(\chi\chi \rightarrow \text{SM particles})$ :

- pair annihilation  $\chi \chi \rightarrow l \bar{l}, q \bar{q}, \dots$
- resonance annihilation  $\chi \chi \xrightarrow{Z,h,H,A} l \overline{l}, q \overline{q}, \dots$

 $\Leftarrow \text{dominant: } \textit{t-channel exchange of lightest } \tilde{\textit{l}}$ 

$$\sigma_{ann} \propto 1/m_{ ilde{l}}^4$$
 for  $\chi pprox \widetilde{B}$ 

 $\Leftarrow$  dominant near poles: *s*-channel

exchange of  $Z, h^0, H^0, A^0$ 

 $\sigma_{ann}(\chi\chi \rightarrow \text{SM particles})$ :

- pair annihilation  $\chi \chi \rightarrow l \bar{l}, q \bar{q}, \ldots$
- resonance annihilation  $\chi \chi \xrightarrow{Z,h,H,A} l \overline{l}, q \overline{q}, \dots$
- co-annihilation
  - $egin{aligned} \chi\chi^\pm &
    ightarrow ext{ all,} \ \chi\chi' &
    ightarrow ext{ all,} \ \chi ilde{ au} &
    ightarrow ext{ all,} \ \chi ilde{ au} &
    ightarrow ext{ all,} \dots \end{aligned}$

 $\Leftarrow \text{dominant: } \textit{t-channel exchange of lightest } \tilde{\textit{l}}$ 

$$\sigma_{ann} \propto 1/m_{ ilde{l}}^4$$
 for  $\chi pprox \widetilde{B}$ 

 $\Leftarrow$  dominant near poles: *s*-channel

exchange of  $Z, h^0, H^0, A^0$ 

 $\Leftarrow$  dominant when  $\Delta m \lesssim 30\,{
m GeV}$ 

 $\sigma_{ann}(\chi\chi \rightarrow \text{SM particles})$ :

- pair annihilation  $\chi \chi \rightarrow l \bar{l}, q \bar{q}, \ldots$
- resonance annihilation  $\chi \chi \xrightarrow{Z,h,H,A} l \overline{l}, q \overline{q}, \dots$

 $\Leftarrow$  dominant: *t*-channel exchange of lightest  $\tilde{l}$ 

$$\sigma_{ann} \propto 1/m_{ ilde{l}}^4$$
 for  $\chi pprox \widetilde{B}$ 

 $\Leftarrow$  dominant near poles: *s*-channel

exchange of  $Z, h^0, H^0, A^0$ 

 $\Leftarrow$  dominant when  $\Delta m \lesssim 30\,{
m GeV}$ 

(MSSM: over 500 annihilation channels...)

- co-annihilation
  - $egin{aligned} \chi\chi^\pm &
    ightarrow ext{all}, \ \chi\chi' &
    ightarrow ext{all}, \ \chi ilde{ au} &
    ightarrow ext{all}, \ \chi ilde{ au} &
    ightarrow ext{all}, \dots \end{aligned}$

• elastic scatterings of WIMPs off target nuclei (SI=scalar) via *t*-channel  $H^0$ ,  $h^0$  exchange (often dominant) via *s*-channel  $\tilde{q}$  exchange + 1-loop ( $\chi g$ ) contributions  $\mathcal{L} = f_q (\bar{\chi} \chi) (\bar{q}q) + \dots$ 

- elastic scatterings of WIMPs off target nuclei (SI=scalar) via *t*-channel  $H^0$ ,  $h^0$  exchange (often dominant) via *s*-channel  $\tilde{q}$  exchange + 1-loop ( $\chi g$ ) contributions  $\mathcal{L} = f_q (\bar{\chi}\chi) (\bar{q}q) + \dots$
- target: nucleus  $X_Z^A$

$$rac{d\,\sigma^{{\scriptscriptstyle SI}}}{d\,q} = rac{1}{\pi v^2} \left[ Z f_p + \left( A - Z 
ight) f_n 
ight]^2 F^2 \left( Q_R 
ight)$$

q-momentum transfer, F-nuclear form-factor

- elastic scatterings of WIMPs off target nuclei (SI=scalar) via *t*-channel  $H^0$ ,  $h^0$  exchange (often dominant) via *s*-channel  $\tilde{q}$  exchange + 1-loop ( $\chi g$ ) contributions  $\mathcal{L} = f_q (\bar{\chi}\chi) (\bar{q}q) + \dots$
- target: nucleus  $X_Z^A$

$$rac{d\,\sigma^{SI}}{d\,q} = rac{1}{\pi v^2} \left[ Z f_p + \left( A - Z 
ight) f_n 
ight]^2 F^2 \left( Q_R 
ight)$$

q-momentum transfer, F-nuclear form-factor

•  $f_p, f_n$  : input from SUSY, typically  $f_p \simeq f_n$  $rac{d\,\sigma^{SI}}{d\,q} \propto A^4 \quad \Leftarrow ext{coherent enhancement}$ 

- elastic scatterings of WIMPs off target nuclei (SI=scalar) via *t*-channel  $H^0$ ,  $h^0$  exchange (often dominant) via *s*-channel  $\tilde{q}$  exchange + 1-loop ( $\chi g$ ) contributions  $\mathcal{L} = f_q (\bar{\chi}\chi) (\bar{q}q) + ...$
- target: nucleus  $X_Z^A$

$$rac{d\,\sigma^{^{SI}}}{d\,q}=rac{1}{\pi v^2}\left[Zf_p+\left(A-Z
ight)f_n
ight]^2F^2\left(Q_R
ight)$$

q-momentum transfer, F-nuclear form-factor

- $f_p, f_n$  : input from SUSY, typically  $f_p \simeq f_n$  $rac{d\,\sigma^{SI}}{d\,q} \propto A^4 \quad \Leftarrow ext{coherent enhancement}$
- Convenient quantity: c.s. at q = 0:  $\sigma_p^{SI}$

$$\mu_p = rac{m_\chi m_p}{m_\chi + m_p} \qquad \qquad \sigma_n^{SI} = rac{4}{\pi} \mu_n^2 f_n^2$$

 $\Omega_{\chi}h^2 = 
ho_{\chi}/
ho_{crit} \propto 1/\sigma_{ann}v$ 

 $\sigma_{ann}\left(\chi\chi
ightarrowar{q}q,ar{l}l,\ldots
ight) \qquad \sigma_{scat}\left(\chi q
ightarrow\chi q
ight)$ 

$$egin{aligned} &\Omega_{\chi}h^2 = 
ho_{\chi}/
ho_{crit} \propto 1/\sigma_{ann}v \ &\sigma_{ann}\left(\chi\chi o ar{q}q,ar{l}l,\ldots
ight) &\sigma_{scat}\left(\chi q o \chi q
ight) \ \end{aligned}$$
Popular argument
 $&\Omega_{\chi}h^2 \sim rac{10^{-37}\,\mathrm{cm}^2}{\langle\sigma_{ann}v/c
angle} \sim 1 \leftrightarrow \sigma_{ann} \sim \sigma_{\mathrm{weak}} \sim 10^{-2}\,\mathrm{pb} \end{aligned}$ 

$$egin{aligned} \Omega_{\chi}h^2 &= 
ho_{\chi}/
ho_{crit} \propto 1/\sigma_{ann}v \ &\sigma_{ann}\left(\chi\chi o ar{q}q,ar{l}l,\ldots
ight) &\sigma_{scat}\left(\chi q o \chi q
ight) \ & ext{Popular argument} \ &\Omega_{\chi}h^2 \sim rac{10^{-37}\, ext{cm}^2}{\langle\sigma_{ann}v/c
angle} \sim 1 \leftrightarrow \sigma_{ann} \sim \sigma_{ ext{weak}} \sim 10^{-2}\, ext{pb} \end{aligned}$$

crossing symmetry:  $\sigma_{scat} \left( \chi q \to \chi q \right) \sim \sigma_{ann} \left( \chi \chi \to \bar{q} q \right)$ 

 $\Rightarrow$  LARGE!

$$egin{aligned} \Omega_{\chi}h^2 &= 
ho_{\chi}/
ho_{crit} \propto 1/\sigma_{ann}v \ &\sigma_{ann}\left(\chi\chi o ar q q,ar l l,\ldots
ight) &\sigma_{scat}\left(\chi q o \chi q
ight) \ & ext{Popular argument} \ &\Omega_{\chi}h^2 \sim rac{10^{-37}\, ext{cm}^2}{\langle\sigma_{ann}v/c
angle} \sim 1 \leftrightarrow \sigma_{ann} \sim \sigma_{ ext{weak}} \sim 10^{-2}\, ext{pt} \end{aligned}$$

crossing symmetry:  $\sigma_{scat} \left( \chi q \to \chi q \right) \sim \sigma_{ann} \left( \chi \chi \to \bar{q} q \right)$ 

$$\Rightarrow$$
 LARGE!

not quite correct...

•  $\Omega_{\chi}h^2$  $\sigma_{ann} \propto 1/m_{ ilde{l}}^4$ 

...or mass of resonance

DM, L. Roszkowski, Zakopane, June '07 - p.20

•  $\Omega_{\chi}h^2$  $\sigma_{ann} \propto 1/m_{ ilde{l}}^4$ 



... or mass of resonance

•  $\Omega_{\chi}h^2$  $\sigma_{ann} \propto 1/m_{ ilde{l}}^4$ 



... or mass of resonance

#### $\Rightarrow$ $\Omega_{\chi}h^2$ and $\sigma_p^{SI}$ are controlled by different mass parameters

•  $\Omega_{\chi}h^2$  $\sigma_{ann} \propto 1/m_{ ilde{l}}^4$ 



... or mass of resonance

 $\Rightarrow \quad \Omega_{\chi}h^2 \text{ and } \sigma_p^{SI} \text{ are controlled by different mass parameters}$  $\Rightarrow \quad \text{can have } \Omega_{\chi}h^2 \sim 0.1 \text{ and } \sigma_p^{SI} \ll \sigma_{weak}$ 

# **MSSM: Expectations for** $\sigma_p^{SI}$

10-3 10-4 UKDMC ZEPLIN 10-5 DAMA EDELWEISS CDMS 10-6  $(qd)_{IS}^{10-7} 0^{-6}$ 10-9 10-10 GENERAL MSSM 10-11 10-12 100 1000  $m_{\gamma}$  (GeV)

> $\sigma_p^{SI}$  – WIMP–proton SI elastic scatt. c.s. (elastic c.s. for  $\chi p \rightarrow \chi p$  at zero momentum transfer)

general SUSY

 $\mu > 0$ 

# **MSSM: Expectations for** $\sigma_p^{SI}$

10-3 10-4 UKDMC-ZEPLIN 10-5 DAMA EDELWEISS CDMS 10-6  $(qd)_{IS}^{10-7} 0^{-6}$ 10-9 10-10 GENERAL MSSM 10-11 10-12 100 1000  $m_{\gamma}$  (GeV)

> $\sigma_p^{SI}$ -WIMP-proton SI elastic scatt. c.s. (elastic c.s. for  $\chi p \to \chi p$  at zero momentum transfer)

vast ranges!!!

general SUSY
#### **Add grand unification...**



# Expectations for $\sigma_p^{SI}$ with unification



 $\sigma_p^{SI}$ -WIMP-proton SI elastic scatt. c.s.

blue: general MSSM red: Constrained MSSM

# Expectations for $\sigma_p^{SI}$ with unification



 $\sigma_p^{SI}$ – WIMP–proton SI elastic scatt. c.s.

blue: general MSSM red: Constrained MSSM

#### much (!) more predictive

# Expectations for $\sigma_p^{SI}$ with unification



 $\sigma_p^{SI}$ – WIMP–proton SI elastic scatt. c.s.

blue: general MSSM red: Constrained MSSM

#### much (!) more predictive

DM, L. Roszkowski, Zakopane, June '07 - p.22

outdated!

...aka mSUGRA

#### At $M_{ m GUT}\simeq 2 imes 10^{16}$ GeV:

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${\scriptstyle 
  ightarrow}$  scalars  $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 9 3–linear soft terms  $A_b = A_t = A_0$



#### ...aka mSUGRA

#### At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$ :

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${} {oldsymbol{\square}}$  scalars  $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 9 3-linear soft terms  $A_b = A_t = A_0$



radiative EWSB

$$\mu^2 = rac{\left(m_{H_b}^2 + \Sigma_b^{(1)}
ight) - \left(m_{H_t}^2 + \Sigma_t^{(1)}
ight) an^2eta}{ an^2eta - 1} - rac{m_Z^2}{2}$$

...aka mSUGRA

#### At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$ :

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${oldsymbol{\square}}$  scalars  $m^2_{\widetilde{q}_i}=m^2_{\widetilde{l}_i}=m^2_{H_b}=m^2_{H_t}=m^2_0$
- 3-linear soft terms  $A_b = A_t = A_0$



radiative EWSB

$$\mu^2 = rac{\left(m_{H_b}^2 + \Sigma_b^{(1)}
ight) - \left(m_{H_t}^2 + \Sigma_t^{(1)}
ight) an^2eta}{ an^2eta - 1} - rac{m_Z^2}{2}$$

• five independent parameters:  $\tan\beta, m_{1/2}, m_0, A_0, \operatorname{sgn}(\mu)$ 

#### At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$ :

- ${}$  gauginos  $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$  (c.f. MSSM)
- ${oldsymbol{\square}}$  scalars  $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 3-linear soft terms  $A_b = A_t = A_0$



#### radiative EWSB

$$\mu^2 = \frac{\left(m_{H_b}^2 + \Sigma_b^{(1)}\right) - \left(m_{H_t}^2 + \Sigma_t^{(1)}\right) \tan^2\beta}{\tan^2\beta - 1} - \frac{m_Z^2}{2}$$

- five independent parameters:  $\tan\beta, \ m_{1/2}, \ m_0, \ A_0, \ \mathrm{sgn}(\mu)$
- mass spectra at  $m_Z$ : run RGEs, 2–loop for g.c. and Y.c, 1-loop for masses
- some important quantities  $(\mu, m_A, \ldots)$  very sensitive to procedure of computing EWSB & minimizing  $V_H$

we use SoftSusy and FeynHiggs







- fixed-grid scans, assuming rigid  $1\sigma$  or  $2\sigma$  ranges
- **green:** consistent with WMAP-3yr (at  $2\sigma$ )
- all the rest excluded by LEP,  ${
  m BR}(ar{B} o X_s \gamma), \, \Omega_\chi h^2$ , EWSB, charged LSP,...









Note: In both an outdated SM value of  $BR(\bar{B} \rightarrow X_s \gamma)$  used. See below.

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

**Advantages** 

 $\checkmark$  efficient, nr of scan points  $\propto N$ 

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

- In the second secon
- easy to deal with additional parameters

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

- $\checkmark$  efficient, nr of scan points  $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

- $\checkmark$  efficient, nr of scan points  $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

#### **Advantages**

- $\checkmark$  efficient, nr of scan points  $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

#### Disadvantages

random scan of points (not strictly controlled)

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

#### **Advantages**

- $\checkmark$  efficient, nr of scan points  $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

#### Disadvantages

random scan of points (not strictly controlled)

Powerful method of exploring multi-parameter models;

(MCMC=Markov Chain Monte Carlo)

a probabilistic approach

#### **Advantages**

- In the second secon
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

#### Disadvantages

random scan of points (not strictly controlled)

Powerful method of exploring multi–parameter models; allows one to make global statements, expose correlations, etc.

Apply to the CMSSM:

 $m = (\theta, \psi)$ : model's all relevant parameters

- $m = (\theta, \psi)$ : model's all relevant parameters
- **9**  $\theta$ : CMSSM parameters  $m_{1/2}, m_0, A_0, \tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters

- $m = (\theta, \psi)$ : model's all relevant parameters
- **9**  $\theta$ : CMSSM parameters  $m_{1/2}, m_0, A_0, \tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables)  $\xi(m)$

- $m = (\theta, \psi)$ : model's all relevant parameters
- **9**  $\theta$ : CMSSM parameters  $m_{1/2}, m_0, A_0, \tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables)  $\xi(m)$
- 🥒 d: data



- $m = (\theta, \psi)$ : model's all relevant parameters
- **9**  $\theta$ : CMSSM parameters  $m_{1/2}, m_0, A_0, \tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables)  $\xi(m)$
- 🧢 d: data
- Bayes' theorem: posterior pdf

$$p( heta,\psi|d) = rac{p(d|m{\xi})\pi( heta,\psi)}{p(d)}$$



- $p(d|\xi)$ : likelihood
- $\pi(\theta,\psi)$ : prior pdf

- $posterior = \frac{likelihood \times prior}{normalization factor}$
- **p(d) : evidence**(normalization factor)

- $m = (\theta, \psi)$ : model's all relevant parameters
- **9**  $\theta$ : CMSSM parameters  $m_{1/2}, m_0, A_0, \tan \beta$
- $\psi$ : relevant SM parameters  $\Rightarrow$  nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$ : set of derived variables (observables)  $\xi(m)$
- *d*: data
- Bayes' theorem: posterior pdf

$$p( heta,\psi|d) = rac{p(d|m{\xi})\pi( heta,\psi)}{p(d)}$$



- $p(d|\xi)$ : likelihood
- $\pi(\theta,\psi)$ : prior pdf

- $posterior = \frac{likelihood \times prior}{normalization facto}$
- **p(d):** evidence (normalization factor)
- usually marginalize over SM (nuisance) parameters  $\psi \Rightarrow p(\theta|d)$

- $\boldsymbol{\theta} = (m_0, m_{1/2}, A_0, \tan \beta)$ : CMSSM parameters
- priors assume flat distributions and ranges as:



vary all 8 (CMSSM+SM) parameters simultaneously, apply MCMC

include all relevant theoretical and experimental errors

#### **Experimental Measurements**

(assume Gaussian distributions)

# **Experimental Measurements**

(assume Gaussian distributions)

| SM (nuisance) parameter      | Mean             | Error                      |
|------------------------------|------------------|----------------------------|
|                              | $oldsymbol{\mu}$ | $oldsymbol{\sigma}$ (expt) |
| $M_t$                        | 171.4 GeV        | 2.1 GeV                    |
| $(m_b(m_b)^{\overline{MS}})$ | 4.20 GeV         | 0.07 GeV                   |
| $lpha_s$                     | 0.1176           | 0.002                      |
| $1/lpha_{ m em}(M_Z)$        | 127.918          | 0.018                      |
## **Experimental Measurements**

(assume Gaussian distributions)

| SM (nuisance) parameter | Mean      | Error                      | new $M_W=80.413\pm0.048{ m GeV}$                            |
|-------------------------|-----------|----------------------------|-------------------------------------------------------------|
|                         | $\mu$     | $oldsymbol{\sigma}$ (expt) | (Jan 07, not yet included)                                  |
| M <sub>t</sub>          | 171.4 GeV | 2.1 GeV                    | new $M_t = 170.9 \pm 1.8{ m GeV}$                           |
| $\overline{MS}$         |           |                            | (Mar 07, not yet included)                                  |
| $m_b(m_b)^{m_b}$        | 4.20 Gev  | 0.07 Gev                   | ${ m BR}(ar{ m B}  ightarrow { m X_s} \gamma) 	imes 10^4$ : |
| $lpha_s$                | 0.1176    | 0.002                      | new SM: $3.15 \pm 0.23$ (Misiak &                           |
| $1/lpha_{ m em}(M_Z)$   | 127.918   | 0.018                      | Steinhauser, Sept 06) used here                             |

| Derived observable                                        | Mean       | Errors                     |                       |
|-----------------------------------------------------------|------------|----------------------------|-----------------------|
|                                                           | μ          | $oldsymbol{\sigma}$ (expt) | $oldsymbol{	au}$ (th) |
| $M_W$                                                     | 80.392 GeV | <b>29 MeV</b>              | 15 MeV                |
| $\sin^2	heta_{ m eff}$                                    | 0.23153    | $16	imes 10^{-5}$          | $15	imes 10^{-5}$     |
| $\delta a_{\mu}^{ m SUSY} 	imes 10^{10}$                  | 28         | 8.1                        | 1                     |
| ${ m BR}(ar{ m B}  ightarrow { m X_s} \gamma) 	imes 10^4$ | 3.55       | 0.26                       | 0.21                  |
| $\Delta M_{B_s}$                                          | 17.33      | 0.12                       | 4.8                   |
| $\Omega_\chi h^2$                                         | 0.119      | 0.009                      | $0.1\Omega_\chi h^2$  |

take as precisely known:  $M_Z=91.1876(21)~{
m GeV}, G_F=1.16637(1) imes10^{-5}~{
m GeV}^{-2}$ 

## **Experimental Limits**

| Derived observable                             | upper/lower | Constraints                         |                           |  |
|------------------------------------------------|-------------|-------------------------------------|---------------------------|--|
|                                                | limit       | ξlim                                | $oldsymbol{	au}$ (theor.) |  |
| $BR(B_s \to \mu^+ \mu^-)$                      | UL          | $1.5	imes10^{-7}$                   | 14%                       |  |
| $m_h$                                          | LL          | 114.4 GeV (91.0 GeV)                | 3 GeV                     |  |
| $\zeta_h^2 \equiv g_{ZZh}^2/g_{ZZH_{ m SM}}^2$ | UL          | $f(m_h)$                            | 3%                        |  |
| $m_{\chi}$                                     | LL          | 50 GeV                              | 5%                        |  |
| $m_{\chi_1^{\pm}}$                             | LL          | $103.5  { m GeV}  (92.4  { m GeV})$ | 5%                        |  |
| $m_{\tilde{e}_R}$                              | LL          | 100 GeV (73 GeV)                    | 5%                        |  |
| $m_{	ilde{\mu}_R}$                             | LL          | 95 GeV (73 GeV)                     | 5%                        |  |
| $m_{	ilde{	au}_1}$                             | LL          | 87 GeV (73 GeV)                     | 5%                        |  |
| $m_{	ilde{ u}}$                                | LL          | 94 GeV (43 GeV)                     | 5%                        |  |
| $m_{	ilde{t}_1}$                               | LL          | 95 GeV (65 GeV)                     | 5%                        |  |
| $m_{	ilde{b}_1}$                               | LL          | 95 GeV (59 GeV)                     | 5%                        |  |
| $m_{	ilde{q}}$                                 | LL          | 318 GeV                             | 5%                        |  |
| $m_{\widetilde{g}}$                            | LL          | 233 GeV                             | 5%                        |  |
| $(\sigma_p^{SI})$                              | UL          | WIMP mass dependent                 | $\sim 100\%$ )            |  |

Note: DM direct detection  $\sigma_p^{SI}$  not applied due to astroph'l uncertainties (eg, local DM density)

Take a single observable  $\xi(m)$  that has been measured

Take a single observable  $\xi(m)$  that has been measured

c – central value,  $\sigma$  – standard exptal error

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = \tfrac{[\xi(m) - c]^2}{\sigma^2}$$

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

■ assuming Gaussian distribution  $(d \rightarrow (c, \sigma))$ :

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

assuming Gaussian distribution  $(d \rightarrow (c, \sigma))$ :

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

when include theoretical error estimate  $\tau$  (assumed Gaussian):

$$\sigma \to s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

Take a single observable  $\xi(m)$  that has been measured

- c central value,  $\sigma$  standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

assuming Gaussian distribution  $(d \rightarrow (c, \sigma))$ :

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

when include theoretical error estimate  $\tau$  (assumed Gaussian):

$$\sigma 
ightarrow s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_i rac{\chi_i^2}{2}
ight]$$

### **Example: Light Higgs mass**

LEP:  $m_h > 114.4$  GeV (95% CL) - if SM-like

include both experimental and theoretical error:



• we find 
$$\zeta_h^2 \equiv rac{g^2(m_hZZ)_{
m MSSM}}{g^2(m_hZZ)_{
m SM}} \simeq 1$$

 $\Rightarrow$  the light Higgs boson of the CMSSM is very SM-like

LEP-II limit applies

DM, L. Roszkowski, Zakopane, June '07 - p.33

# **The Big Picture**

<u>well–motivated</u> particle candidates such that  $\Omega \sim 0.1$ 



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $oldsymbol{s}$  axino  $\widetilde{oldsymbol{a}}$
- $oldsymbol{s}$  gravitino  $\widetilde{G}$

**•** ????

evidence for DM is convincing

- evidence for DM is convincing
- WIMP: most plausible explanation

- evidence for DM is convincing
- WIMP: most plausible explanation
- WIMP: several candidates, some well-motivated



- evidence for DM is convincing
- WIMP: most plausible explanation
- WIMP: several candidates, some well-motivated
- Iittle restriction on mass or interaction strength



characteristic WIMP interactions can be very much weaker than (electro)weak

- evidence for DM is convincing
- WIMP: most plausible explanation
- WIMP: several candidates, some well-motivated
- Iittle restriction on mass or interaction strength



characteristic WIMP interactions can be very much weaker than (electro)weak

neutralino  $\chi$ : most popular candidate

- evidence for DM is convincing
- WIMP: most plausible explanation
- WIMP: several candidates, some well-motivated
- Iittle restriction on mass or interaction strength



characteristic WIMP interactions can be very much weaker than (electro)weak

- neutralino  $\chi$ : most popular candidate
- neutralino detection c.s. can be much less than its ann. c.s.
- detection rates SUSY model dependent

in general MSSM very wide ranges of  $\sigma_p^{SI}$ ,

Constrained MSSM much more predictive

- evidence for DM is convincing
- WIMP: most plausible explanation
- WIMP: several candidates, some well-motivated
- Iittle restriction on mass or interaction strength



characteristic WIMP interactions can be very much weaker than (electro)weak

- neutralino  $\chi$ : most popular candidate
- neutralino detection c.s. can be much less than its ann. c.s.
- detection rates SUSY model dependent

in general MSSM very wide ranges of  $\sigma_p^{SI}$ ,

Constrained MSSM much more predictive

- work them out and compare with search limits
- Bayesian analysis: powerful tool to do it properly
- CMSSM: light Higgs boson to be found at the Tevatron, or the model will be ruled out

CMSSM: light Higgs boson  $h^0$  is SM-like (SM-like couplings)

#### CMSSM: light Higgs boson $h^0$ is SM-like (SM-like couplings)

#### MCMC scan, Bayesian analysis



#### CMSSM: light Higgs boson $h^0$ is SM-like (SM-like couplings)



#### MCMC scan, Bayesian analysis

Tevatron reach (CDF and D0 WG (Oct 03))



#### CMSSM: light Higgs boson $h^0$ is SM-like (SM-like couplings)



MCMC scan, Bayesian analysis

Tevatron reach (CDF and D0 WG (Oct 03))

 $\sim 2~{
m fb^{-1}/experiment}$  already on tape

 $\Rightarrow$  enough to set 95% CL exclusion limit on 95% range of  $m_h$ 

Tevatron reach (CDF and D0 WG (Oct 03))

#### CMSSM: light Higgs boson $h^0$ is SM-like (SM-like couplings)



MCMC scan, Bayesian analysis

 $\sim 2~{
m fb^{-1}/experiment}$  already on tape

 $\Rightarrow$  enough to set 95% CL exclusion limit on 95% range of  $m_h$ 

...or else...

with  $\sim 4$  fb $^{-1}$ /expt:  $3\sigma$  evidence over entire 95% range of  $m_h$ 

with  $\sim 10-12$  fb $^{-1}$ /expt:  $5\sigma$  discovery over entire 95% range of  $m_h$ 

Tevatron: hope for up to  $\sim 8 \, {\rm fb^{-1}/expt}$ 

#### arXiv:0705.2012





- MCMC scan
  Bayesian analysis
  - relative probability density fn
- flat priors
- 68% total prob. inner contours
- 95% total prob. outer contours
- 2-dim pdf  $p(m_0, m_{1/2}|d)$
- favored:  $m_0 \gg m_{1/2}$  (FP region)

#### arXiv:0705.2012

0.4

0.6

0.8





similar study by Allanach+Lester(+Weber) (but no mean qof), see also, Ellis et al (EHOW,  $\chi^2$  approach, no MCMC, they fix SM parameters!)

#### arXiv:0705.2012







unlike others (except for A+L), we vary also SM parameters

### **Impact of** $b \rightarrow s\gamma$

recall

 $BR(B 
ightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \mathrm{sgn}(\mu) \, B(\chi^-/\widetilde{t})$ 

compute SM: full NLO + NNLO of  $m_c$  (from M. Misiak); SUSY: dominant NLO  $\propto aneta, \log{(M_S/m_W)}$ 

### **Impact of** $b \rightarrow s\gamma$

recall

#### $BR(B \rightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \operatorname{sgn}(\mu) B(\chi^-/\widetilde{t})$

compute SM: full NLO + NNLO of  $m_c$  (from M. Misiak); SUSY: dominant NLO  $\propto aneta, \log{(M_S/m_W)}$ 

NEW:  $BR(B \rightarrow X_s \gamma) \times 10^4$ EXPT: 3.55  $\pm$  0.26, TH: 3.11  $\pm$  0.21 (with our inputs), (May 07)



### **Impact of** $b \rightarrow s\gamma$

recall

#### $BR(B ightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \mathrm{sgn}(\mu) B(\chi^-/\widetilde{t})$

compute SM: full NLO + NNLO of  $m_c$  (from M. Misiak); SUSY: dominant NLO

NEW:  $BR(B \rightarrow X_s \gamma) \times 10^4$ EXPT: 3.55  $\pm$  0.26, TH: 3.11  $\pm$  0.21 (with our inputs), (May 07)

OLD:  $BR(B \rightarrow X_s \gamma) \times 10^4$ EXPT: 3.39  $\pm$  0.68, TH: 3.70  $\pm$  0.30 (Feb 2006)

 $\propto \tan \beta$ , log  $(M_S/m_W)$ 



 $\Rightarrow$  big shift towards large  $m_0$ , FP region!

#### How to catch the WIMP?

#### How to catch the WIMP?



direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

indirect detection (ID):

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape
# **Strategies for WIMP Detection**

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

• antimatter  $(e^+, \bar{p}, \bar{D})$  from WIMP pair-annihilation in the MW halo

from within a few kpc

# **Strategies for WIMP Detection**

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

antimatter ( $e^+$ ,  $\bar{p}$ ,  $\bar{D}$ ) from WIMP pair-annihilation in the MW halo
from within a few

from within a few kpc

 gamma rays from WIMP pair-annihilation in the Galactic center
 depending on DM distribution in the GC

# **Strategies for WIMP Detection**

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

antimatter ( $e^+$ ,  $\bar{p}$ ,  $\bar{D}$ ) from WIMP pair-annihilation in the MW halo
from within a few

from within a few kpc

gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc

more speculative











#### impressive experimental effort

### MW is immersed in a halo of WIMPs





MW is immersed in a halo of WIMPs

- local density:  $ho_{\chi} \simeq 0.3 \, {
  m GeV/cm^3}$
- velocity  $v \sim 270 \, {\rm km/sec}$ , Maxwellian





MW is immersed in a halo of WIMPs

- local density:  $ho_{\chi} \simeq 0.3\,{
  m GeV/cm^3}$
- velocity  $v \sim 270 \, {\rm km/sec}$ , Maxwellian



flux

$$\Phi = n_{\chi} v = 10^{10} \frac{\text{WIMPs}}{\text{m}^2 \text{sec}} \left( \frac{\rho_{\chi}}{0.3 \,\text{GeV/cm}^3} \right) \left( \frac{100 \,\text{GeV}}{m_{\chi}} \right) \left( \frac{v}{270 \,\text{km/sec}} \right)$$



MW is immersed in a halo of WIMPs

- local density:  $ho_{\chi} \simeq 0.3\,{
  m GeV/cm^3}$
- velocity  $v \sim 270 \, \mathrm{km/sec}$ , Maxwellian



flux

$$\Phi = n_{\chi}v = 10^{10} \frac{\text{WIMPs}}{\text{m}^2\text{sec}} \left(\frac{\rho_{\chi}}{0.3\,\text{GeV/cm}^3}\right) \left(\frac{100\,\text{GeV}}{m_{\chi}}\right) \left(\frac{v}{270\,\text{km/sec}}\right)$$

 ${}$  energy deposit  $\sim m_\chi v^2/2 \sim 100\,{
m keV}$  tiny!!!



# Dark matter detection: $\sigma_p^{SI}$

# Dark matter detection: $\sigma_p^{SI}$

#### MCMC+Bayesian analysis



# Dark matter detection: $\sigma_p^{SI}$

#### MCMC+Bayesian analysis



#### compare: fixed grid scan



# **Prospects for direct detection:** $\sigma_p^{SI}$



Bayesian analysis, flat priors (MCMC)

Vo

Massive Particle  $\rightarrow \circ$ 

Cause target recoil - detect i

internal (external): 68% (95%) region

# **Prospects for direct detection:** $\sigma_n^{SI}$



internal (external): 68% (95%) region

Bayesian analysis, flat priors (MCMC) XENON-10 (June 07): new limit  $\sigma_p^{SI} \leq 10^{-7}$  pb: also CDMS–II (?)  $\Rightarrow$  explore the FP region (large  $m_0 \gg m_{1/2}$ ), outside of the LHC reach ultimately: "1 tonne" detectors:

Particle

$$\sigma_p^{SI} \lesssim 10^{-10}\,{
m pb}$$

will cover all 68% region

target

lause target recoil - detect i

# **Prospects for direct detection:** $\sigma_n^{SI}$



Bayesian analysis, flat priors (MCMC) XENON-10 (June 07): new limit  $\sigma_p^{SI} \leq 10^{-7}$  pb: also CDMS-II (?)  $\Rightarrow$  explore the FP region (large  $m_0 \gg m_{1/2}$ ), outside of the LHC reach ultimately: "1 tonne" detectors:  $\sigma_p^{SI} \leq 10^{-10}$  pb

Particle

will cover all 68% region

target

ause target recoil - detect i

internal (external): 68% (95%) region

most probable range:  $10^{-7}$  pb  $\lesssim \sigma_p^{SI} \lesssim 10^{-10}$  pb partly outside of the LHC reach ( $m_\chi \lesssim 400$  GeV)

...not a settled matter

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r)=
ho_c/\left(rac{r}{a}
ight)^\gamma \left[1+\left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, \beta, \gamma$  - adjustable parameters

 $ho_c = 
ho_0 \left(rac{r_0}{a}
ight)^{\gamma} \left[1 + \left(rac{R_0}{a}
ight)^{lpha}
ight]^{(eta - \gamma)/lpha}$ ,  $ho_0 \sim 0.3 \, {
m GeV/\, cm^3}$  - DM density at  $r_0$ 

a - scale radius - from num. sim's or to match observations

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r)=
ho_c/\left(rac{r}{a}
ight)^\gamma \left[1+\left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, \beta, \gamma$  - adjustable parameters

 $ho_c = 
ho_0 \left(rac{r_0}{a}
ight)^{\gamma} \left[1 + \left(rac{R_0}{a}
ight)^{lpha}
ight]^{(eta - \gamma)/lpha}$ ,  $ho_0 \sim 0.3 \, {
m GeV/\, cm^3}$  - DM density at  $r_0$ 

*a* - scale radius - from num. sim's or to match observations

• adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: "model"  $\Rightarrow$  "model-c"

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r)=
ho_c/\left(rac{r}{a}
ight)^\gamma \left[1+\left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, \beta, \gamma$  - adjustable parameters

$$\rho_c = \rho_0 \left(\frac{r_0}{a}\right)^{\gamma} \left[1 + \left(\frac{R_0}{a}\right)^{\alpha}\right]^{(\beta-\gamma)/\alpha}$$
,  $\rho_0 \sim 0.3 \,\text{GeV}/\,\text{cm}^3$  - DM density at  $r_0$ 

a - scale radius - from num. sim's or to match observations

• adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: "model"  $\Rightarrow$  "model-c"

| halo model       | $oldsymbol{a}$ ( kpc) | $m{r_0}$ ( kpc) | $(oldsymbollpha,oldsymboleta,oldsymbol\gamma)$ | small $r$ : $\propto r^{-\gamma}$ | large $r$ : $\propto$ |
|------------------|-----------------------|-----------------|------------------------------------------------|-----------------------------------|-----------------------|
| isothermal cored | 3.5                   | 8.5             | (2, 2, 0)                                      | flat                              | $r^{-2}$              |
| NFW              | 20.0                  | 8.0             | (1, 3, 1)                                      | $r^{-1}$                          | $r^{-3}$              |
| NFW-c            | 20.0                  | 8.0             | $\left(1.5,3,1.5 ight)$                        | $r^{-1.5}$                        | $r^{-3}$              |
| Moore            | 28.0                  | 8.0             | (1, 3, 1.5)                                    | $r^{-1.5}$                        | $r^{-3}$              |
| Moore-c          | 28.0                  | 8.0             | (0.8, 2.7, 1.65)                               | $r^{-1.65}$                       | $r^{-2.7}$            |

some most popular models:

fitting DM halo with a semi-heuristic formula:

...not a settled matter

$$ho_{DM}(r) = 
ho_c / \left(rac{r}{a}
ight)^\gamma \left[1 + \left(rac{r}{a}
ight)^lpha
ight]^{(eta-\gamma)/lpha}$$

 $\alpha, oldsymbol{eta}, \gamma$  - adjustable parameters

$$\rho_c = \rho_0 \left(\frac{r_0}{a}\right)^{\gamma} \left[1 + \left(\frac{R_0}{a}\right)^{\alpha}\right]^{(\beta-\gamma)/\alpha}$$
,  $\rho_0 \sim 0.3 \,\text{GeV}/\,\text{cm}^3$  - DM density at  $r_0$ 

*a* - scale radius - from num. sim's or to match observations

• adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: "model"  $\Rightarrow$  "model-c"

| halo model       | $oldsymbol{a}$ ( kpc) | $m{r_0}$ ( kpc) | $(oldsymbollpha,oldsymboleta,oldsymbol\gamma)$ | small $r$ : $\propto r^{-\gamma}$ | large $r$ : $\propto$ |
|------------------|-----------------------|-----------------|------------------------------------------------|-----------------------------------|-----------------------|
| isothermal cored | 3.5                   | 8.5             | (2, 2, 0)                                      | flat                              | $r^{-2}$              |
| NFW              | 20.0                  | 8.0             | (1, 3, 1)                                      | $r^{-1}$                          | $r^{-3}$              |
| NFW-c            | 20.0                  | 8.0             | $\left(1.5,3,1.5 ight)$                        | $r^{-1.5}$                        | $r^{-3}$              |
| Moore            | 28.0                  | 8.0             | (1, 3, 1.5)                                    | $r^{-1.5}$                        | $r^{-3}$              |
| Moore-c          | 28.0                  | 8.0             | (0.8, 2.7, 1.65)                               | $r^{-1.65}$                       | $r^{-2.7}$            |

some most popular models:

Many open questions: clumps??, central cusp??, spherical or tri-axial??,...

# **Our Milky Way**

#### example of a reasonable model



(Klypin, et al., 2001)

# **Our Milky Way**

#### example of a reasonable model



(Klypin, et al., 2001)

- based on NFW model with angular mom. exchange between baryons and DM
- $\checkmark$  DM dominates only at large r, well beyond the Solar radius
- DM likely to be subdominant in the inner regions
- If no exchange of angular mom.: more DM in the center (but problem with fast rotating bar?)

- In the GC:  $\rho_{DM}$  is likely to be larger
- WIMP pair annihilation  $\chi\chi o SMparticles \propto 
  ho_{\chi}^2$  will be enhanced
- WIMP annihilation final decay products:  $WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation}$ (and/or  $\gamma\gamma, \gamma Z$ )

- In the GC:  $\rho_{DM}$  is likely to be larger
- WIMP pair annihilation  $\chi\chi \to \mathrm{SMparticles} \propto \rho_{\chi}^2$  will be enhanced
- WIMP annihilation final decay products:  $WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation}$ (and/or  $\gamma\gamma, \gamma Z$ )
- diffuse  $\gamma$  radiation:

I.o.s - line of sight

$$rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\psi) = \sum_i rac{\sigma_i v}{8\pi m_\chi^2} \, rac{dN_\gamma^i}{dE_\gamma} \int_{
m l.o.s.} dl 
ho_\chi^2(r(l,\psi))$$

- In the GC:  $\rho_{DM}$  is likely to be larger
- WIMP pair annihilation  $\chi\chi \to \mathrm{SMparticles} \propto 
  ho_{\chi}^2$  will be enhanced
- WIMP annihilation final decay products:  $WW, ZZ, \bar{q}q, ... \rightarrow \text{diffuse } \gamma \text{ radiation}$ (and/or  $\gamma\gamma, \gamma Z$ )
- diffuse  $\gamma$  radiation:

I.o.s - line of sight

$$rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\psi) = \sum_i rac{\sigma_i v}{8\pi m_\chi^2} \, rac{dN_\gamma^i}{dE_\gamma} \int_{
m l.o.s.} dl 
ho_\chi^2(r(l,\psi))$$

separate particle physics and astrophysics inputs; define:

$$J(\psi) = rac{1}{8.5\,\mathrm{kpc}} \left(rac{1}{0.3\,\mathrm{GeV/cm^3}}
ight)^2 \int_{\mathrm{l.o.s.}} dl\, 
ho_\chi^2(r(l,\psi))$$

and

$$ar{J}(\Delta \Omega) = (1/\Delta \Omega) \int_{\Delta \Omega} J(\psi) d\Omega$$

 $\Delta \Omega$  - finite angular resolution of a GR detector

**9** diff'l flux from the cone  $\Delta \Omega$ 

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} {
m sec}^{-1} {
m sr}^{-1}$ 

**9** diff'l flux from the cone  $\Delta \Omega$ 

total flux

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} \ {
m sec}^{-1} \, {
m sr}^{-1}$ 

$$\Phi_{\gamma}(\Delta \Omega) = \int_{E_{
m th}}^{m_{\chi}} dE_{\gamma} rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta \Omega)$$

DM, L. Roszkowski, Zakopane, June '07 - p.44

**9** diff'l flux from the cone  $\Delta \Omega$ 

total flux

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} \ {
m sec}^{-1} \, {
m sr}^{-1}$ 

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

**•** main bgnd:  $\pi^0$ 's from primary CR int's with interstellar H and He atoms  $(\pi^0 \rightarrow \gamma \gamma)$ 

**9** diff'l flux from the cone  $\Delta \Omega$ 

total flux

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} {
m sec}^{-1} {
m sr}^{-1}$ 

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

**9** main bgnd:  $\pi^0$ 's from primary CR int's with interstellar H and He atoms  $(\pi^0 \rightarrow \gamma \gamma)$ 

much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity

 ${}^{igstyle}$  diff'l flux from the cone  $\Delta \Omega$ 

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\Omega) = \Phi_{\gamma,0}\sum_{i}\left(rac{\sigma_{i}v}{10^{-29}\mathrm{cm}^{3}~\mathrm{sec}^{-1}}
ight)rac{dN_{\gamma}^{i}}{dE_{\gamma}}\left(rac{100\,\mathrm{GeV}}{m_{\chi}}
ight)^{2}\left(ar{J}(\Delta\Omega)\Delta\Omega
ight)$$

 $\Phi_{\gamma,0} = 0.94 imes 10^{-13} {
m cm}^{-2} \ {
m sec}^{-1} \, {
m sr}^{-1}$ 

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

**P** main bgnd:  $\pi^0$ 's from primary CR int's with interstellar H and He atoms  $(\pi^0 \rightarrow \gamma \gamma)$ 

much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity

all-sky survey

total flux

- effective energy range 20 MeV to 300 GeV, very good energy resolution
- ${}^{I}$  angular resolution  $\Delta\Omega\simeq 10^{-5}{
  m sr}$  (or  $\sim 0.15\,{
  m deg}$  for  $E_{\gamma}>10\,{
  m GeV}$  )


use GLAST parameters

Bayesian posterior probability maps

### use GLAST parameters

Bayesian posterior probability maps



### use GLAST parameters

Bayesian posterior probability maps



### use GLAST parameters

Bayesian posterior probability maps



GLAST prospects critically depend on how cuspy the GC is more cuspy than NFW: all CMSSM range will be explored (at 95% CL)

 $\checkmark$  predicted by SUSY  $\checkmark$ 

- predicted by SUSY  $\sqrt{}$
- not invented to solve the DM problem

- predicted by SUSY  $\sqrt{}$
- not invented to solve the DM problem
- In the second secon

- predicted by SUSY  $\sqrt{}$
- not invented to solve the DM problem
- detection: very good prospects in DM searches  $\sqrt{}$
- LHC: expected to discover SUSY  $\sqrt{}$

- predicted by SUSY  $\sqrt{}$
- not invented to solve the DM problem
- detection: very good prospects in DM searches  $\sqrt{}$
- LHC: expected to discover SUSY  $\sqrt{}$

...What if Nature has made a different choice?

•  $\Omega_{\chi}h^2 \simeq 0.1$ : extremely strong constraint

- $\Omega_{\chi}h^2 \simeq 0.1$ : extremely strong constraint
- how to relax it w/o giving up CDM?

(...or screwing up cosmology)

- $\Omega_{\chi}h^2 \simeq 0.1$ : extremely strong constraint
- how to relax it w/o giving up CDM?

(...or screwing up cosmology)

need another WIMP

(or another cosmology)

# **The Big Picture**

<u>well–motivated</u> particle candidates such that  $\Omega \sim 0.1$ 



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- axino  $\widetilde{a}$
- ullet gravitino  $\widetilde{G}$

(extremely weakly interacting massive particles)

(extremely weakly interacting massive particles)

historically first:

 $\widetilde{G}$ : Pagels+Primack, Weinberg ('82)

 $\widetilde{a}$ : Tamvakis+Wyler ('82, pheno only)

 $\widetilde{\gamma}$ : Goldberg ('83)

 $\chi$ : Ellis, *et al* (EHNOS) ('84)

neutral, Majorana, chiral fermions

(extremely weakly interacting massive particles)

historically first:

 $\widetilde{G}$ : Pagels+Primack, Weinberg ('82)

 $\widetilde{a}$ : Tamvakis+Wyler ('82, pheno only)

 $\widetilde{\gamma}$ : Goldberg ('83)

 $\chi$ : Ellis, *et al* (EHNOS) ('84)

DM, L. Roszkowski, Zakopane, June '07 - p.53

(extremely weakly interacting massive particles)

historically first:

 $\widetilde{G}$ : Pagels+Primack, Weinberg ('82)

 $\widetilde{a}$ : Tamvakis+Wyler ('82, pheno only)

 $\widetilde{\boldsymbol{\gamma}}$ : Goldberg ('83)

 $\chi$ : Ellis, *et al* (EHNOS) ('84)

(assume usual gravity mediated SUSY breaking)

neutral, Majorana, chiral fermions

|             | axino                    | gravitino             |
|-------------|--------------------------|-----------------------|
| spin        | 1/2                      | 3/2                   |
| interaction | $\sim 1/f_a^2$           | $\sim 1/M_{ m P}^2$   |
| mass        | $ ot\propto M_{ m SUSY}$ | $\propto M_{ m SUSY}$ |

mass model dependent take it as free parameter

 $f_a \sim 10^{9-12}\,{
m GeV}$  – PQ scale

 $M_{
m P}=2.4 imes 10^{18}\,{
m GeV}$  – reduced Planck mass

 $M_{
m SUSY} \sim 100\,{
m GeV} - 1\,{
m TeV}$  – soft SUSY mass scale

Covi+J.E. Kim+Roszkowski, PRĽ99

Covi+J.E. Kim+Roszkowski, PRĽ99

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$  (LOSP)

Covi+J.E. Kim+Roszkowski, PRĽ99

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$  (LOSP)
  - $\chi$  first freezes out

Covi+J.E. Kim+Roszkowski, PRĽ99

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$  (LOSP)
  - $\chi$  first freezes out
  - then decays:  $\chi 
    ightarrow \widetilde{a} \, \gamma$



Covi+J.E. Kim+Roszkowski, PRĽ99

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$  (LOSP)
  - $\chi$  first freezes out
  - then decays:  $\chi 
    ightarrow \widetilde{a} \, \gamma$

$$au(\chi o \widetilde{a} \, \gamma) \simeq 0.3 \sec\left(rac{100 \, \mathrm{GeV}}{m_\chi}
ight)^3 \dots$$
  
 $(\chi \simeq \widetilde{B})$  ...before BBN!



### Covi+J.E. Kim+Roszkowski, PRĽ99

#### consider:

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$  (LOSP)
  - $\chi$  first freezes out
  - then decays:  $\chi 
    ightarrow \widetilde{a} \, \gamma$

$$au(\chi o \widetilde{a} \, \gamma) \simeq 0.3 \sec\left(rac{100 \, \mathrm{GeV}}{m_{\chi}}
ight)^3 \dots$$
  
 $(\chi \simeq \widetilde{B})$  ...before BBN!



• NTP:  $n_{\widetilde{a}} = n_{\chi}$   $\Omega_{\widetilde{a}} = rac{m_{\widetilde{a}}}{m_{\chi}} \Omega_{\chi}$ 

### Covi+J.E. Kim+Roszkowski, PRĽ99

#### consider:

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$  (LOSP)
  - $\chi$  first freezes out
  - then decays:  $\chi 
    ightarrow \widetilde{a} \, \gamma$

$$egin{aligned} & au(\chi 
ightarrow \widetilde{a} \, \gamma) \simeq 0.3 \, ext{sec} \left( rac{100 \, ext{GeV}}{m_\chi} 
ight)^3 \ldots \ & (\chi \simeq \widetilde{B}) & \dots ext{before BBN!} \end{aligned}$$



• NTP:  $n_{\widetilde{a}} = n_{\chi}$   $\Omega_{\widetilde{a}} = \frac{m_{\widetilde{a}}}{m_{\chi}} \Omega_{\chi}$ 

can have  $\Omega_{\widetilde{a}} \simeq 1$  while " $\Omega_{\chi} \gg 1$ "

NTP: non-thermal production

### Covi+J.E. Kim+Roszkowski, PRĽ99

#### consider:

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \mathsf{NLSP}$  (LOSP)
  - $\chi$  first freezes out
  - then decays:  $\chi 
    ightarrow \widetilde{a} \, \gamma$

$$au(\chi o \widetilde{a} \, \gamma) \simeq 0.3 \sec\left(rac{100 \, \mathrm{GeV}}{m_\chi}
ight)^3 \dots$$
 $(\chi \simeq \widetilde{B})$  ...before BBN!



• NTP: 
$$n_{\widetilde{a}} = n_{\chi}$$
  $\Omega_{\widetilde{a}} = \frac{m_{\widetilde{a}}}{m_{\chi}} \Omega_{\chi}$ 

can have  $\Omega_{\widetilde{a}} \simeq 1$  while " $\Omega_{\chi} \gg 1$ "

NTP: non-thermal production

• plus TP processes:  $q \ q \to \widetilde{a} \ \widetilde{g}, \ \widetilde{q} \to \widetilde{a} \ q, \ldots$ 

TP: thermal production

### NTP vs TP

Covi+H.-B. Kim+J.E. Kim+Roszkowski, JHEP '01 (hep-ph/0101009)

general MSSM:



...axino cold DM:  $\Rightarrow$  low  $T_R \leq 10^6$  GeV

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

### CMSSM, (standard) $\chi$ LSP



Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

### CMSSM, (standard) $\chi$ LSP



### CMSSM, $\widetilde{a}$ LSP, $m_{\widetilde{a}} \simeq m_{\chi}$



Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

### CMSSM, (standard) $\chi$ LSP

CMSSM,  $\widetilde{a}$  LSP,  $m_{\widetilde{a}} \simeq m_{\chi}$ 



both neutralino  $\chi$  and stau  $\widetilde{\tau}_1$  regions are now cosmologically allowed

NLSP lifetime  $\gg 10^{-7}$  sec  $\Rightarrow$  at LHC either will appear stable

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

### CMSSM, (standard) $\chi$ LSP

CMSSM,  $\widetilde{a}$  LSP,  $m_{\widetilde{a}} \simeq m_{\chi}$ 



lacksquare both neutralino  $oldsymbol{\chi}$  and stau  $\widetilde{oldsymbol{ au}}_1$  regions are now cosmologically allowed

NLSP lifetime  $\gg 10^{-7} \sec \Rightarrow$  at LHC either will appear stable

if  $\chi$  NLSP: standard "missing energy" signature at LHC, but DM WIMP unsuccessful

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

### CMSSM, (standard) $\chi$ LSP

CMSSM,  $\widetilde{a}$  LSP,  $m_{\widetilde{a}} \simeq m_{\chi}$ 



 ${}^{igstyle}$  both neutralino  ${m \chi}$  and stau  $\widetilde{m au}_1$  regions are now cosmologically allowed

NLSP lifetime  $\gg 10^{-7} \sec \Rightarrow$  at LHC either will appear stable

- If  $\chi$  NLSP: standard "missing energy" signature at LHC, but DM WIMP unsuccessful
- If  $\tilde{\tau}_1$ -NLSP: charged, apparently stable  $\Rightarrow$  striking signature at LHC

# The Gravitino $\widetilde{G}$

spin-3/2 partner of the graviton

• in gravity-mediated SUSY breaking models

 $m_{\widetilde{G}} = rac{F}{\sqrt{3}M_{
m P}}$ 

 $F \sim 10^{11} \, {
m GeV} - {
m SUSY}$  breaking scale  $M_{
m P} = 2.4 imes 10^{18} \, {
m GeV} - {
m reduced}$  Planck mass soft masses  $\sim F/M_{
m P}$ 

natural to expect:  $m_{\tilde{G}} \sim \text{GeV} - \text{TeV}$
## The Gravitino $\widetilde{G}$

spin-3/2 partner of the graviton

• in gravity-mediated SUSY breaking models

 $m_{\widetilde{G}} = rac{F}{\sqrt{3}M_{
m P}}$ 

 $F \sim 10^{11}\,{
m GeV} - {
m SUSY}$  breaking scale $M_{
m P} = 2.4 imes 10^{18}\,{
m GeV} - {
m reduced}$  Planck mass soft masses  $\sim F/M_{
m P}$ 

natural to expect:  $m_{\tilde{G}} \sim \text{GeV} - \text{TeV}$ 

• if it is the LSP...

can 
$$\widetilde{G}$$
 give  $\Omega_{
m CDM} h^2 \sim 0.1?$ 

 $\widetilde{G}$ : cold (not warm) DM

(analogous to  $\widetilde{a}$  LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

- $\widetilde{G} = \mathsf{LSP}$
- NLSP  $(\chi \text{ or } \widetilde{\tau}_1)$  first freezes out, then decays  $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$   $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$

...well after BBN

(analogous to  $\widetilde{a}$  LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

- $\widetilde{G} = \mathsf{LSP}$
- NLSP  $(\chi \text{ or } \widetilde{\tau}_1)$  first freezes out, then decays  $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$   $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$ ...well after BBN
  - $\Rightarrow$  NTP: NTP: NTP: non-thermal production (neglect other possible contr's)

 $\Omega_{\widetilde{G}}^{\mathrm{NTP}} = rac{m_{\widetilde{G}}}{m_{\mathrm{NLSP}}} \, \Omega_{\mathrm{NLSP}}$ 

(analogous to  $\widetilde{a}$  LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

- $\widetilde{G} = \mathsf{LSP}$
- NLSP  $(\chi \text{ or } \widetilde{\tau}_1)$  first freezes out, then decays  $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$   $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$ ...well after BBN
  - $\Rightarrow$  NTP: NTP: non-thermal production (neglect other possible contr's)

$$\Omega_{\widetilde{G}}^{\mathrm{NTP}} = \frac{m_{\widetilde{G}}}{m_{\mathrm{NLSP}}} \,\Omega_{\mathrm{NLSP}}$$

Feng, et al (FST 02-04), MSSM

Ellis, et al (EOSS 03), CMSSM

(analogous to  $\widetilde{a}$  LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

- $\widetilde{G} = \mathsf{LSP}$
- NLSP  $(\chi \text{ or } \widetilde{\tau}_1)$  first freezes out, then decays  $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$   $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$ ...well after BBN
  - $\Rightarrow \text{ NTP: non-thermal production (neglect other possible contr's)} \\ \Omega_{\widetilde{G}}^{\text{NTP}} = \frac{m_{\widetilde{G}}}{m_{\text{NLSP}}} \Omega_{\text{NLSP}} \\ \Rightarrow \text{ TP: } q \, q \to \widetilde{G} \, \widetilde{g}, \quad \widetilde{q} \to \widetilde{G} \, q, \dots \qquad \text{TP: thermal production} \\ \Omega_{\widetilde{G}}^{\text{TP}} \simeq 0.2 \left( \frac{T_R}{10^{10} \,\text{GeV}} \right) \left( \frac{100 \,\text{GeV}}{m_{\widetilde{G}}} \right) \left( \frac{m_{\widetilde{g}}(\mu)}{1 \,\text{TeV}} \right)^2 \\ \text{Bolz+Brandenburg+Buchmüller ('00)} \end{aligned}$

(analogous to  $\widetilde{a}$  LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

- $\widetilde{G} = \mathsf{LSP}$
- NLSP  $(\chi \text{ or } \widetilde{\tau}_1)$  first freezes out, then decays  $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$   $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$ ...well after BBN
  - $\Rightarrow \text{ NTP: non-thermal production (neglect other possible contr's)} \\ \Omega_{\widetilde{G}}^{\text{NTP}} = \frac{m_{\widetilde{G}}}{m_{\text{NLSP}}} \Omega_{\text{NLSP}} \\ \Rightarrow \text{ TP: } q \, q \to \widetilde{G} \, \widetilde{g}, \quad \widetilde{q} \to \widetilde{G} \, q, \dots \qquad \text{TP: thermal production} \\ \Omega_{\widetilde{G}}^{\text{TP}} \simeq 0.2 \left( \frac{T_R}{10^{10} \,\text{GeV}} \right) \left( \frac{100 \,\text{GeV}}{m_{\widetilde{G}}} \right) \left( \frac{m_{\widetilde{g}}(\mu)}{1 \,\text{TeV}} \right)^2 \\ \text{Bolz+Brandenburg+Buchmüller ('00)} \end{aligned}$

At high  $T_R \gtrsim 10^9$  GeV, TP is important

### **BBN Constraint**

#### • apply $D/H + Y_p + {^7\!Li}/H + {^3\!He}/D + {^6\!Li}/{^7\!Li}$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275 new, improved analysis follow the initial hep-ph/0408227 (L.R.+Ruiz de Austri+K.-Y. Choi)

- self–consistent, both EM & HAD, vary  $B_h$  as f'n of SUSY parameters
- adopt abundances of light elements from observations (Jedamzik):

 $2.2 imes 10^{-5} < D/H < 5.3 imes 10^{-5}$  $0.232 < Y_p < 0.258$  $1.11 imes 10^{-10} < {^7Li/H} < 4.5 imes 10^{-10}$  ${^3He/D} < 1.72$  ${^6Li}/{^7Li} < 0.1875$ 

## Example: $m_{\widetilde{G}} = 10 \, \text{GeV}$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275 and in prep. apply all BBN:  $D/H + Y_p + {}^7Li/H + {}^3He/D + {}^6Li/{}^7Li$ 



## Example: $m_{\widetilde{G}} = 10 \, \text{GeV}$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275 and in prep. apply all BBN:  $D/H + Y_p + {}^7Li/H + {}^3He/D + {}^6Li/{}^7Li$ 



• only  $\tilde{\tau}_1$ –NLSP region remains allowed

 $\Rightarrow$  at LHC see charged "stable" LOSP  $\tilde{\tau}_1$  (instead of "expected" neutral  $\chi$ )

confirmed Feng, et al (Apr 04)

## Example: $m_{\widetilde{G}} = 10 \, \text{GeV}$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275 and in prep. apply all BBN:  $D/H + Y_p + {}^7Li/H + {}^3He/D + {}^6Li/{}^7Li$ 



• only  $\widetilde{\tau}_1$ –NLSP region remains allowed

⇒ at LHC see charged "stable" LOSP  $\tilde{\tau}_1$  (instead of "expected" neutral  $\chi$ )

confirmed Feng, et al (Apr 04)

• low  $T_R$  basically excluded (NTP part only), must include TP contribution to  $\Omega_{\widetilde{G}}h^2$  $\Rightarrow m_{\widetilde{G}} = \mathcal{O}(100 \text{ GeV})$ : (typically) need high  $T_R \sim 10^8 \text{ GeV}$ 

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275-> JCAP and in prep.

thermal leptogenesis:  $T_R\gtrsim 2 imes 10^9~{
m GeV}$  (Fukugida+Yanagida)



Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275-> JCAP and in prep.

thermal leptogenesis:  $T_R \gtrsim 2 imes 10^9$  GeV (Fukugida+Yanagida)



CMSSM: enough  $\widetilde{G}$  DM  $\Rightarrow T_R \leq \text{a few} \times 10^8 \text{ GeV}$ 

...but need large TP component

NTP not enough

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, hep-ph/0509275-> JCAP and in prep.

thermal leptogenesis:  $T_R \gtrsim 2 imes 10^9$  GeV (Fukugida+Yanagida)



CMSSM: enough  $\widetilde{G}$  DM  $\Rightarrow T_R \leq \text{a few} \times 10^8 \text{ GeV}$ 

...but need large TP component

NTP not enough

#### ⇒ popular baryogenesis scenario strongly disfavored ...in the CMSSM

DM, L. Roszkowski, Zakopane, June '07 - p.6

If neutralino is NLSP: points towards  $\tilde{a}$  but hard to confirm

...only indirectly: discover axion and discover SUSY

If neutralino is NLSP: points towards  $\tilde{a}$  but hard to confirm

...only indirectly: discover axion and discover SUSY

If stau is NLSP: study stau decays at LHC

Brandenburg+Covi+Hamaguchi+L.R.+Steffen, hep-ph/0501287  $\rightarrow$  PLB'05

If neutralino is NLSP: points towards  $\tilde{a}$  but hard to confirm

...only indirectly: discover axion and discover SUSY

If stau is NLSP: study stau decays at LHC

Brandenburg+Covi+Hamaguchi+L.R.+Steffen, hep-ph/0501287  $\rightarrow$  PLB'05



Axino LSP Scenario

If neutralino is NLSP: points towards  $\tilde{a}$  but hard to confirm

...only indirectly: discover axion and discover SUSY

If stau is NLSP: study stau decays at LHC

Brandenburg+Covi+Hamaguchi+L.R.+Steffen, hep-ph/0501287  $\rightarrow$  PLB'05



If neutralino is NLSP: points towards  $\tilde{a}$  but hard to confirm

...only indirectly: discover axion and discover SUSY

If stau is NLSP: study stau decays at LHC

Brandenburg+Covi+Hamaguchi+L.R.+Steffen, hep-ph/0501287  $\rightarrow$  PLB'05



- different event distributions
- chance to distinguish at LHC

## **The Big Picture**

<u>well–motivated</u> particle candidates such that  $\Omega \sim 0.1$ 



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $oldsymbol{s}$  axino  $\widetilde{oldsymbol{a}}$
- $oldsymbol{s}$  gravitino  $\widetilde{G}$

**•** ????



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)

neutralino: WIMP for this decade



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)

neutralino: WIMP for this decade

very good prospects for discovery in DM searches & LHC



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)

neutralino: WIMP for this decade

very good prospects for discovery in DM searches & LHC

direct detection (my bet):

$$\sigma_p^{SI} = 10^{-9\pm1}\,{
m pb}$$

already partially probed by current detectors...

...to be almost completely covered by planned 1-tonne detectors



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)

neutralino: WIMP for this decade

very good prospects for discovery in DM searches & LHC

direct detection (my bet):

$$\sigma_p^{SI} = 10^{-9\pm1}\,{
m pb}$$

already partially probed by current detectors...

...to be almost completely covered by planned 1-tonne detectors

indirect detection generally somewhat less promising

...but large halo model dependence



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)

neutralino: WIMP for this decade

very good prospects for discovery in DM searches & LHC

direct detection (my bet):

$$\sigma_p^{SI}=10^{-9\pm1}\,{
m pb}$$

already partially probed by current detectors...

...to be almost completely covered by planned 1-tonne detectors

indirect detection generally somewhat less promising

...but large halo model dependence

GLAST should see diffuse  $\gamma$  radiation from the Galactic center

...if DM halo cuspy enough



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)

neutralino: WIMP for this decade

very good prospects for discovery in DM searches & LHC

direct detection (my bet):

$$\sigma_p^{SI}=10^{-9\pm1}\,{
m pb}$$

already partially probed by current detectors...

...to be almost completely covered by planned 1-tonne detectors

indirect detection generally somewhat less promising

...but large halo model dependence

GLAST should see diffuse  $\gamma$  radiation from the Galactic center

... if DM halo cuspy enough

Nature may have made another choice: axino or gravitino E-WIMP?

... or some other hypothetical particle?



axion, neutralino, axino, gravitino, sterile (s)neutrino, lightest Kałuża-Klein particle, etc; (much harder to cook up a well-motivated, long-lived, underlying theory, like SUSY)

neutralino: WIMP for this decade

very good prospects for discovery in DM searches & LHC

direct detection (my bet):

$$\sigma_p^{SI} = 10^{-9\pm1}\,{
m pb}$$

already partially probed by current detectors...

...to be almost completely covered by planned 1-tonne detectors

indirect detection generally somewhat less promising

...but large halo model dependence

GLAST should see diffuse  $\gamma$  radiation from the Galactic center

... if DM halo cuspy enough

Nature may have made another choice: axino or gravitino E-WIMP?

...or some other hypothetical particle?

 $\widetilde{a}$  and  $\widetilde{G}$ : partially testable at the LHC

### DM WIMP will be discovered within a decade

### DM WIMP will be discovered within a decade

or else

### DM WIMP will be discovered within a decade

or else

within a millennium

DM, L. Roszkowski, Zakopane, June '07 - p.65

### DM WIMP will be discovered within a decade

or else

### within a millennium

### ...STAY TUNED

DM, L. Roszkowski, Zakopane, June '07 - p.65