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• A brief Introduction to Relativistic Hydrodynamics/MHD

• Numerical solutions: basic dos and don’ts

• flux conservative formulations

• high-resolution shock capturing schemes

• Non-vacuum sources at the AEI

• One representative example:

o stellar collapse to a rotating black hole

Plan of the talk



A look at the equations

Let’s recall the equations we are dealing with:



Handling the matter content of the spacetime

From these quantities we can construct the ideal-fluid stress-energy tensor

Let:    the fluid’s 4-velocity,    the 
isotropic pressure,     the rest-
mass density,   the specific 
internal energy density 
and                        ,                                 
the total energy density

Let also    be the fluid 3-velocity 
measured by the observers  



Before looking at the solution of the hydrodynamical equations 
there are some fundamental aspects of their nonlinear properties 
which must be clarified. For this it is easier to consider the simplest 
nonlinear hyperbolic equation: inviscid Burgers equation

A representative example: Burgers’ equation

This is a well-know phenomenon 
which is usually referred to as 
“shock steepening”. Mathematically 
this is due to the fact that the 
characteristics of the equation are 
space and time dependent and 
induce a focussing: ie a shock.

Note that this happens already with 
continuous initial data!



A generic problem arises when a Cauchy problem described by a 
set of  continuous PDEs is solved in a discretized form: the 
numerical solution is, at best, piecewise constant.

This is particularly problematic 
when discretizing 
hydrodynamical eqs in 
compressible fluids, whose 
nonlinear properties 
generically produce, in a finite 
time, nonlinear waves with 
discontinuities (ie shocks, 
rarefaction waves, etc) even 
from smooth initial data! 

The problem of discretization…



This is a well-know example of 
the importance of a proper 
writing of the equation. In 
particular, in the inviscid case it 
can be written a non-flux 
conservative but also in a 
conservative form as 

A representative example: Burgers’ equation



The homogeneous partial differential equation

is written in said to be in flux-conservative (fc) form if written as

• In conservative systems, knowledge of the state vector u at one 
point in spacetime allows to determine the flux f (and so the 
evolution) for each state variable.

• Theorems (Lax, Wendroff; Hou, LeFloch) 

• fc formulation converges to the weak solution of the problem 
(ie a solution of the integral form of the fc form)

• nfc converges to the wrong weak solution of the problem 

Conservative form of the equations



where                                is the specific enthalpy and the Lorentz 
factor is defined as

The first step in rewriting the above equations in a fc form requires 
the identification of suitable “conserved” quantities in place of the 
“primitive” variables                . A little algebra shows that these are:

Consider for simplicity an non-magnetized ideal fluid



In this way one obtains the “Valencia” formulation (Banyuls et al. 97) of 
the relativistic hydrodynamics equations 

Note that the source terms do not contain derivatives of the 
hydrodynamical quantities (leaving intact the principal part) and 
vanish in a flat spacetime

where   



Let’s restrict to a simpler but instructive problem: a homogeneous, flux- conservative 
differential equation for the scalar u=u(x,t) in one dimension

Its generic, finite-difference form is (1st-order in time, 2nd order in space) 

where

Any finite-difference form of (1) must represent           in the most accurate way. 
Different forms of calculating           lead to different evolution schemes (Forward-
Time-Centred-Space, Lax, Runge-Kutta, etc…, see www.aei.mpg.de/~rezzolla)

Discretising the problem…

and

“some approximation to the 
average flux at j+1/2”



Possible solutions to the discontinuities problem:

★ 1st order accurate schemes

• generally fine, but very inaccurate across discontinuities 
(eccessive    diffusion, e.g. Lax method)

★ 2nd order accurate schemes

• generally introduce oscillations across discontinuities 

★ 2nd order accurate schemes with artificial viscosity

• mimic Nature but not good in relativistic regimes

★ Godunov Methods

• discontinuities are not eliminated, rather they are exploited! 



Based on a simple, yet brilliant idea by Godunov (’59). An example of how basic 
physics can boost research in computational physics.

Core idea: a piecewise constant description of hydrodynamical quantities will 
produce a collection of local Riemann problems whose solution can be found 
exactly.

High Resolution Shock Capturing  (Godunov) Methods

where

is the exact solution of the Riemann problem with initial data 



It’s the evolution of a fluid initially composed of two states with different and 
constant values of velocity, pressure and density.

If the problem is linear, it can be handled analytically after rewriting the flux 
conservative equation

where A(u) is the Jacobian matrix of const. coefficients. In this way, (2) is written as a 
set of i linear equations for the characteristic variables 

What is exactly a Riemann problem?…

with Λ the diagonal matrix of the eigenvalues λi . The solution is

and       are the right eigenvectors of A

as



cell boundaries where fluxes are required

shock frontrarefaction wave

Solution at the time n+1 of 
the two Riemann problems at 
the cell boundaries xj+1/2  and 
xj-1/2

Initial data at the time n for 
the two Riemann problems 
at the cell boundaries xj+1/2  
and xj-1/2

Spacetime evolution of the 
two Riemann problems at the 
cell boundaries xj+1/2  and xj-1/2. 

Each problem leads to a shock 
wave and a rarefaction wave  
moving in opposite directions



o Binary neutron stars

o Neutron star oscillations: linear/nonlinear ; magnetized/not 

o Dynamical (barmode) instability

o Rotating collapse to black holes

o Mixed Binary systems 

o Accretion torii (magnetized/not)

Non-vacuum sources of gws at the AEI

Baiotti, Giacomazzo, LR

Baiotti, De Pietri, Manca, LR

Baiotti, Giacomazzo, LR

Ansorg, Loeffler, LR

Font, Montero, LR, Zanotti

Baiotti, Giacomazzo, Hawke, LR, Schnetter



Stellar collapse to a rotating 
black hole

Baiotti, Hawke, Giacomazzo, LR, Schnetter, Stergioulas (05-07)



Initial Data: uniformly rotating polytropes

We have built sequences of uniformly 
rotating polytropes with constant 
value of  angular momentum, up to 
the mass-shedding limit.

For simplicity we consider polytropes

 
     p= ρε(Γ−1) 

with 


   Γ=1+1/Ν=2 

Baiotti, et al., PRD (2005)



Collapse of D1: slowly rotating model

The star is only slowly rotating and hence almost spherical. This holds essentially 
all the time till the formation of an apparent horizon

Baiotti, et al., PRD (2005)



Collapse with excision: rapidly rotating model

Note that in this case the collapse is no longer homologous: the star first 
flattens, the collapse stalls and a disc is formed.



Collapse of D4: rapidly rotating star

No excision is used. A small amount of numerical dissipation and 
suitable gauge-conditions provide stability
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o White surface:   
apparent horizon

o Filled circles: 
event hor izon 
generators

o Grey surface:                                                 
event horizon

Dynamics of trapped surfaces

Animation by P. Diener



The collapse in a spacetime diagram
Slowly rotating star Rapidly rotating star

Each point on these diagrams summarizes ~1011 fp operations!

stalled collapse 
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Simulation for D1; similar behaviour for D4

The first waveforms form the birth of a black hole



Waveforms!

Slowly rotating model Rapidly rotating model
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Energy losses and detectability

Smaller efficiency than calculated by Stark & Piran (ΔE~1.5x10-4÷-5 M/M¤), 
but consistent with estimates from core collapse

The amplitudes can be used to calculate the energy lost to gws

  

€ 

dE
dt

=
1

32π
dQlm

+

dt

2

+ Qlm
× 2

 

 
 
 

 

 
 
 lm∑   

Slow Rapid detector

0.2 2.1 Virgo/LIGO

1.1 11 Advanced

3.3 28 Dual

€ 

ΔE =
3.3×10−7M /M•   (D1)
3.1×10−6M /M•   (D4)

 
 
 



Building our understanding

With the basic picture clear, we are now looking at how the 
properties of waveforms depend (at times sensitively) on a 
number of factors: 

• velocity distribution (ie differential rotation)

• EOS

• perturbation type and amplitude 

• rotation rate 

First steps towards source characterization and GW-astronomy



Influencing factors: rotation

D0: almost spherical; 

D4: most rapidly spinning; 

Although the amplitude 
differs considerably with 
spin, the frequency spectra 
do not.D4: fast

D0: slow



• The energy emitted is ~ (J/M2)4 for 
sufficiently large rotations 

Energy emission from uniformly rotating stars

Overall, the gw emission from 
uniformly rotating stars is efficient 
only at very large rotation rates with 
S/N>1 at 10 kpc.

Energy emission

•Even small (eg. ~2%) pressure 
perturbations modify the collapse and 
reduce the energy emission

• Additional radial velocities (2%) can 
boost the collapse and enhance the 
emission



Differentially rotating polytropes

• The efficiency in the gw emission can be increased if large 
deviations from axisymmetry develop via dynamical instabilities.

• Differential rotation is expected in a star produced as a result of 
core-collapse or in the merger of a binary system of NSs

• Differential rotation can easily yield stars with J/M2<1 (ie sub-Kerr) 
as well as stars with J/M2>1 (ie supra-Kerr)

• A supra-Kerr star cannot collapse promptly to a Kerr bh; 
something must intervene to remove angular momentum, eg. non-
axisymmetric instabilities

Giacomazzo, LR, stergioulas (in progress)



Collapse of sub-Kerr models

We have constructed differentially 
rotating sub-Kerr models close to the  
stability limit with

A ~2% pressure  perturbation 
to trigger a collapse which is 
essentially axisymmetric but has 
nonzero contributions from 
higher multipoles

As an example: A10

M = 1.812 M; J/M 2 =0.477  

T/|W| = 0.06; Γ = 2; A=1
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Animation by B. Giacomazzo



Collapse of a supra-Kerr model

Simple is also to build 
supra-Kerr models.

Note the collapse was 
triggered with a pressure 
depletion of 99%

Modulo the Cartesian “imprints”, this seems an excellent source of 
gravitational radiation. Unfortunately, this is rather unrealistic…

As an example B1:

M=1.91Msun; rp/re=0.390

J/M 2=1.09; T/|W|=0.215
Γ = 2

Animation by B. Giacomazzo



stability limits

No systematic investigation has been made on the equilibrium models and 
this has some surprises…

Hence, all unstable 
models have J/M2<1

Sequences of typical stars at mass-
shedding limit with A=1, rp/re=0.35

All models have ρc for a static model and 
very close to mass-shedding

Sequences of stars very close to the 
stability limit (the exact position tobe 
determined via simulations). 

Again, all models have J/M2<1

More on differentially rotating polytropes



In other words:

o All differentially-rotating models that are dynamically unstable 
have J/M2≤1; collapse’s dynamics/efficiency is similar to the one for 
uniformly rotating models

o All differentially-rotating models J/M2 >1 are stable; unlikely to 
produce non-axisymmetric instabilities without huge pressure 
reductions; not yet excluded (e.g. through phase transition for 
stars near the threshold).



Characterizing the energy emission

Energy emission Note the increase in the energy 
efficiency as the differential 
rotation is increased:diff. rotating models

€ 

model A1::    ˆ A = 0.6

model A2 ::    ˆ A =1.0

model A3::    ˆ A =1.4

Slow Rapid Diffrntl 
rotation detector

0.2 2.1 4.5 Virgo/LIGO

1.1 11 27.6 Advanced

3.3 28 48.9 Dual



Summary
Also for matter, the modelling of sources of gravitational waves in 

fully nonlinear regimes requires the numerical solution of the Einstein 
equations: ie numerical relativity techniques

 When dealing with the relativistic hydrodynamics or MHD 
equations, shocks are to be expected and need to be properly handled

The best way of doing this is to write the equations in a flux-
conservative form and to use HRSC methods

Also for matter, there is all the evidence that numerical relativity is 
living its “renaissance”, and our simulations have never been as accurate 
and stable.

Much remains to be done towards a more realistic description of 
these sources. Introducing a magnetic field is a first step but also 
realistic equations of state, radiation transport, neutrino transport, etc...


