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Plan of the talk

* A brief Introduction to Relativistic Hydrodynamics/MHD
* Numerical solutions: basic dos and don'ts
e flux conservative formulations
* high-resolution shock capturing schemes
* Non-vacuum sources at the AEl
* One representative example:

o stellar collapse to a rotating black hole




A look at the equations

Let's recall the equations we are dealing with:

G = Ry — %gWR ==l

vV, TH =0,

VM(,OUM) =, )

p=p(py€ .-
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(field equations)
(conservation of energy — momentum)
(conservation of baryon number)

(equation of state)




Handling the matter content of the spacetime

Let: u the fluid's 4-velocity, p the
Isotropic pressure, p the rest-
mass density, € the specific
internal energy density
ande = p(1+¢€) ,

the total energy density

Let also U be the fluid 3-velocity
measured by the observers 7

v=— >UZ:—<—t+ﬁz>

n-u a \Uu

From these quantities we can construct the ideal-fluid stress-energy tensor
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A representative example: Burgers’ equation

Before looking at the solution of the hydrodynamical equations
there are some fundamental aspects of their nonlinear properties
which must be clarified. For this it is easier to consider the simplest
nonlinear hyperbolic equation: inviscid Burgers equation

time =10
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bargers_eqg
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Oru(x,t) + u(x,t)0,u(x,t) =0

This is a well-know phenomenon
which s usually referred to as
“shock steepening”. Mathematically
this is due to the fact that the
characteristics of the equation are
space and time dependent and
induce a focussing: ie a shock.

Note that this happens already with
continuous Initial data!




The problem of discretization...

A generic problem arises when a Cauchy problem described by a
set of continuous PDEs is solved in a discretized form: the
numerical solution Is, at best, piecewise constant,

ten This is particularly problematic

u(x.t): continuous  § \when discretizing
hydrodynamical egs In
compressible fluids, whose
nonlinear properties
generically produce, in a finite
time, nonlinear waves with
discontinuities (ie shocks,
rarefaction waves, etc) even
from smooth initial datal

u (Xj, t"): piecewise const.
J




A representative example: Burgers’ equation

ou(x,t) + u(x,t)0zu(x,t) =0

This is a well-know example of
the importance of a proper
writing of the equation. In
particular, in the inviscid case it
can be written a non-flux
conservative but also In a
conservative form as

o + ud,u =0, (nfc)

Ou + 30,u* =0, (fc)




Conservative form of the equations

The homogeneous partial differential equation
Oru(x,t) + alu(x, t)|0,u(x,t) =0

s written in said to be In flux-conservative (fc) form if written as
Oru(x,t) + O Flu(x,t)] =0

* In conservative systems, knowledge of the state vector u at one
point in spacetime allows to determine the flux f (and so the
evolution) for each state variable.

* [heorems (Lax,\/\/endroﬁ‘; Hou, LeFIoch)

- fc formulation converges to the weak solution of the problem
(e a solution of the integral form of the fc form)

* nfc converges to the wrong weak solution of the problem




Consider for simplicity an non-magnetized ideal fluid

T = (Euler egs.)

u, T, =0, (energy eq.)
pput + put =0, (continuity eq.)

p=p(p:€) ; (EOS)

The first step Iin rewriting the above equations in a fc form requires
the identification of surtable “conserved” quantities in place of the
“primitive” variables (,0, €, UJ) A little algebra shows that these are:

I
Sj = ,OhWZ”Uj )
e T p R pl e,

where h =1 + €+ p/p s the specific enthalpy and the Lorentz

factor is defined as W = (1 — ;007 ™ 172 — qu)f




In this way one obtains the “Valencia” formulation (Banyuls et al. 97) of
the relativistic hydrodynamics equations

%g{at [VAFY(U)] + 8, [FF (V)] } = s(U) |

where

F°(U) = (D,S;,7)"
F'(U) = [D(av* — 3%, Sj(owi o —|—p5;, T(av® — B) + pv']*

S {O, TH (8,905 + Fiyggj),oz(T“’O@M Ina — T’“’Fgu)] .

Note that the source terms do not contain derivatives of the
hydrodynamical quantities (leaving intact the principal part) and
vanish in a flat spacetime




Discretising the problem...

Let's restrict to a simpler but instructive problem: a homogeneous, flux- conservative
differential equation for the scalar u=u(x,t) in one dimension

Opu(x,t) + 0, Flu(z,t)] =0
lts generic, finite-difference form is (Ist-order in time, 2" order in space)

A s A
e o W= 7Y
’U,j —U/J o A_Qj (Fj—|—1/2_Fj—1/2)

where u?+1/2 = u(f’?j+1/2, tn) and

“some approximation to the

A 1
Fj_|_1/2 == Kt/ F[U($j+1/2,t)]dt average flux at j+1/2”

tn
Any finite-difference form of (1) must represent Fj41/2 in the most accurate way.

Different forms of calculating F4.1/2 lead to different evolution schemes (Forward-
Time-Centred-Space, Lax, Runge-Kutta, etc.. ., see www.ael.mpg.de/~rezzolla)




Possible solutions to the discontinuities problem:
% |5t order accurate schemes

e generally fine, but very inaccurate across discontinuities
(eccessive  diffusion, e.g. Lax method)

% 2" order accurate schemes
e generally introduce oscillations across discontinuities
% 2"d order accurate schemes with artificial viscosity
e mimic Nature but not good In relativistic regimes
% Godunov Methods

e discontinuities are not eliminated, rather they are explorted!




High Resolution Shock Capturing (Godunov) Methods

Based on a simple, yet brilliant idea by Godunov ('59). An example of how basic
physics can boost research in computational physics.

Core Idea: a plecewise constant description of hydrodynamical quantities will
produce a collection of local Riemann problems whose solution can be found

exactly.

S 1 =
Fj:|:1/2 = Kt/ F[U(.Tj_l_l/Q,t)]dt

tn

where ﬂ($j+1/2,t), e [tnatn—'_l]

is the exact solution of the Riemann problem with initial data

= e s e Tj+1/2
U(xjjzl/27t ) -y { ’U,R(x,tn) for x > xj:l:l/Z




What is exactly a Riemann problem?...

[t's the evolution of a fluid initially composed of two states with different and
constant values of velocity, pressure and density.

f the problem is linear, it can be handled analytically after rewriting the flux
conservative equation

o+ 0. F(u) =0
as

where A(u) is the Jacobian matrix of const. coefficients. In this way, (2) is written as a
set of i linear equations for the characteristic variables 90"

with A the diagonal matrix of the eigenvalues A; . The solution is

k) — sz(aj e TR

and RZ are the right eigenvectors of A




rarefaction wave shock front
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cell boundaries where fluxes are required

Solution at the time n+| of
the two Riemann problems at
the cell boundaries x;,,, and

Spacetime evolution of the
two Riemann problems at the

cell boundaries x;,;,, and x; ),

Each problem leads to a shock
wave and a rarefaction wave
moving in gpposite directions

Initial data at the time n for
the two Riemann problems

at the cell boundaries X,

and X; |,




Non-vacuum sources of ZWS at the AL

o Neutron star oscillations: linear/nonlinear; magnetized/not

Bajiotti, Giacomazzo, LR

o Dynamical (barmode) instability

Baiotti, De Pietri, Manca, LR

o Binary neutron stars

Baiotti, Giacomazzo, LR

o Mixed Binary systems

Ansorg, Loeffler, LR

p x 10714 g/om
S O
o [»] L]

tn

o Accretion torii (magnetized/M8

Zanotti

Font, Montero, LR,

> 1] 2
(M)

o Rotating collapse to black holes

Baiotti, Giacomazzo, Hawke, LR, Schnetter




Stellar co”aPse to a rotatin

black hole

i

: 0.0015 0.003
ol density: b |

Baiotti, Hawke, Giacomazzo, LR, Schnetter, Stergioulas (05-07)




Initial Data: unhcormlg rotating Polytropes

1.8 =

1.2

o secularly unstable

e dynamically unstable
1 L] I 1 1 L] I 1 1 1 ] 1
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105 % e

We have built sequences of uniformly
rotating polytropes with constant
value of angular momentum, up to
the mass-shedding limit.

For simplicity we consider polytropes
p=pe(I'-1)
with
I'=1+1/N=2

Baiotti, et al., PRD (2005)




Co”apse of DI slowlg rotati

ﬂg moclel

Baiotti, et al., PRD (2005)

The star is only slowly rotating and hence almost spherical. This holds essentially

all the time till the formation of an apparent horizon

8 |- ] = ] 8 |- 1
[ ] 2
4 - - 4 - - 4 - . H
g E F B G
Sof 41 &ofF 4 Eof 4 Eor
= =~ [ - >
== o] e - —4 - | -
i -2 |
[ WL N
-1k ! ! Lol ! ] -12 Lyl Ll | ] -1k 0 L L ! ] L L I .
=e —8 —4 0 4 8 il =2 -8 —4 0 4 8 152 =il —8 —4 0 8 12 —4 =2 0 4
x (km) x (km) x (km) x (km)
: ‘ ; ; — - ; - —_— 5 e ———
12 — — 12 — — 12 — - L t=0.57 |
t=0 t=0.49 t=0.54 + Dexcised region g
10 - — 10 — — 10 | 4__ 0.2 c>—_
O'2>C 1 | === apparent horizon g
- 8 - . l ]
E =<
L E
N D1 |
[ A I I [
10 12 8 10 12 4 5




ic”g rotating model

l”aP
Note that in this case the collapse is no longer homologous: the star first

flattens, the collapse stalls and a disc is formed.

*
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Co”apse of D4 raPiCHH rotating star

— LineProbe |

0.028 00132 00016

density: E 3 0 100 o0 300

No excision Is used. A small amount of numerical dissipation and
suitable gauge-conditions provide stability

4o,

Animation by R. Kaehler




Dgnamics O]C traPPCCl SUFFBC@S

o White surface;
apparent horizon

o Filled circles:
event horizon
generators

o Grey surface:
event horizon

Animation by P Diener




The co”apse N a SPacetime cliagram

Slowly rotating star Rapidly rotating star
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Fach point on these diagrams summarizes ~10'" fp operations!




The first waveforms form the birth of a black hole

Simulation for D |: similar behaviour for D4

Qpp : b 3
0.0015  0.003

density: R B

Animation by R. Kaehler




e

g

Slowly rotating model

Wavetorms!
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Rapidly rotating model
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Energy losses and detectabilit9
The amplitudes can be used to calculate the energy lost to gws

2

3.3x107"M /M, (D]
3.1x10°M /M. (D4)

dQ|+m
dt

+

Ol

dE 1 2
dt=32n2'm( ) S— AE_{

Smaller efficiency than calculated by Stark & Piran (AE~I1.5x10-*> M/M.),
but consistent with estimates from core collapse

Slow | Rapid detector
ST TR h, =
Ne=oh =G A S 02 | 21 | Virgo/LIGO
[ | | Advanced

252 28 Dual




Builcling our unclerstancling

With the basic picture clear, we are now looking at how the
properties of waveforms depend (at times sensitively) on a
number of factors:

e perturbation type and amplitude
e rotation rate

e velocity distribution (ie differential rotation)

e £OS

First steps towards source characterization and GVWW-astronomy




Qio/M (x10°)

Qio/M (x10%)

l nﬂuencing factors:

DO: slow

Qio/M (x10%)

0.5

t—r (ms)

Qpp/ M (x107)

Qfo/M (x10%)

-8 1 D4: fast

t—r (ms)

1

rotation

DO: almost spherical;
D4: most rapidly spinning;

Although the amplitude
differs  considerably  with

spin, the frequency spectra
do not.




0.001

E:nergg emission from unhcormlg rotating stars

Energy emission
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* The energy emitted is ~ (J/M?)* for
sufficiently large rotations

5/ A PSR A o1 e R e S £ T BRSO 45
perturbations modify the collapse and
reduce the energy emission

 Additional radial velocities (29%) can
boost the collapse and enhance the
emission

Overall, the gw emission from
uniformly rotating stars is efficient
only at very large rotation rates with

S/N>1 at 10 kpc.




Dhcmcerentiang rotating Polgtropes

Giacomazzo, LR, stergioulas (in progress)

* The efficiency In the gw emission can be increased If large
deviations from axisymmetry develop via dynamical instabilities

* Differential rotation is expected in a star produced as a result of
core-collapse or in the merger of a binary system of NSs

e Differential rotation can easily yield stars with J/M2<I| (ie sub-Kerr)
as well as stars with J/M?>1 (ie supra-Kerr)

e A supra-Kerr star cannot collapse promptly to a Kerr bh;
something must intervene to remove angular momentum, eg. non-
axisymmetric instabilities




Co”apse of models

We have constructed differentially 9 0= 7 : (Q - w)r’sin® e
rotating sub-Kerr models close to the 1-(Q - w)*r?sin e~
stability limit with

As an example: A10
M=1812M; J/M?=0.477
TAW| = 0.06; T = 2; A=1

A ~2% pressure perturbation
to trigger a collapse which is
essentially axisymmetric but has
nonzero contributions from
higher multipoles

Tirme=90.0C0 ms

Animation by B. Giacomazzo




Simple s also to build
supra-Kerr models.

As an example BI:

M=1.9IM-— rp/r€=0.390

sun’

J/M2=1.09; T\W)|=0.215
=2

Note the collapse was

triggered with a pressure
depletion of 99%

Animation by B. Giacomazzo

Modulo the Cartesian “imprints”, this seems an excellent source of
gravitational radiation. Unfortunately, this is rather unredalistic. ..




More on Aigerentiaug rotating Polgtrol:)es

No systematic investigation has been made on the equilibrium models and
this has some surprises. ..

Sequences of stars very close to the
stability limit (the exact position tobe
determined via simulations).

Sequences of typical stars at mass-
shedding limit with A=1, r/r,=0.35

1'4_“"l""l""l‘"'l""l""l"“_ 100 T I LA | T |
X ; All'models have p_ for a static model and
13F Hence, all unstable = 0.95 [ very close to mass-shedding .
5 N=15 N=1.25
12F models have |/M*<| : 0.90 N=1.0
1.1F ] 0.85
o 10—\ o = o 0.80F
= - TR ] =
> : stability limits ; =
0.9F . 0.75
: N=1.0 E
0.8} A N=0.75 - 0.70
5 ! ;
0.7 F - N=0.5 1 0.65 .
5 : Again, all models have J/M?<]|
[ R S— 060 Lo v v v v e ey
00 02 04 06 08 10 12 14 06 08 1.0 12 14 16 18

Py

A




In other words:

o All differentially-rotating models that are dynamically unstable
have J/M?<I; collapse's dynamics/efficiency is similar to the one for
uniformly rotating models

o All differentially-rotating models J/M? >1| are stable; unlikely to
produce non-axisymmetric instabilities without huge pressure

reductions; not yet excluded (e.g. through phase transition for
stars near the threshold).




Characterizing the energy emission

Energy emission
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Note the increase in the energy

A A et i SO L S P ]
rotation is increased:
model Al:: A=0.6
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Summarg

M Also for matter, the modelling of sources of gravitational waves in
fully nonlinear regimes requires the numerical solution of the Einstein
equations: ile numerical relativity techniques

M4 When dealing with the relativistic hydrodynamics or MHD
equations, shocks are to be expected and need to be properly handled

[ The best way of doing this is to write the equations in a flux-
conservative form and to use HRSC methods

A Also for matter; there is all the evidence that numerical relativity Is
living Its “renaissance”, and our simulations have never been as accurate
and stable.

A Much remains to be done towards a more realistic description of
these sources. Introducing a magnetic field is a first step but also
realistic equations of state, radiation transport, neutrino transport, etc...




