
Luciano Rezzolla

Albert Einstein Institute, Potsdam, Germany

Dept. of Physics and Astronomy, Louisiana State Univ. Lousiana, USA

Modelling sources of GWs: 
vacuum spacetimes

47-th Cracow School of Theoretical Physics, Zakopane, June 2007



• Numerical relativity: Why? 

• Numerical relativity: Why so hard?

• Numerical relativity: How (vacuum)?

• Numerical relativity at the AEI

• One example:

o  Inspiral and merger of binary black holes 

• I will assume basic knowledge of general relativity

Plan of the talk



  Among other things, numerical relativity aims at:

• solve Einstein equations without approximations(!)…

• solve the binary problem(s)…

• investigate the complex physics of gravitational collapse 

• investigate the formation and dynamics of horizons

• investigate structure and stability of NSs

• modelling sources of gravitational waves

Numerical Relativity: why?



A simple, back-of-the-envelope calculation in the Newtonian  
quadrupole approximation shows that the luminosity in 
gravitational waves (energy emitted in gws per unit time) is

Modelling source of GWs
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i.e. intense sources are compact, massive and move at 
relativistic speeds: general relativity is indispensable.
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! 3.8× 10−60erg s−1

i.e. even the gws from the most intense sources will 
statistically reach us as very weak

What makes gw-astronomy challenging is



Not just an academic exercise
The calculation of the waveforms is not just an academic 
achievement. Several millions €s and thousands man-hours are 
dedicated to one of the most challenging physical experiments.

Knowledge of the 
waveforms can  
compensate for the 
very small S/N 
(matched-filtering). ⇒ 

Enhance detection and 
allow for source- 
characterization 
possible.



✴ No obviously “better” formulation of the Einstein equations
• ADM, conformal traceless decomposition, first-order hyperbolic, harmonic, …???

✴ Coordinates (spatial and time) do not have a specific meaning
• this gauge freedom needs to be handled with care!

Numerical Relativity: why so hard?…



Which part of the spacetime to cover?…

The standard choice 
for most groups

The spatial slices have 
finite extent (outer 
boundary in strong 
field region)

The spatial slices have 
infinite extent (infinity 
on the grid)

The slices are on in-
outgoing light cones  
(ideal for radiation, less 
for intuition…)
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✴ No obviously “better” formulation of the Einstein equations
• ADM, conformal decomposition, first-order hyperbolic form, harmonic, …???

✴ Coordinates (spatial and time) do not have a special meaning
• this gauge freedom need to be handled with care!
• gauge conditions must avoid singularities 
• gauge conditions must counteract grid stretching 

Numerical Relativity: why so hard?…



Choosing the right temporal gauge  
Suppose you want to follow the gravitational 
collapse to a bh and assume a simplistic gauge 
choice:

α = 1, β = 0  (geodesic slicing)

That would lead rapidly to a code crash! No  
chance of ever measuring gws!…

Need to use smarter gauges!

You want time to advance at different rates 
at different positions in the grid: “singularity 
avoiding slicing”.

α =α(t,xi), β=β(t,xi) (e.g. maximal slicing)

Some chance of measuring gws!…



✴ Einstein field equations are highly nonlinear
• essentially unknown in these regimes (well-posedeness not enough!...)

✴ Physical singularities are the “butter-and-bread” of NR
• delicate techniques are needed to “excise” the troublesome region

✴ No obviously “better” formulation of the Einstein equations
• ADM, conformal decomposition, first-order hyperbolic form, harmonic, …???

✴ Coordinates (spatial and time) do not have a special meaning
• this gauge freedom need to be handled with care!
• gauge conditions must avoid singularities 
• gauge conditions must counteract grid stretching 

Numerical Relativity: why so hard?…



excising parts of the spacetime with singularities…
apparent horizon found on a given Σt 

In principle, the yellow region is causally 
disconnected from the blue one (ligth 
cones are “tilted in”); no boundary 
conditions would be needed at the 
apparent horizon.
In practice, the actual excision region 
(“legosphere”: black region) carved well 
inside the horizon.

NOTE: 

o the Einstein equations are highly nonlinear in the 
yellow region! All sorts of numerical problems...

o the (apparent) horizon must be found; this is an 
expensive operation…

o the excised region has to move on the grid…
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✴ Einstein field equations are highly nonlinear
• essentially unknown in these regimes (well-posedeness not enough!...)

✴ Physical singularities are the “butter-and-bread” of NR
• delicate techniques are needed to “excise” the troublesome region

✴ No obviously “better” formulation of the Einstein equations
• ADM, conformal decomposition, first-order hyperbolic form, harmonic, …???

✴ Coordinates (spatial and time) do not have a special meaning
• this gauge freedom need to be handled with care!
• gauge conditions must avoid singularities 
• gauge conditions must counteract grid stretching 

Numerical Relativity: why so hard?…

✴ Simply more equations to solve: stretching supercomputers resources!

• large turn-around times make experimentation difficult (2-3 weeks/simulation)
• implementations of AMR techniques is extremely problematic 



Numerical Relativity: how?…

In this first lecture we will consider               and deal only 
with the Einstein field equations in vacuum: 6, highly-nonlinear, 
2nd order partial differential equations

Tµν = 0

Let’s recall the equations we are dealing with:



Disregarding the intrinsinc equality between spatial and time coordinates, 
numerical relativity follows the traditional approach in the solution of time-
dependent problems and foliates the 4D spacetime in a series of t=const 
spatial hypersurfaces      , ie a stack of 3D spacetimes

Σt

Measures the “clocks ticking rates” on two Σt

Measures distances among points on a Σt

unit timelike 4-vector normal to Σt

Measures the “stretching” of coordinates

€ 

n =
1
α
∂t −β

j∂ j( )
€ 

γ ij  :: 3−metric tensor
€ 

βi :: shift vector
€ 

α  :: lapse function

ds2 = −(α2 − βiβ
i)dt2 + 2βidxidt + γijdxidxj

Σt



Given a space-like slice     , while the three-metric      measures 
spatial (!) distances among points, the extrinsic curvature      
measures the curvature of the spatial hypersurface relative to 
the embedding 4D spacetime (i.e., it “bending”)

Consider a vector at one position     and then 
parallel-transport it to a new location 

The difference in the two vectors is proportional 
to the extrinsic curvature and this can either be 
positive or negative

Σt

Kij

P
P + δP

γij
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The conformal factor    , the conformal 3-metric       , the trace of the 

extrinsic curvature     , the trace-free conformal extrinsic curvature 

tensor       ,  and the “Gammas”        represent our evolution variables
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Dtφ = −1
6
αK ,
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Dt ≡ ∂t − Lβ Lβwhere                           and        is the Lie derivative along the shift



The evolution equations to be solved from one time slice to 
the next are therefore: 6+6+3+1+1=17 and it is important 
to underline that the above set of equations is hyperbolic. 

Other formulations have different properties and the ADM 
one (used for many years) is only weakly hyperbolic. 

In addition, we also compute 3+1=4 elliptic equations: the 
“constraints”.

Note we don’t actually search for a solution but just monitor 
how large the violation is, i.e.      andH Mi



Wave-extraction techniques
Computing the waveforms is the ultimate goal of most numerical 
relativity and there are several ways of extracting gws from numerical 
relativity codes: 

All have different degrees of success and this depends on the 
efficiency of the process which is very different for different sources

- asymptotic measurements

•null slicing

•conformal compactification

- non-asymptotic measurements (finite-size extraction worldtube)

•Weyl scalars

•perturbative matching to a Schwarzschild background



Wave-extraction techniques
In both approaches, “observers” are placed on nested 2-spheres and 
calculate there either the Weyl scalars or decompose the metric 
into tensor spherical-harmonics to calculate the gauge-invariant 
perturbations of a Schwarschild black hole

Once the waveforms are 
calculated, all the related 
quantities: energy, momentum 
and angular momentum 
radiated can be derived 
simply. 



Weyl scalars

where, according to the Peeling theorem,       is the scalar with the smallest 
fall-off  O(1/r).

At a sufficiently large distance from the source and in a Newman-Penrose 
tetrad frame the gws l in the two polarizations               can be written as 

It is then possible, for instance, to compute the projection of the momentum 
flux on the equatorial plane as

This quantity will be used later to calculate the recoil velocity.



Gauge-invariant pertubations

where                  are the odd and even-parity gauge-invariant perturbations 
of a Schwarschild black hole. Similarly, it is possible to compute the projection 
of the momentum flux in on the equatorial plane as



Numerical Relativity at the AEI

Cactus (www.cactuscode.org) is a computational 
“toolkit” developed at the AEI over the last 10 years 
the AEI and provides a general infrastructure for the 
solution in 3D and on parallel computers of PDEs in 
general and of the Einstein equations in particular.

Whisky (www.cactuscode.org) is a more recent 
code, developed at the AEI and SISSA, for the solution 
o f t he r e l a t i v i s t i c hyd rodynam i c s and 
magnetohydrodynamics equations in arbitrary curved 
spacetimes. 



• Binary BH evolutions for one or 
more orbits, calculating waveforms, 
energy, angular momentum, 
emitted, etc

• A careful investigation of 
the recoil velocity for 
asymmetrical binary systems.

• Development and testing of 
new code for generalized 
harmonic formulation of the 
Einstein eqs. Expected to 
provide more accuracy
Szilagyi, Pollney, LR, Thornburg, 
Winicour

Koppitz, Pollney, Reisswig, LR

Thornburg, Diener, Schnetter

Vacuum sources: binary black holes



An interesting example

Hereafter I will concentrate on a binary system of black holes with 
equal masses but unequal spin (either in direction or modulus) set 
in quasi-circular orbit 

orbital angular mom.

€ 
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→

spin 1
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Dynamics of the horizons
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Waveforms: ψ4
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Astrophysical impact
Is there more physics and astrophysics that can be studied in this 
system besides the waveforms?

YES! The asymmetry in the system will lead to a nonzero recoil 
velocity (“bh kicks”) with important astrophysical implications

The emission of gravitational 
waves is beamed and 
asymmetrical: momentum 
radiated at an angle will not be 
compensated by the momentum 
after 1/2 orbit (“garden hose”)



r0: ↑↓ (a1/a2=-4/4)

r1: ↑↓ (a1/a2=-3/4)

r2: ↑↓ (a1/a2=-2/4)

r3: ↑↓ (a1/a2=-1/4)

r4: ↑. (a1/a2=-0/4)

We have studied the recoil velocities in a sequence 
of bhs with same mass but different spin-ratio



The general behaviour
Post-Newtonian prediction

q: mass ratio (q=1 here)

€ 

v kick = c1
q2(1− q)
(1+ q)5 +

           c2
q2a2(1− qa1 /a2)

(1+ q)5

The constants c1, c2  can be 
calculated only in full GR, but 
the PN prediction holds well.
We are working to extend 
this to a larger space of 
parameters



Summary
The modelling of sources of gravitational waves in fully nonlinear 

regimes requires the numerical solution of the Einstein equations: ie 
numerical relativity techniques

There is all the evidence that numerical relativity is living its 
“renaissance”, and our simulations have never been as accurate and 
stable.

Several groups in the world are now able to successfully compute 
the inspiral and merger of binary black holes in full generality (different 
masses and spins).

Work on vacuum sources is already having an impact on related 
fields such as astrophysics (cf. recoil velocity calculations) or gw-data 
analysis (hybrid waveforms being injected in detectors pipelines).

Much remains to be done and tomorrow will take a view of the 
progress when the right-hand-side is not zero: non-vacuum sources


