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Introduction

Motivation

The formalism used in conventional quantum field theory is
suitable to describe observables (e.g. cross-sections)
measured in empty space-time, as particle interactions in an
accelerator. However, in the early stages of the
universe/heavy ions collisions, at high temperature/density,
the environment had a non-negligible matter and radiation
density, making the hypotheses of conventional field theories
impracticable. For that reason, under those circumstances,
the methods of conventional field theories are no longer in
use, and should be replaced by others, closer to
thermodynamics, where the background state is a thermal
bath. This field has been called field theory at finite
temperature/density and it is extremely useful to study all
phenomena which happened in the early universe: phase
transitions, inflationary cosmology, ..



Field Theory @
Finite

Temperature
&

Phase Transitions

Mariano Quirós

Introduction

Generating
functionals

Green functions

Imaginary time
formalism

Real time
formalism

Effective potential

The Standard
Model

Cosmological
phase transitions

Second order
phase transitions

First order phase
transitions

Thermal tunneling

Bubble nucleation

Conclusion

We shall give some definitions borrowed from
thermodynamics and statistical mechanics.

I The microcanonical ensemble is used to describe an
isolated system with fixed energy E , particle number N
and volume V .

I The canonical ensemble describes a system in contact
with a heat reservoir at temperature T : the energy can
be exchanged between them and T , N and V are fixed.

I Finally, in the grand canonical ensemble the system can
exchange energy and particles with the reservoir: T , V
and the chemical potentials are fixed.
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Generating functionals

Consider now a dynamical system characterized by a
hamiltonian 1 H and a set of conserved (mutually
commuting) charges QA. The equilibrium state of the
system at rest in the large volume V is described by the
grand-canonical density operator ρ.

ρ = exp(−Φ) exp

{
−

∑
A

αAQA − βH

}
where the Massieu function is defined as

Φ = log Tr exp

{
−

∑
A

αAQA − βH

}
(1)

where αA and β are Lagrange multipliers given by β = T−1,
αA = −βµA, and µA are the chemical potentials.

1All operators will be considered in the Heisenberg picture.
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One defines the grand canonical average of an arbitrary
operator O, as

〈O〉 ≡ Tr(Oρ) (2)

satisfying the property 〈1〉 = 1

Some definitions

qA =
1

V
〈QA〉 = − 1

V

∂Φ

∂αA
(3)

E =
1

V
〈H〉 = − 1

V

∂Φ

∂β
(4)

F = −P = − 1

βV
Φ (5)

S = − 1

V
〈log ρ〉 = β

[
E − F −

∑
A

µAqA

]
(6)
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We will start considering the case of a real scalar field φ(x),
carrying no charges (µA = 0), with hamiltonian H, i.e.

φ(x) = e itHφ(0,~x)e−itH

where the time x0 = t is analytically continued to the
complex plane.
We define the thermal Green function as the grand canonical
average of the ordered product of the n field operators

G (C)(x1, . . . , xn) ≡ 〈TCφ(x1), . . . , φ(xn)〉

where the TC ordering means that fields should be ordered
along the path C in the complex t-plane. For instance the
product of two fields is defined as,

TCφ(x)φ(y) = θC (x0 − y0)φ(x)φ(y) + θC (y0 − x0)φ(y)φ(x)

If we parameterize C as t = z(τ), where τ is a real
parameter, TC ordering means standard ordering along τ .
Therefore the step and delta functions can be given as
θC (t) = θ(τ), δC (t) = (∂z/∂τ)−1 δ(τ).
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The rules of the functional formalism can be applied as usual,
with the prescription δj(y)/δj(x) = δC (x0 − y0)δ(3)(~x − ~y)
The generating functional Zβ[j ] for the full Green functions,

Zβ[j ] =
∞∑

n=0

in

n!

∫
C

d4x1 . . . d
4xnj(x1) . . . j(xn)G

(C)(~x)

=

〈
TC exp

{
i

∫
C

d4xj(x)φ(x)

}〉
which is normalized to Zβ[0] = 〈1〉 = 1.

The generating functional for connected Green functions
W β[j ] is defined as

Zβ[j ] ≡ exp{iW β[j ]}
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The generating functional for 1PI Green functions Γβ[φ] is
the Legendre transformation,

Γβ[φ] = W β[j ]−
∫

C
d4x

δW β[j ]

δj(x)
j(x)

where the current j(x) is eliminated in favor of the classical
field φ(x) as

φ(x) = δW β[j ]/δj(x)

.
It follows that δΓβ[φ]/δφ(x) = −j(x), and φ(x) = 〈φ(x)〉 is
the grand canonical average of the field φ(x).
As in field theory at zero temperature, in a translationally
invariant theory φ(x) = φc is a constant. In this case we can
define the effective potential at finite temperature as,

Effective Potential

Γβ[φc ] = −
∫

d4xV β
eff(φc)
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Scalar fields
Not all the contours are allowed if we require Green
functions to be analytic with respect to t.

G (C)(x−y) = θC (x0−y0)G+(x−y)+θC (y0−x0)G−(x−y)

where

G+(x − y) = 〈φ(x)φ(y)〉, G−(x − y) = G+(y − x)

Now, take the complete set of states |n〉 with eigenvalues
En: H|n〉 = En|n〉. One can readily compute G+(x0 − y0) at
the point ~x = ~y = 0

e−Φ
∑
m,n

|〈m|φ(0)|n〉|2 e−iEn(x0−y0)e iEm(x0−y0+iβ)

so that the convergence of the sum implies that
−β ≤ Im(x0 − y0) ≤ 0 which requires θC (x0 − y0) = 0 for
Im(x0 − y0) > 0.
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The similar property for the convergence of G−(x0 − y0) is
that 0 ≤ Im(x0 − y0) ≤ β, which requires θC (y0 − x0) = 0
for Im(x0 − y0) < 0.
The final condition for the convergence of the complete
Green function on the strip

−β ≤ Im(x0 − y 0) ≤ β

is that we define the function θC (t) such that
θC (t) = 0 for Im(t) > 0.

C must be such that a point moving along it has a
monotonically decreasing or constant imaginary part
A very important periodicity relation affecting Green
functions can be easily deduced from the very definition of
G+(x) and G−(x)

Kubo-Martin-Schwinger (KMS) relation

G+(t − iβ,~x) = G−(t,~x)
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Conclusion

We can now compute the two-point Green function for a free
scalar field [ωp =

√
~p 2 + m2]

φ(x) =

∫
d3p

(2π)3/2(2ωp)1/2

[
a(p)e−ipx + a†(p)e ipx

]
which satisfies

[
∂µ∂µ + m2

]
G (C)(x − y) = −iδC (x − y) and

the equal time commutation relation,[
φ(t,~x), φ̇(t, ~y)

]
= iδ(3)(~x − ~y)

One easily obtains the commutation relation for creation and
annihilation operators,[

a(p), a†(k)
]

= δ(3)(~p − ~k)
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We can now compute the two-point Green function for a free
scalar field [ωp =

√
~p 2 + m2]

φ(x) =

∫
d3p

(2π)3/2(2ωp)1/2

[
a(p)e−ipx + a†(p)e ipx

]
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[
∂µ∂µ + m2

]
G (C)(x − y) = −iδC (x − y) and

the equal time commutation relation,[
φ(t,~x), φ̇(t, ~y)

]
= iδ(3)(~x − ~y)

One easily obtains the commutation relation for creation and
annihilation operators,[

a(p), a†(k)
]

= δ(3)(~p − ~k)
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Defining the Hamiltonian of the field as

H =

∫
d3p

(2π)3
ωpa

†(p)a(p)

one can obtain the thermodynamical averages,

〈a†(p)a(k)〉 = nB(ωp)δ
(3)(~p − ~k)

〈a(p)a†(k)〉 = [1 + nB(ωp)]δ
(3)(~p − ~k)

Bose distribution function

nB(ω) =
1

eβω − 1
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Two-point Green function

G (C)(x) =

∫
d4p

(2π)4
ρ(p)e−ipx

[
θC (x0) + nB(p0)

]
where the function ρ(p) is defined by

Spectral function

ρ(p) = 2π[θ(p0)− θ(−p0)]δ(p2 −m2).

Now the particular value of the Green function depends on
the chosen contour C . We will show later on two particular
contours giving rise to the so-called imaginary and real time
formalisms. Before coming to them we will describe how the
previous formulae apply to the case of fermion fields.
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Fermion fields

For fermion fields the TC decomposition

TCψα(x)ψ̄β(y) = θC (x0 − y0ψα(x)ψ̄β(y))

− θC (y0 − x0)ψ̄β(y)ψα(x)

and the Green function

S
(C)
αβ (x − y) = θC (x0 − y0)S+

αβ − θC (y0 − x0)S−αβ

which satisfy the

Kubo-Martin-Schwinger relation

S+
αβ(t − iβ,~x) = −S−αβ(t,~x)
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Relations for the Green function of fermions

It satisfies the Dirac equation

(iγ · ∂ −m)ασ S
(C)
σβ (x − y) = iδC (x − y)δαβ

One can define a Green function S (C) as

S
(C)
αβ (x − y) ≡ (iγ · ∂ + m)αβS (C)(x − y)

where S (C)(x − y) satisfies the Klein-Gordon propagator
equation. One can obtain for S (C)

S (C)(x−y) =

∫
d4p

(2π)4
ρ(p)e−ip(x−y)

[
θC (x0 − y0)− nF (p0)

]
nF (ω) is the Fermi distribution function

nF (ω) =
1

eβω + 1
.
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Imaginary time formalism
The calculation of the propagators in the previous sections
depends on the chosen path C going from an initial arbitrary
time t to t − iβ, provided by the Kubo-Martin-Schwinger
periodicity properties of Green functions. The simplest path
is to take a straight line along the imaginary axis t = −iτ . It
is called Matsubara contour, since Matsubara was the first to
set up a perturbation theory based upon this contour. In
that case δC (t) = iδ(τ).

Contours
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The two-point Green functions for scalar and fermion fields

G (τ,~x)B,F =

∫
d4p

(2π)4
ρ(p)e i~p~xe−τp0 [

θ(τ)± nB,F (p0)
]

The Green function can be decomposed as
G (τ,~x) = G+(τ,~x)θ(τ)± G−(τ,~x)θ(−τ)

KMS relation ⇒ (Anti)Periodicity condition

G (τ + β) = ±G (τ) for − β ≤ τ ≤ 0,
G (τ − β) = ±G (τ) for 0 ≤ τ ≤ β

It follows that the Fourier transform

G̃ (ωn, ~p) =

∫ α

α−β
dτ

∫
d3xe iωnτ−i~x~pG (τ,~x)

(where 0 ≤ α ≤ β) is independent of α and the discrete
frequencies satisfy the relation e iωnβ = ±1, i.e.
ωn = 2nπβ−1 for bosons, and ωn = (2n + 1)πβ−1 for
fermions.
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Feynman rules in imaginary time formalism

Boson propagator :
i

p2 −m2
; pµ = [2niπβ−1, ~p ]

Fermion propagator :
i

γ · p −m
; pµ = [(2n + 1)iπβ−1, ~p ]

Loop integral :
i

β

∞∑
n=−∞

∫
d3p

(2π)3

Vertex function : −iβ(2π)3δP
ωi
δ(3)(

∑
i

~pi )

There is a standard trick to perform infinite summations. For
the case of bosons [fermions] we can have frequency sums as,

1

β

∞∑
n=−∞

f (p0 = iωn)

with ωn = 2nπβ−1[(2n + 1)πβ−1].
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For the case of bosons since the function
1

2
β coth(

1

2
βz) has

poles at z = iωn and is analytic and bounded everywhere else

1

β

∞∑
n=−∞

f (p0 = iωn) =
1

2πiβ

∫
γ
dzf (z)

β

2
coth(

1

2
βz)

where the contour γ encircles anticlockwise all the previous
poles of the imaginary axis. The contour γ can be deformed
to a new contour consisting in two straight lines: the first
one starting at −i∞+ ε and going to i∞+ ε, and the
second one starting at i∞− ε and ending at −i∞− ε.
Rearranging the exponentials in the hyperbolic cotangent
one can write the previous expression as

1

2πi

∫ i∞

−i∞
dz

1

2
[f (z) + f (−z)]

+
1

2πi

∫ i∞+ε

−i∞+ε
dz [f (z) + f (−z)]

1

eβz − 1
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The contour of the second integral can be deformed to a
contour C which encircles clockwise all singularities of the
functions f (z) and f (−z) in the right half plane. Similar
manipulations for the case of fermions lead to the general
identity

Infinity sum identity

1

β

∞∑
n=−∞

f (p0 = iωn) =

∫ i∞

−i∞

dz

4πi
[f (z) + f (−z)]

±
∫

C

dz

2πi
nB,F (z)[f (z) + f (−z)]

The frequency sum naturally separates into a T independent
piece, which should coincide with the similar quantity
computed in field theory at zero temperature, and a T
dependent piece which vanishes in the limit T → 0, i.e.
β →∞.
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Real time formalism
The obvious disadvantage of the imaginary time formalism is
to compute Green functions along imaginary time, so that
going to the real time has to be done through a process of
analytic continuation. The family of real time contours is
depicted in the figure where the contour C is

C = C1

⋃
C2

⋃
C3

⋃
C4 and C1 goes from the initial time

ti to the final time tf , C3 from tf to tf − iσ, with 0 ≤ σ ≤ β,
C2 from tf − iσ to ti − iσ, and C4 from ti − iσ to ti − iβ.

Contours
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Different choices of σ lead to an equivalence class of
quantum field theories at finite temperature. For instance
the choice σ = 0 leads to the Keldysh perturbation
expansion, while the choice σ = β/2 is the preferred one to
compute Green functions.
One can prove that the contribution from the contours C3

and C4 can be neglected. Therefore, for the propagator
between x0 and y0 there are four possibilities depending on
whether they are on C1 or C2. Correspondingly, there are
four propagators which are labeled by (11), (12), (21) and
(22).
Making the choice σ = β/2, for scalar fields

G (p) ≡
(

G (11)(p) G (12)(p)

G (21)(p) G (22)(p)

)
(7)

G (11)(p) = ∆(p) + 2πnB(ωp)δ(p
2 −m2)

G (12) = 2πeβωp/2nB(ωp)δ(p
2 −m2)

G (22)(p) = G (11)∗, G (21) = G (12)
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Real time rules

The main feature of the real time formalism is that the
propagators come in two terms: one which is the same as in
the zero temperature field theory, and a second one where all
the temperature dependence is contained. However the
propagators (12), (21) and (22) are unphysical since one of
their time arguments has an imaginary component. The only
physical propagator is the (11) component.
The Feynman rules in the real time formalism are very
similar to those in the zero temperature field theory. In fact
all diagrams have the same topology as in the zero
temperature field theory and the same symmetry factors.
However, associated to every field there are two possible
vertices, 1 and 2, and four possible propagators, (11), (12),
(21) and (22) connecting them. All of them have to be
considered for the consistency of the theory. In the Feynman
rules, type 2 vertices are hermitian conjugate with respect to
type 1 vertices. The golden rule is that: physical legs must
always be attached to type 1 vertices.
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Effective potential

We will construct the (one-loop) effective potential at finite
temperature, using all the tools provided in the previous
sections.
As we will see the effective potential at finite temperature
contains the effective potential at zero temperature that
requires regularization.
The usefulness of this construction is addressed to the theory
of phase transitions at finite temperature. The latter being
essential for the understanding of phenomena as: inflation,
baryon asymmetry generation, quark-gluon plasma transition
in QCD,...
We will use the imaginary time formalism. An equivalent
calculation can be done in the real time formalism.
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Scalar fields
We will consider here the simplest model of one
self-interacting scalar fields described by the lagrangian

L =
1

2
∂µφ∂µφ− V0(φ)

V0 =
1

2
m2φ2 +

λ

4!
φ4

We will compute the diagrams in

1PI one-loop scalar diagrams contributing to the
effective potential
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Technical

The n-th diagram has n propagators, n vertices and 2n
external legs. The n propagators will contribute a factor of
in(p2 −m2 + iε)−n. The external lines contribute a factor of
φ2n

c and each vertex a factor of −iλ/2, where the factor 1/2
comes from the fact that interchanging the 2 external lines
of the vertex does not change the diagram. There is a global
symmetry factor 1

2n , where 1
n comes from the symmetry of

the diagram under the discrete group of rotations Zn and 1
2

from the symmetry of the diagram under reflection. Finally
there is an integration over the loop momentum and an
extra global factor of i from the definition of the generating
functional.
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Using the Feynman rules the CW effective potential

V1(φc) =
1

2

∫
d4p

(2π)4
log

[
p2 + m2(φc)

]
m2(φc) = m2 +

1

2
λφ2

c =
d2V0(φc)

dφ2
c

translates into,

V β
1 (φc) =

1

2β

∞∑
n=−∞

∫
d3p

(2π)3
log(ω2

n + ω2)

where ωn are the bosonic Matsubara frequencies and

ω2 = ~p 2 + m2(φc)

The sum over n diverges, but the infinite part does not
depend on φc . The finite part contains the φc dependence

V β
1 (φc) =

∫
d3p

(2π)3

[
ω

2
+

1

β
log

(
1− e−βω

)]
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Calculation of the infinite sum

Define,

v(ω) =
∞∑

n=−∞
log(ω2

n + ω2)

then,
∂v

∂ω
=

∞∑
n=−∞

2ω

ω2
n + ω2

Using the identity,

f (y) =
∞∑

n=1

y

y2 + n2
= − 1

2y
+

1

2
π cothπy

= − 1

2y
+
π

2
+ π

e−2πy

1− e−2πy

with y = βω/2π we obtain,

∂v

∂ω
= 2β

[
1

2
+

e−βω

1− e−βω

]
(8)

and

v(ω) = 2β

[
w

2
+

1

β
log

(
1− e−βω

)]
+ω−independent terms
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One can prove that the first integral is the one-loop effective
potential at zero temperature.

Effective potential at zero temperature

1

2

∫
d3p

(2π)3
ω =

1

2

∫
d4p

(2π)4
log[p2 + m2(φc)]

Thermal correction

1

β

∫
d3p

(2π)3
log

(
1− e−βω

)
=

1

2π2β4
JB [m2(φc)β

2]

where the thermal bosonic function JB is defined as,

JB [m2β2] =

∫ ∞

0
dx x2 log

[
1− e−

√
x2+β2m2

]
There is a very simple way of computing the effective
potential: it consists in computing its derivative in the
shifted theory and then integrating! In fact the derivative
of the effective potential is described diagrammatically by
the tadpole diagram.
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Conclusion

The thermal bosonic effective potential admits a
high-temperature expansion which will be very useful for
practical applications. It is given by

Finite temperature expansion

JB(m2/T 2) = −π
4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2

−2π7/2
∞∑

`=1

(−1)` ζ(2`+ 1)

(`+ 1)!
Γ

(
`+

1

2

) (
m2

4π2T 2

)`+2

where ab = 16π2 exp(3/2− 2γE ) (log ab = 5.4076) and ζ is
the Riemann ζ-function.
The cubic term is generated by Matsubara zero modes and it
will be responsible for the first order phase transition.
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m2
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6

(
m2

T 2
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m4

T 4
log

m2

abT 2
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∞∑

`=1
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(`+ 1)!
Γ
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`+

1

2

) (
m2
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Fermion fields

We will consider here a theory with fermion fields described
by the lagrangian

L = iψaγ · ∂ψa − ψa(Mf )
a
bψ

b

where the mass matrix (Mf )
a
b(φ

i
c) is a function of the scalar

fields linear in φi
c : (Mf )

a
b = Γa

biφ
i
c . The diagrams

contributing to the one-loop effective potential are

1PI one-loop fermion diagrams contributing to the
effective potential
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Technical

Diagrams with an odd number of vertices are zero because
of the γ-matrices property: tr(γµ1 · · · γµ2n+1) = 0. The
diagram with 2n vertices has 2n fermionic propagators. The
propagators yield a factor

Trs [i
2n(γ · p)2n(p2 + iε)−2n]

where Trs refers to spinor indices. The vertices contribute as

Tr [−i2nMf (φc)
2n]

where Tr runs over the different fermionic fields. There is
also a combinatorial factor 1

2n (from the cyclic and anticyclic
symmetry of diagrams) and an overall −1 coming from the
fermions loop. The factor Trs1 just counts the number of
degrees of freedom of the fermions. It is equal to 4 if Dirac
fermions are used, and 2 if Weyl fermions (and σ-matrices)
are present. So we will write, Trs1 = 2λ where λ = 1
(λ = 2) for Weyl (Dirac) fermions.
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Using the Feynman rules the CW effective potential

V1 = −2λ
1

2
Tr

∫
d4p

(2π)4
log

[
p2 + M2

f (φc)
]

one gets

V β
1 (φc) = −2λ

2β

∞∑
n=−∞

∫
d3p

(2π)3
log(ω2

n + ω2)

where ωn are the fermionic Matsubara frequencies and

ω2 = ~p 2 + M2
f .

The infinite sum of over n gives

V β
1 (φc) = −2λ

∫
d3p

(2π)3

[
ω

2
+

1

β
log

(
1 + e−βω

)]
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Infinite summation: 1

Let f (y) be given by

f (y) =
∞∑

n=1

y

y2 + n2

then ∑
m=2,4,...

y

y2 + m2
=

∞∑
n=1

y

y2 + 4n2
=

1

2
f

(y

2

)
∑

m=1,3,...

y

y2 + m2
= f (y)− 1

2
f

(y

2

)
and using the definition of f (y) we get,∑

m=1,3,...

y

y2 + m2
=
π

4
− π

2

1

eπy + 1
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The function v(ω) in this case can be written as,

Infinite summation: 2

v(ω) = 2
∑

n=1,3,...

log

[
π2n2

β2
+ ω2

]
and its derivative,

∂v

∂ω
=

4β

π

∑
1,3,...

y

y2 + n2

where y = βω/π. Then using the previous equations we get

∂v

∂ω
= 2β

[
1

2
− 1

1 + eβω

]
and, after integration with respect to ω,

v(ω) = 2β

[
w

2
+

1

β
log

(
1 + e−βω

)]
+ω−independent terms
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The first integral in

V β
1 (φc) = −2λ

∫
d3p

(2π)3

[
ω

2
+

1

β
log

(
1 + e−βω

)]
leads to the one-loop effective potential at zero temperature

Effective potential at zero temperature

V1 = −2λ
1

2
Tr

∫
d4p

(2π)4
log

[
p2 + M2

f (φc)
]

Thermal correction

− 2λ
1

β

∫
d3p

(2π)3
log

(
1 + e−βω

)
= −2λ

1

2π2β4
JF [M2

f (φc)β
2]

where the thermal fermionic function JF is defined as,

JF [m2β2] =

∫ ∞

0
dx x2 log

[
1 + e−

√
x2+β2m2

]
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The thermal fermionic effective potential admits a
high-temperature expansion which will be very useful for
practical applications. It is given by

Finite temperature expansion

JF (m2/T 2) =
7π4

360
− π2

24

m2

T 2
− 1

32

m4

T 4
log

m2

af T 2

−π
7/2

4

∞∑
`=1

(−1)` ζ(2`+ 1)

(`+ 1)!

(
1− 2−2`−1

)
Γ

(
`+

1

2

) (
m2

π2T 2

)`+2

where af = π2 exp(3/2− 2γE ) (log af = 2.6351) and ζ is the
Riemann ζ-function.
Notice the absence of cubic term since there in no
Matsubara zero mode. Fermions do not contribute to the
first order phase transitions.
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7π4

360
− π2

24

m2
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− 1
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m4

T 4
log

m2

af T 2

−π
7/2

4

∞∑
`=1

(−1)` ζ(2`+ 1)

(`+ 1)!

(
1− 2−2`−1

)
Γ

(
`+

1

2

) (
m2

π2T 2
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where af = π2 exp(3/2− 2γE ) (log af = 2.6351) and ζ is the
Riemann ζ-function.
Notice the absence of cubic term since there in no
Matsubara zero mode. Fermions do not contribute to the
first order phase transitions.
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The Standard Model

The spin-zero fields of the Standard Model are described by
the SU(2) doublet,

Φ =

 χ1 + iχ2
φc + h + iχ3√

2


where φc is the real constant background, h the Higgs field,
and χa (a=1,2,3) are the three Goldstone bosons.
The tree level potential reads, in terms of the background
field, as

V0(φc) = −m2

2
φ2

c +
λ

4
φ4

c

with positive λ and m2, and the tree level minimum
corresponding to

v2 =
m2

λ
.
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The spin-zero field dependent masses are

m2
h(φc) = 3λφ2

c −m2

m2
χ(φc) = λφ2

c −m2

so that m2
h(v) = 2λv2 = 2m2 and m2

χ(v) = 0.
The gauge bosons contributing to the one-loop effective
potential are W± and Z , with tree level field dependent
masses,

m2
W (φc) =

g2

4
φ2

c

m2
Z (φc) =

g2 + g ′2

4
φ2

c

Finally, the only fermion which can give a significant
contribution to the one loop effective potential is the top
quark, with a field-dependent mass

m2
t (φc) =

h2
t

2
φ2

c

where ht is the top quark Yukawa coupling.
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In the MS renormalization scheme one easily arrives to the
finite effective potential provided by

Finite effective potential at zero temperature

V (φc) = V0(φc) +
1

64π2

∑
i

nim
4
i (φc)

[
log

m2
i (φc)

µ2
− Ci

]
where Ci are constants given by,

CW = CZ =
5

6

Ch = Cχ = Ct =
3

2

and ni are the degrees of freedom

nW = 6, nZ = 3, nh = 1, nχ = 3, nt = −12
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One can easily see that the finite-temperature part of the
one-loop effective potential can be written as,

Thermal correction

∆V (1)(φc ,T ) =
T 4

2π2

∑
i=W ,Z ,χ,h

niJB [m2
i (φc)/T

2]

+
T 4

2π2
ntJF [m2

t (φc)/T
2]

where the thermal integrals JB and JF were previously
defined.
Using now the high temperature expansions and the one
loop effective potential at zero temperature, one can write
the total potential as,

Standard Model effective potential

V (φc ,T ) = D(T 2 − T 2
o )φ2

c − ETφ3
c +

λ(T )

4
φ4

c
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Coefficients of the polynomial

D =
2m2

W + m2
Z + 2m2

t

8v2

E =
2m3

W + m3
Z

4πv3

T 2
o =

m2
h − 8Bv2

4D

B =
3

64π2v4

(
2m4

W + m4
Z − 4m4

t

)

λ(T ) = λ− 3

16π2v4

(
2m4

W log
m2

W

ABT 2
+ m4

Z log
m2

Z

ABT 2

− 4m4
t log

m2
t

AFT 2

)
where log AB = log ab − 3/2 and log AF = log aF − 3/2
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Cosmological phase transitions

Many cosmological applications of field theories are based on
the theory of phase transitions at finite temperature. The
main point here is that at finite temperature, the equilibrium
value of the scalar field φ, 〈φ(T )〉, does not correspond to
the minimum of the effective potential V T=0

eff (φ), but to the
minimum of the finite temperature effective potential
V β

eff(φ). Thus, even if the minimum of V T=0
eff (φ) occurs at

〈φ〉 = σ 6= 0, very often, for sufficiently large temperatures,

the minimum of V β
eff(φ) occurs at 〈φ(T )〉 = 0: this

phenomenon is known as symmetry restoration at high
temperature, and gives rise to the phase transition from
φ(T ) = 0 to φ = σ. It was discovered by Kirzhnits in the
context of the electroweak theory (symmetry breaking
between weak and electromagnetic interactions occurs when
the universe cools down to a critical temperature
Tc ∼ 102 GeV ) and subsequently confirmed and developed
by other authors.
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Cosmological scenario

The cosmological scenario can be drawn as follows: In the
theory of the hot big bang, the universe is initially at very
high temperature and, depending on the function V β

eff(φ), it
can be in the symmetric phase 〈φ(T )〉 = 0, i.e. φ = 0 can
be the stable absolute minimum. At some critical
temperature Tc the minimum at φ = 0 becomes metastable
and the phase transition may proceed. The phase transition
may be first or second order. First-order phase transitions
have supercooled (out of equilibrium) symmetric states when
the temperature decreases and are of use for baryogenesis
purposes. Second-order phase transitions are used in the
so-called new inflationary models. We will illustrate these
kinds of phase transitions with very simple examples.
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Second order phase transitions

We will illustrate the difference between first and second
order phase transitions by considering first the simple
example of a potential 2 described by the function,

V (φ,T ) = D(T 2 − T 2
o )φ2 +

λ(T )

4
φ4

where D, T 2
o and λ are constant terms.

Zero temperature

At zero temperature, the potential has a negative
mass-squared term, which indicates that the state φ = 0 is
unstable, and the energetically favored state corresponds to

the minimum at φ(0) = ±
√

2D
λ To , where the symmetry

φ↔ −φ of the original theory is spontaneously broken.

2It is the SM potential without cubic term E = 0
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The curvature of the finite temperature potential is now
T -dependent,

m2(φ,T ) = 3λφ2 + 2D(T 2 − T 2
o )

and its stationary points, solutions to dV (φ,T )/dφ = 0,

Stationary points at finite temperature

φ(T ) = 0

and

φ(T ) =

√
2D(T 2

o − T 2)

λ(T )

Therefore the critical temperature is given by To . This
phase transition is called of second order, because there is
no barrier between the symmetric and broken phases. The
phase transition may be achieved by a thermal fluctuation
for a field located at the origin. Actually, when the broken
phase is formed, the origin (symmetric phase) becomes a
maximum.
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Cartoon of second order phase transition

I At T > To , m2(0,T ) > 0 and the origin φ = 0 is a
minimum
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Cartoon of second order phase transition

I At T = To , m2(0,To) = 0 and both solutions collapse
at φ = 0
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Cartoon of second order phase transition

I At T < To , m2(0,T ) < 0 and the origin becomes a
maximum. The solution φ(T ) 6= 0 does appear
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First order phase transitions
In many interesting theories there is a barrier between the
symmetric and broken phases. This is characteristic of first
order phase transitions.
A typical example is provided by the potential

V (φ,T ) = D(T 2 − T 2
o )φ2 − ETφ3 +

λ(T )

4
φ4

where, as before, D, T0 and E are T independent
coefficients, and λ is a slowly varying T -dependent function.
Notice the addition of the cubic term with coefficient E from
bosonic fields

Critical temperatures

T 2
1 =

8λ(T1)DT 2
o

8λ(T1)D − 9E 2

T 2
c =

λ(Tc)DT 2
o

λ(Tc)D − E 2
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The first order phase transition: 1

I At T > T1 the only minimum is at φ = 0

T 2
1 =

8λ(T1)DT 2
o

8λ(T1)D − 9E 2

I At T = T1 a local minimum at φ(T ) 6= 0 appears as an
inflection point

〈φ(T1)〉 =
3ET1

2λ(T1)

I A barrier develops between a maximum and a local
minimum

φM,m(T ) =
3ET

2λ(T )

∓ 1

2λ(T )

√
9E 2T 2 − 8λ(T )D(T 2 − T 2

o )
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The first order phase transition: 2
I

T 2
c =

λ(Tc)DT 2
o

λ(Tc)D − E 2

At T = Tc the origin and the minimum become
degenerate

φM(Tc) =
ETc

λ(Tc)

and

φm(Tc) =
2ETc

λ(Tc)

I For T < Tc the minimum at φ = 0 becomes metastable
I At T = To the barrier disappears, the origin becomes a

maximum and the second minimum becomes equal to

φm(To) =
3ETo

λ(To)
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Cartoon of first order phase transition

I At T > T1 the only minimum is at φ = 0
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Cartoon of first order phase transition

I At T = T1 an inflection point appears
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Cartoon of first order phase transition

I For T = To the origin becomes a maximum
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Thermal tunneling

The transition from the false to the true vacuum proceeds
via thermal tunneling at finite temperature.
It can be understood in terms of formation of bubbles of the
broken phase in the sea of the symmetric phase. Once this
has happened, the bubble spreads throughout the universe
converting false vacuum into true one.
The tunneling rate is computed by using the rules of field
theory at finite temperature.
We defined the critical temperature Tc as the temperature
at which the two minima of the potential V (φ,T ) have the
same depth. However, tunneling with formation of bubbles
of the field φ corresponding to the second minimum starts
somewhat later, and goes sufficiently fast to fill the universe
with bubbles of the new phase only at some lower
temperature Tt when the corresponding euclidean action
SE = S3/T suppressing the tunneling becomes
O(130− 140), as we will see.
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We will use as prototype the Standard Model potential

V (φ,T ) = D(T 2 − T 2
o )φ2 − ETφ3 +

λ(T )

4
φ4

which can trigger, as we showed in this section, a first order
phase transition. In this case the false minimum is φ = 0,
and the value of the potential at the origin is zero,
V (0,T ) = 0.
The tunneling probability per unit time per unit volume is
given by

Γ

ν
∼ A(T )e−S3/T

The prefactor A(T ) is roughly of O(T 4) while S3 is the
three-dimensional euclidean action
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The bounce

At very high temperature the bounce solution has O(3)
symmetry and the euclidean action is then simplified to,

S3 = 4π

∫ ∞

0
r2dr

[
1

2

(
dφ

dr

)2

+ V (φ(r),T )

]

where r2 = ~x 2, and the euclidean equation of motion yields,

d2φ

dr2
+

2

r

dφ

dr
= V ′(φ,T )

with the boundary conditions

lim
r→∞

φ(r) = 0

dφ

dr

∣∣∣∣
r=0

= 0
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Conclusion

Let us take φ = 0 outside a bubble. Then S3, which is also
the surplus free energy of a true vacuum bubble, can be
written as

S3 = 4π

∫ R

0
r2dr

[
1

2

(
dφ

dr

)2

+ V (φ(r),T )

]

where R is the bubble radius. There are two contributions to
S3: a surface term FS , coming from the derivative term, and
a volume term FV , coming from the second term. They
scale like,

S3 ∼ 2πR2

(
δφ

δR

)2

δR +
4πR3〈V 〉

3

where δR is the thickness of the bubble wall, δφ = φm and
〈V 〉 is the average of the potential inside the bubble.
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Thin wall bubbles
For temperatures just below Tc , the height of the barrier
V (φM ,T ) is large compared to the depth of the potential at
the minimum, −V (φm,T ). In that case, the solution of
minimal action corresponds to minimizing the contribution
to FV coming from the region φ = φM . This amounts to a
very small bubble wall δR/R � 1 and so a very quick
change of the field from φ = 0 outside the bubble to φ = φm

inside the bubble.
Therefore, the first formed bubbles after Tc are thin wall
bubbles.
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For temperatures just below Tc , the height of the barrier
V (φM ,T ) is large compared to the depth of the potential at
the minimum, −V (φm,T ). In that case, the solution of
minimal action corresponds to minimizing the contribution
to FV coming from the region φ = φM . This amounts to a
very small bubble wall δR/R � 1 and so a very quick
change of the field from φ = 0 outside the bubble to φ = φm

inside the bubble.
Therefore, the first formed bubbles after Tc are thin wall
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In the limit of ε(T ) � 1

ε(T ) =
Tc − T

Tc − To

the initial bounce is very close to φm for large r and the
viscosity damping force can very soon be neglected. Then

dφ

dr
=

√
2V (φ,T )

Thin bubbles

The critical radius is obtained by extremizing the action.
For the Standard Model potential

Rc =

√
2λ(T )

3ET ε(T )

and the action at the critical radius given by

S3 =
64π

81

ET

(2λ(T ))3/2ε(T )2
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Thick wall bubbles

Subsequently, when the temperature drops towards To the
height of the barrier V (φM ,T ) becomes small as compared
with the depth of the potential at the minimum −V (φm,T ).
In that case the contribution to FV from the region φ = φM

is negligible, and the minimal action corresponds to
minimizing the surface term FS . This amounts to a
configuration where δR is as large as possible, i.e.
δR/R = O(1): thick wall bubbles
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For the case of thick bubbles, δR ∼ R and the free energy of
the bubble can be written as

S3 ∼ 2πR(δφ)2 +
4πR3〈V 〉

3

The critical radius of the bubble obtained as the maximum
of the action

Rc ∼
δφ√
−2〈V 〉

Thick bubbles

The action at the critical radius is

S3 ∼
(δφ)3√
−〈V 〉

and for the Standard Model potential

S3 ∼
ET

λ(T )3/2
(1− ε(T ))3/2
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Bubble nucleation
I Whether the phase transition proceeds through thin or

thick wall bubbles depends on how large the bubble
nucleation rate is, or how small S3 is, before thick
bubbles are energetically favoured.

I The progress of the phase transition depends on the
ratio of the rate of production of bubbles of true
vacuum over the expansion rate of the universe. For
example if the former remains always smaller than the
latter, then the state will be trapped in the supercooled
false vacuum. Otherwise the phase transition will start
at some temperature Tt by bubble nucleation. The
probability of bubble formation per unit time per unit
volume is given by

Γ

ν
∼ A(T )e−S3/T

where B(T ) = S3(T )/T , A(T ) = ωT 4, where the
parameter ω is O(1).
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Conclusion

I The progress of the phase transition should depend on
the expansion rate of the universe.

I We have to describe the universe at temperatures close
to the electroweak phase transition.

I A homogeneous and isotropic (flat) universe is
described by a Robertson-Walker metric which, in
comoving coordinates, is given by
ds2 = dt2 − a(t)2

(
dr2 + r2dΩ2

)
, where a(t) is the

scale factor of the universe. The universe expansion is
governed by the equation(

ȧ

a

)2

=
8π

3M2
P`

ρ

I For temperatures T ∼ 102 GeV the universe is
radiation dominated, and its energy density is given by,

ρ =
π2

30
g(T )T 4, g(T ) = gB(T ) +

7

8
gF (T )

where gSM = 106.75
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ȧ

a

)2

=
8π

3M2
P`

ρ

I For temperatures T ∼ 102 GeV the universe is
radiation dominated, and its energy density is given by,

ρ =
π2

30
g(T )T 4, g(T ) = gB(T ) +

7

8
gF (T )

where gSM = 106.75



Field Theory @
Finite

Temperature
&

Phase Transitions

Mariano Quirós

Introduction

Generating
functionals

Green functions

Imaginary time
formalism

Real time
formalism

Effective potential

The Standard
Model

Cosmological
phase transitions

Second order
phase transitions

First order phase
transitions

Thermal tunneling

Bubble nucleation

Conclusion

I The progress of the phase transition should depend on
the expansion rate of the universe.

I We have to describe the universe at temperatures close
to the electroweak phase transition.

I A homogeneous and isotropic (flat) universe is
described by a Robertson-Walker metric which, in
comoving coordinates, is given by
ds2 = dt2 − a(t)2

(
dr2 + r2dΩ2

)
, where a(t) is the

scale factor of the universe. The universe expansion is
governed by the equation(

ȧ

a

)2

=
8π

3M2
P`

ρ

I For temperatures T ∼ 102 GeV the universe is
radiation dominated, and its energy density is given by,

ρ =
π2

30
g(T )T 4, g(T ) = gB(T ) +

7

8
gF (T )

where gSM = 106.75
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Conclusion

I Assuming an adiabatic expansion of the universe,
a(T1)T1 = a(T2)T2, one obtains the following
relationship,

t = ζ
MP`

T 2
, ζ =

1

4π

√
45

πg
∼ 3× 10−2

I The onset of nucleation happens at a temperature Tt

such that the probability for a single bubble to be
nucleated within one horizon volume is ∼ 1∫ ∞

Tt

dT

T

(
2ζMPl

T

)4

exp{−S3(T )/T} = O(1) .

which implies numerically,

Nucleation condition (electroweak)

B(Tt) ∼ 137 + log
102E 2

λD
+ 4 log

100 GeV

Tt
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Conclusion

Missing topics

I Field theory at finite temperature has an IR divergence:
it has to be cured by improving the theory with
resummations, e.g. hard thermal loops,...

I EWBG requires large CP violation and strong first-order
phase transition: neither of them is provided by the
Standard Model effective potential

I They can be provided in extensions of the SM: e.g. the
MSSM

I The theory of phase transitions has wide applications in
model building of inflation: old inflation, new inflation,
extended inflation, hybrid inflation,...
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