Transition of an extended object across the cosmological singularity

Włodzimierz Piechocki

Department of Theoretical Physics Soltan Institute for Nuclear Studies Warsaw, Poland

Based on collaboration with

Ewa Czuchry and Przemysław Małkiewicz

Outline

- Introduction
- Model of universe with cosmic singularity
- Classical dynamics of p-brane
- Dynamics of a particle (0-brane)
- Dynamics of a string (1-brane)
 - Classical dynamics of a string
 - Quantum dynamics of a string
- Opposition of a membrane (2-brane)
- Conclusions
 - Summary
 - Next steps

Motivation:

Finding general theoretical framework that can be used to describe possibly all available cosmological data.

- evolution of the universe includes at least one quantum phase
- quantum phase can be described in terms of quantum p-branes
- the cosmic singularity consists of pre-singularity
- classical phase can be obtained from the quantum phase

Motivation:

Finding general theoretical framework that can be used to describe possibly all available cosmological data.

- evolution of the universe includes at least one quantum phase and two classical phases
- quantum phase can be described in terms of quantum p-branes
- the cosmic singularity consists of pre-singularity
- classical phase can be obtained from the quantum phase

Motivation:

Finding general theoretical framework that can be used to describe possibly all available cosmological data.

- evolution of the universe includes at least one quantum phase and two classical phases
- quantum phase can be described in terms of quantum p-branes propagating in higher dimensional (d > 4) spacetime with the cosmic singularity
- the cosmic singularity consists of pre-singularity
- classical phase can be obtained from the quantum phase

Motivation:

Finding general theoretical framework that can be used to describe possibly all available cosmological data.

- evolution of the universe includes at least one quantum phase and two classical phases
- quantum phase can be described in terms of quantum p-branes propagating in higher dimensional (d > 4) spacetime with the cosmic singularity
- the cosmic singularity consists of pre-singularity and post-singularity epochs
- classical phase can be obtained from the quantum phase

Motivation:

Finding general theoretical framework that can be used to describe possibly all available cosmological data.

- evolution of the universe includes at least one quantum phase and two classical phases
- quantum phase can be described in terms of quantum p-branes propagating in higher dimensional (d > 4) spacetime with the cosmic singularity
- the cosmic singularity consists of pre-singularity and post-singularity epochs
- classical phase can be obtained from the quantum phase by changing topology of its spacetime, and vice versa

Motivation:

Finding general theoretical framework that can be used to describe possibly all available cosmological data.

Assumptions:

- evolution of the universe includes at least one quantum phase and two classical phases
- quantum phase can be described in terms of quantum p-branes propagating in higher dimensional (d > 4) spacetime with the cosmic singularity
- the cosmic singularity consists of pre-singularity and post-singularity epochs
- classical phase can be obtained from the quantum phase by changing topology of its spacetime, and vice versa

Remark:

We address, to some extent, the question of mathematical consistency of a cyclic universe scenario.

- Restriction of considerations to the neighborhood of the cosmological singularity
- Basic criterion for the choice of the model of universe
- Model of the universe in the quantum phase:

- Restriction of considerations to the neighborhood of the cosmological singularity
- Basic criterion for the choice of the model of universe in the quantum phase:
 - Reasonable model should allow for propagation of quantum p-brane (i.e., particle, string, membrane,...) from pre-singularity to post-singularity epoch.
- Model of the universe in the quantum phase:

- Restriction of considerations to the neighborhood of the cosmological singularity
- Basic criterion for the choice of the model of universe in the quantum phase:
 - Reasonable model should allow for propagation of quantum p-brane (i.e., particle, string, membrane,...) from pre-singularity to post-singularity epoch.
 - If quantum p-brane cannot go through the cosmic singularity, the evolution cannot be realized.
- Model of the universe in the quantum phase:

to post-singularity epoch.

 Restriction of considerations to the neighborhood of the cosmological singularity

Basic criterion for the choice of the model of universe

- in the quantum phase: Reasonable model should allow for propagation of quantum p-brane (i.e., particle, string, membrane,...) from pre-singularity
 - If quantum p-brane cannot go through the cosmic singularity, the evolution cannot be realized.
- Model of the universe in the quantum phase: compactified Milne space - the simplest model of universe with the cosmic singularity that is implied by string/M theory (the simplest example of time dependent singular orbifold)

Compactified Milne space

 Isometric embedding of 2d compactified Milne space into 3d Minkowski space

$$y^{0}(t,\theta) = t\sqrt{1+r^{2}}, \quad r \in \mathbb{R}^{1}$$

$$y^{1}(t,\theta) = rt\sin(\theta/r), \quad y^{2}(t,\theta) = rt\cos(\theta/r)$$

$$\frac{r^{2}}{1+r^{2}}(y^{0})^{2} - (y^{1})^{2} - (y^{2})^{2} = 0$$

• Induced metric (for $t \neq 0$)

$$ds^2 = -dt^2 + t^2 d\theta^2, \quad (t, \theta) \in \mathbb{R}^1 \times \mathbb{S}^1$$

• Local isometry with 2d Minkowski space (for $t \neq 0$)

$$ds^2 = -(dx^0)^2 + (dx^1)^2, \quad x^0 := t \cosh \theta, \quad x^1 := t \sinh \theta$$

Compactified Milne space

 Isometric embedding of 2d compactified Milne space into 3d Minkowski space

$$y^{0}(t,\theta) = t\sqrt{1+r^{2}}, \quad r \in \mathbb{R}^{1}$$
$$y^{1}(t,\theta) = rt\sin(\theta/r), \quad y^{2}(t,\theta) = rt\cos(\theta/r)$$
$$\frac{r^{2}}{1+r^{2}}(y^{0})^{2} - (y^{1})^{2} - (y^{2})^{2} = 0$$

• Induced metric (for $t \neq 0$)

$$ds^2 = -dt^2 + t^2 d\theta^2, \quad (t, \theta) \in \mathbb{R}^1 \times \mathbb{S}^1$$

• Local isometry with 2d Minkowski space (for $t \neq 0$)

$$ds^2 = -(dx^0)^2 + (dx^1)^2, \quad x^0 := t \cosh \theta, \quad x^1 := t \sinh \theta$$

Compactified Milne space (cont)

Metric of the compactified Milne, CM, space

$$ds^2 = -dt^2 + dx^k dx_k + t^2 d\theta^2, \quad (t, x^k) \in \mathbb{R}^1 \times \mathbb{R}^{d-1}, \quad \theta \in \mathbb{S}^1$$

- One term in metric disappears/appears at $t = 0 \Rightarrow$ CM space may be used to model big-crunch/big-bang type singularity
- Other properties of the CM space:
 - ightharpoonup not manifold, but orbifold due to the vertex at t=0
 - ▶ Riemann's tensor components equal 0 for $t \neq 0$
 - singularity at t = 0 of removable type: any time-like geodesic with t < 0 can be extended to some time-like geodesic with t > 0
 - extension cannot be unique due to the Cauchy problem at t=0 for the geodesic equation (compact dimension shrinks away and reappears at t=0)
- Orbifolding \mathbb{S}^1 to the segment $\mathbb{S}^1/\mathbb{Z}_2$ gives the model of two flat parallel "end of the world" branes¹ which collide and re-emerge at t=0

¹J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok, Phys. Rev. D **65**(2002)086007

Compactified Milne space (cont)

Metric of the compactified Milne, CM, space

$$ds^2 = -dt^2 + dx^k dx_k + t^2 d\theta^2, \quad (t, x^k) \in \mathbb{R}^1 \times \mathbb{R}^{d-1}, \quad \theta \in \mathbb{S}^1$$

- One term in metric disappears/appears at $t = 0 \Rightarrow$ CM space may be used to model big-crunch/big-bang type singularity
- Other properties of the CM space:
 - ightharpoonup not manifold, but orbifold due to the vertex at t=0
 - ▶ Riemann's tensor components equal 0 for $t \neq 0$
 - \triangleright singularity at t=0 of removable type: any time-like geodesic with t < 0 can be extended to some time-like geodesic with t > 0
 - \triangleright extension cannot be unique due to the Cauchy problem at t=0for the geodesic equation (compact dimension shrinks away and reappears at t=0)
- Orbifolding \mathbb{S}^1 to the segment $\mathbb{S}^1/\mathbb{Z}_2$ gives the model

Compactified Milne space (cont)

Metric of the compactified Milne, CM, space

$$ds^2 = -dt^2 + dx^k dx_k + t^2 d\theta^2, \quad (t, x^k) \in \mathbb{R}^1 \times \mathbb{R}^{d-1}, \quad \theta \in \mathbb{S}^1$$

- One term in metric disappears/appears at $t = 0 \Rightarrow$ CM space may be used to model big-crunch/big-bang type singularity
- Other properties of the CM space:
 - ightharpoonup not manifold, but orbifold due to the vertex at t=0
 - ▶ Riemann's tensor components equal 0 for $t \neq 0$
 - \triangleright singularity at t=0 of removable type: any time-like geodesic with t < 0 can be extended to some time-like geodesic with t > 0
 - \triangleright extension cannot be unique due to the Cauchy problem at t=0for the geodesic equation (compact dimension shrinks away and reappears at t=0)
- Orbifolding \mathbb{S}^1 to the segment $\mathbb{S}^1/\mathbb{Z}_2$ gives the model of two flat parallel "end of the world" branes which collide and re-emerge at t=0

¹J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok, Phys. Rev. D 65(2002)086007

Classical dynamics of p-brane

The Polyakov action integral for test p-brane embedded in fixed background spacetime with metric $g_{\tilde{\mu}\tilde{\nu}}$ reads

$$S_{p} = -\frac{1}{2}\mu_{p} \int d^{p+1}\sigma \sqrt{-\gamma} \left[\gamma^{ab} \partial_{a} X^{\tilde{\mu}} \partial_{b} X^{\tilde{\nu}} g_{\tilde{\mu}\tilde{\nu}} - p + 1 \right], \tag{1}$$

where

 μ_p is mass per unit p-volume, $(\sigma^a) \equiv (\sigma^0, \sigma^1, \dots, \sigma^p)$ are *p*-brane worldvolume coordinates, γ_{ab} is p-brane worldvolume metric, $\gamma := det[\gamma_{ab}]$, $(X^{\tilde{\mu}}) \equiv (X^{\mu}, \Theta) \equiv (T, X^k, \Theta) \equiv (T, X^1, \dots, X^{d-1}, \Theta)$ are embedding functions of p-brane, i.e. $X^{\tilde{\mu}} = X^{\tilde{\mu}}(\sigma^0, \dots, \sigma^p)$, corresponding to $(t, x^1, \dots, x^{d-1}, \theta)$ directions od d+1 dimensional background spacetime.

Total Hamiltonian, H_T , corresponding to the Polyakov action²

$$H_T = \int d^p \sigma \mathcal{H}_T, \tag{2}$$

$$\mathcal{H}_{\mathcal{T}} := AC + A^{i}C_{i}, \quad i = 1, \dots, p$$
 (3)

where $A = A(\sigma^a)$ and $A^i = A^i(\sigma^a)$ are any 'regular' functions, and C and C_i are first-class constraints

$$C := \Pi_{\tilde{\mu}} \Pi_{\tilde{\nu}} g^{\tilde{\mu}\tilde{\nu}} + \mu_{p}^{2} \det[\partial_{a} X^{\tilde{\mu}} \partial_{b} X^{\tilde{\nu}} g_{\tilde{\mu}\tilde{\nu}}] \approx 0, \tag{4}$$

$$C_i := \partial_i X^{\tilde{\mu}} \Pi_{\tilde{\mu}} \approx 0. \tag{5}$$

²N. Turok, M. Perry and P. J. Steinhardt, Phys. Rev. D **70** (2004) 106004

Total Hamiltonian, H_T , corresponding to the Polyakov action²

$$H_T = \int d^p \sigma \mathcal{H}_T, \tag{2}$$

$$\mathcal{H}_{\mathcal{T}} := AC + A^{i}C_{i}, \quad i = 1, \dots, p$$
 (3)

where $A = A(\sigma^a)$ and $A^i = A^i(\sigma^a)$ are any 'regular' functions, and C and C_i are first-class constraints

$$C := \Pi_{\tilde{\mu}} \Pi_{\tilde{\nu}} g^{\tilde{\mu}\tilde{\nu}} + \mu_{p}^{2} \det[\partial_{a} X^{\tilde{\mu}} \partial_{b} X^{\tilde{\nu}} g_{\tilde{\mu}\tilde{\nu}}] \approx 0, \tag{4}$$

$$C_i := \partial_i X^{\tilde{\mu}} \Pi_{\tilde{\mu}} \approx 0. \tag{5}$$

8/22

 H_T does not generate time translations, but gauge transformations!

²N. Turok, M. Perry and P. J. Steinhardt, Phys. Rev. D **70** (2004) 106004

Hamilton's equations

$$\dot{X}^{\tilde{\mu}} \equiv \frac{\partial X^{\tilde{\mu}}}{\partial \tau} = \{X^{\tilde{\mu}}, H_T\}, \qquad \dot{\Pi}_{\tilde{\mu}} \equiv \frac{\partial \Pi_{\tilde{\mu}}}{\partial \tau} = \{\Pi_{\tilde{\mu}}, H_T\}, \qquad \tau \equiv \sigma^0, \quad (6)$$

where

$$\{\cdot,\cdot\} := \int d^{p}\sigma \left(\frac{\partial \cdot}{\partial X^{\tilde{\mu}}} \frac{\partial \cdot}{\partial \Pi_{\tilde{\mu}}} - \frac{\partial \cdot}{\partial \Pi_{\tilde{\mu}}} \frac{\partial \cdot}{\partial X^{\tilde{\mu}}} \right). \tag{7}$$

$$n_c =: 2n_p = 2(d-p),$$

Hamilton's equations

$$\dot{X}^{\tilde{\mu}} \equiv \frac{\partial X^{\tilde{\mu}}}{\partial \tau} = \{X^{\tilde{\mu}}, H_T\}, \qquad \dot{\Pi}_{\tilde{\mu}} \equiv \frac{\partial \Pi_{\tilde{\mu}}}{\partial \tau} = \{\Pi_{\tilde{\mu}}, H_T\}, \qquad \tau \equiv \sigma^0, \quad (6)$$

where

$$\{\cdot,\cdot\} := \int d^{p}\sigma \left(\frac{\partial \cdot}{\partial X^{\tilde{\mu}}} \frac{\partial \cdot}{\partial \Pi_{\tilde{\mu}}} - \frac{\partial \cdot}{\partial \Pi_{\tilde{\mu}}} \frac{\partial \cdot}{\partial X^{\tilde{\mu}}} \right). \tag{7}$$

Degrees of freedom

$$n_c =: 2n_p = 2(d-p),$$

where

 n_c , number of independent canonical variables, n_p , number of physical degrees of freedom, d+1, dimension of spacetime, p+1, number of constraints,

p, dimension of p-brane

Propagation of a particle

Classical dynamics of a test particle in the CM space is unstable, however it can be quantized, i.e. there exists mathematically well defined quantum dynamics of a particle. For details see:

- P. Małkiewicz and WP, Class. Quantum Grav. 23 (2006) 2963,
 "A simple model of big-crunch / big-bang transition"
- P. Małkiewicz and WP, Class. Quantum Grav. 23 (2006) 7045,
 "Probing the cosmological singularity with a particle"

Propagation of a particle

Classical dynamics of a test particle in the CM space is unstable, however it can be quantized, i.e. there exists mathematically well defined quantum dynamics of a particle. For details see:

- P. Małkiewicz and WP, Class. Quantum Grav. 23 (2006) 2963,
 "A simple model of big-crunch / big-bang transition"
- P. Małkiewicz and WP, Class. Quantum Grav. 23 (2006) 7045,
 "Probing the cosmological singularity with a particle"

Propagation of a string

Dynamics of a string winding around the θ -dimension in its lowest energy mode:

The string in such a state is defined by the conditions

$$\sigma^{p} := \theta \equiv \Theta$$
 and $\partial_{\theta} X^{\mu} = 0 = \partial_{\theta} \Pi_{\mu}$. (8)

In the mode (8) the constraints read

$$C = \Pi_{\mu}(\tau) \Pi_{\nu}(\tau) \eta^{\mu\nu} + \check{\mu}_{1}^{2} t^{2}(\tau) \approx 0, \qquad C_{1} = 0,$$
 (9)

where $\check{\mu}_1 \equiv \theta_0 \mu_1$, and where $\theta_0 = 2\pi$ for \mathbb{S}^1 and $\theta_0 = \pi$ for $\mathbb{S}^1/\mathbb{Z}_2$ compactifications, respectively.

The equations of motion are

$$\dot{\Pi}_t(\tau) = -2A(\tau) \ \check{\mu}_1^2 \ T(\tau), \qquad \dot{\Pi}_k(\tau) = 0, \tag{10}$$

$$\dot{T}(\tau) = -2A(\tau) \Pi_t(\tau), \qquad \dot{X}^k(\tau) = 2A(\tau) \Pi_k(\tau), \tag{11}$$

where $A = A(\tau)$ is any function.

<□▶<□▶<≣▶<≣▶< = 0°<

Propagation of a string

Dynamics of a string winding around the θ -dimension in its lowest energy mode:

The string in such a state is defined by the conditions

$$\sigma^{\rho} := \theta \equiv \Theta$$
 and $\partial_{\theta} X^{\mu} = 0 = \partial_{\theta} \Pi_{\mu}$. (8)

In the mode (8) the constraints read

$$C = \Pi_{\mu}(\tau) \, \Pi_{\nu}(\tau) \, \eta^{\mu\nu} + \check{\mu}_{1}^{2} \, t^{2}(\tau) \approx 0, \qquad C_{1} = 0, \tag{9}$$

where $\check{\mu}_1 \equiv \theta_0 \mu_1$, and where $\theta_0 = 2\pi$ for \mathbb{S}^1 and $\theta_0 = \pi$ for $\mathbb{S}^1/\mathbb{Z}_2$ compactifications, respectively.

The equations of motion are

$$\dot{\Pi}_t(\tau) = -2A(\tau) \, \check{\mu}_1^2 \, T(\tau), \qquad \dot{\Pi}_k(\tau) = 0, \tag{10}$$

$$\dot{T}(\tau) = -2A(\tau) \Pi_t(\tau), \qquad \dot{X}^k(\tau) = 2A(\tau) \Pi_k(\tau). \tag{11}$$

where $A = A(\tau)$ is any function.

Propagation of a string

Dynamics of a string winding around the θ -dimension in its lowest energy mode:

The string in such a state is defined by the conditions

$$\sigma^{p} := \theta \equiv \Theta$$
 and $\partial_{\theta} X^{\mu} = 0 = \partial_{\theta} \Pi_{\mu}$. (8)

In the mode (8) the constraints read

$$C = \Pi_{\mu}(\tau) \, \Pi_{\nu}(\tau) \, \eta^{\mu\nu} + \check{\mu}_{1}^{2} \, t^{2}(\tau) \approx 0, \qquad C_{1} = 0, \tag{9}$$

where $\check{\mu}_1 \equiv \theta_0 \mu_1$, and where $\theta_0 = 2\pi$ for \mathbb{S}^1 and $\theta_0 = \pi$ for $\mathbb{S}^1/\mathbb{Z}_2$ compactifications, respectively.

The equations of motion are

$$\dot{\Pi}_t(\tau) = -2A(\tau) \, \check{\mu}_1^2 \, T(\tau), \qquad \dot{\Pi}_k(\tau) = 0, \tag{10}$$

$$\dot{T}(\tau) = -2A(\tau) \Pi_t(\tau), \qquad \dot{X}^k(\tau) = 2A(\tau) \Pi_k(\tau), \tag{11}$$

where $A = A(\tau)$ is any function.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Propagation of string (cont)

In the gauge $A(\tau) = 1$, the solutions are

$$\Pi_t(\tau) = b_1 \exp(2\check{\mu}_1 \tau) + b_2 \exp(-2\check{\mu}_1 \tau), \qquad \Pi_k(\tau) = \Pi_{0k},$$
 (12)

$$T(\tau) = a_1 \exp(2\check{\mu}_1\tau) + a_2 \exp(-2\check{\mu}_1\tau), \quad X^k(\tau) = X_0^k + 2\Pi_{0k} \tau,$$
 (13) where $b_1, b_2, \Pi_{0k}, a_1, a_2, X_0^k \in \mathbb{R}$.

Elimination of $\, au\,$ leads finally to

$$X^{k}(t) = X_{0}^{k} + \frac{\Pi_{0}^{k}}{\check{\mu}_{1}} \sinh^{-1}\left(\frac{\check{\mu}_{1}}{\sqrt{\Pi_{0}^{k}\Pi_{0k}}} t\right). \tag{14}$$

where $t(\tau) \equiv T(\tau)$ plays the role of an evolution parameter. The solution (14) is smooth at t=0, and describes stable propagation of a string across the cosmic singularity.

Propagation of string (cont)

In the gauge $A(\tau) = 1$, the solutions are

$$\Pi_t(\tau) = b_1 \exp(2\check{\mu}_1 \tau) + b_2 \exp(-2\check{\mu}_1 \tau), \qquad \Pi_k(\tau) = \Pi_{0k},$$
 (12)

$$T(\tau) = a_1 \exp(2\check{\mu}_1\tau) + a_2 \exp(-2\check{\mu}_1\tau), \quad X^k(\tau) = X_0^k + 2\Pi_{0k} \tau,$$
 (13)

where $b_1, b_2, \Pi_{0k}, a_1, a_2, X_0^k \in \mathbb{R}$.

Elimination of τ leads finally to

$$X^{k}(t) = X_{0}^{k} + \frac{\Pi_{0}^{k}}{\check{\mu}_{1}} \sinh^{-1}\left(\frac{\check{\mu}_{1}}{\sqrt{\Pi_{0}^{k}\Pi_{0k}}} t\right). \tag{14}$$

where $t(\tau) \equiv T(\tau)$ plays the role of an evolution parameter.

Propagation of string (cont)

In the gauge $A(\tau) = 1$, the solutions are

$$\Pi_t(\tau) = b_1 \exp(2\check{\mu}_1\tau) + b_2 \exp(-2\check{\mu}_1\tau), \qquad \Pi_k(\tau) = \Pi_{0k},$$
 (12)

$$T(\tau) = a_1 \exp(2\check{\mu}_1\tau) + a_2 \exp(-2\check{\mu}_1\tau), \quad X^k(\tau) = X_0^k + 2\Pi_{0k} \tau,$$
 (13)

where $b_1, b_2, \Pi_{0k}, a_1, a_2, X_0^k \in \mathbb{R}$.

Elimination of τ leads finally to

$$X^{k}(t) = X_{0}^{k} + \frac{\Pi_{0}^{k}}{\check{\mu}_{1}} \sinh^{-1}\left(\frac{\check{\mu}_{1}}{\sqrt{\Pi_{0}^{k}\Pi_{0k}}} t\right). \tag{14}$$

where $t(\tau) \equiv T(\tau)$ plays the role of an evolution parameter.

The solution (14) is smooth at t = 0, and describes stable propagation of a string across the cosmic singularity.

In the gauge A = 1, the Hamiltonian of a string is

$$H_T = C = \Pi_{\mu}(\tau) \,\Pi_{\nu}(\tau) \,\eta^{\mu\nu} + \check{\mu}_1^2 \,t^2. \tag{15}$$

The quantum Hamiltonian corresponding to (15) has the form (we use the Laplace-Beltrami mapping)

$$\hat{H}_T = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial X^k \partial X_k} + \check{\mu}_1^2 t^2, \qquad t \equiv T.$$
 (16)

According to Dirac's quantization method physical states ψ should satisfy the equation

$$\hat{H}_T \ \psi(t, X^K) = 0. \tag{17}$$

In the gauge A = 1, the Hamiltonian of a string is

$$H_T = C = \Pi_{\mu}(\tau) \Pi_{\nu}(\tau) \eta^{\mu\nu} + \check{\mu}_1^2 t^2. \tag{15}$$

The quantum Hamiltonian corresponding to (15) has the form (we use the Laplace-Beltrami mapping)

$$\hat{H}_T = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial X^k \partial X_k} + \check{\mu}_1^2 t^2, \qquad t \equiv T.$$
 (16)

According to Dirac's quantization method physical states ψ should satisfy the equation

$$\hat{H}_T \ \psi(t, X^k) = 0. \tag{17}$$

In the gauge A = 1, the Hamiltonian of a string is

$$H_T = C = \Pi_{\mu}(\tau) \Pi_{\nu}(\tau) \eta^{\mu\nu} + \check{\mu}_1^2 t^2. \tag{15}$$

The quantum Hamiltonian corresponding to (15) has the form (we use the Laplace-Beltrami mapping)

$$\hat{H}_T = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial X^k \partial X_k} + \check{\mu}_1^2 t^2, \qquad t \equiv T.$$
 (16)

According to Dirac's quantization method physical states ψ should satisfy the equation

$$\hat{H}_T \ \psi(t, X^k) = 0. \tag{17}$$

In the gauge A = 1, the Hamiltonian of a string is

$$H_T = C = \Pi_{\mu}(\tau) \Pi_{\nu}(\tau) \eta^{\mu\nu} + \check{\mu}_1^2 t^2. \tag{15}$$

The quantum Hamiltonian corresponding to (15) has the form (we use the Laplace-Beltrami mapping)

$$\hat{H}_T = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial X^k \partial X_k} + \check{\mu}_1^2 t^2, \qquad t \equiv T.$$
 (16)

According to Dirac's quantization method physical states ψ should satisfy the equation

$$\hat{H}_T \ \psi(t, X^k) = 0. \tag{17}$$

Quantum string (cont)

To solve (17) we make the substitution

$$\psi(t, X^1, \dots, X^{d-1}) = F(t) \ G_1(X^1) \ G_2(X^2) \cdots G_{d-1}(X^{d-1}),$$
 (18)

which turns (17) into the following set of equations

$$\frac{d^2G_k(q_k,X_k)}{dX_k^2} + q_k^2 G_k(q_k,X_k) = 0, \qquad k = 1,\ldots,d-1,$$
 (19)

$$\frac{d^2F(q,t)}{dt^2} + (\check{\mu}_1^2t^2 + q^2) F(q,t) = 0, \qquad q^2 := q_1^2 + \ldots + q_{d-1}^2, \quad (20)$$

where $q_k^2, q^2 \in \mathbb{R}$ are the separation constants.

Quantum string (cont)

Two independent solutions to (19) have the form

$$G_{1k}(q_k, X_k) = \cos(q_k X^k), \qquad G_{2k}(q_k, X_k) = \sin(q_k X^k)$$
 (21)

(no summation in $q_k X^k$ with respect to k).

Two independent solutions of (20) read

$$\tilde{F}_1(q,t) = \exp(-i\check{\mu}_1 t^2/2) H\left(-\frac{\check{\mu}_1 + iq^2}{2\check{\mu}_1}, (-1)^{1/4} \sqrt{\check{\mu}_1} t\right),$$
 (22)

$$F_2(q,t) = \exp\left(-i\check{\mu}_1 t^2/2\right) {}_1F_1\left(\frac{\check{\mu}_1 + iq^2}{4\check{\mu}_1}, \frac{1}{2}, i\check{\mu}_1 t^2\right), \tag{23}$$

where H(a, t) is the Hermite function and ${}_{1}F_{1}(a, b, t)$ denotes the Kummer function.

Two independent solutions to (19) have the form

$$G_{1k}(q_k, X_k) = \cos(q_k X^k), \qquad G_{2k}(q_k, X_k) = \sin(q_k X^k)$$
 (21)

(no summation in $q_k X^k$ with respect to k). Two independent solutions of (20) read

$$\tilde{F}_1(q,t) = \exp\left(-i\check{\mu}_1 t^2/2\right) H\left(-\frac{\check{\mu}_1 + iq^2}{2\check{\mu}_1}, (-1)^{1/4} \sqrt{\check{\mu}_1} t\right),$$
 (22)

$$F_2(q,t) = \exp\left(-i\check{\mu}_1 t^2/2\right) \, {}_1F_1\left(\frac{\check{\mu}_1 + iq^2}{4\check{\mu}_1}, \frac{1}{2}, i\check{\mu}_1 t^2\right),\tag{23}$$

where H(a, t) is the Hermite function and ${}_{1}F_{1}(a, b, t)$ denotes the Kummer function.

Construction of the Hilbert space, \mathcal{H} , based on the solutions (21)-(23): Step 1 The method works if the solutions are bounded functions on $\mathbb{R} \times [-t_0, t_0]$. The function $F_2(q, t)$ is bounded, whereas $\tilde{F}_1(q, t)$ blows up as $|q| \to \infty$. Replacement:

$$F_1(q,t) := \sqrt{q} \exp(-\frac{\pi}{8\check{\mu}_1}q^2) \, \tilde{F}_1(q,t).$$
 (24)

Example of two independent bounded solutions to Eq.(20), for q = 1, on $[-t_0, t_0]$.

Step 2 We introduce generalized solutions by

$$h_{s}(t,\vec{X}) := \int_{\mathbb{R}^{d-1}} f(q_{1},\ldots,q_{d-1}) F_{s}(q,t) \prod_{k} \exp(-iq_{k}X^{k}) dq_{1} \ldots dq_{d-1},$$
(25)

where $f \in L^2(\mathbb{R}^{d-1})$, s = 1, 2 and where $q^2 = q_1^2 + \dots + q_{d-1}^2$, $(\vec{X}) \equiv (X^1, \dots, X^{d-1})$. Eq.(25) includes (21) due to the term $\exp(-iq_kX^k)$, with $q_k \in \mathbb{R}$. One has $\hat{H}_T h_S = 0$.

Step 3 Eq.(25) defines the Fourier transform of the product f F_s . Thus, due to the Fourier transform theory it defines the mapping

$$L^{2}(\mathbb{R}^{d-1})\ni f\longrightarrow h_{s}\in L^{2}([-t_{0},t_{0}]\times\mathbb{R}^{d-1}). \tag{26}$$

Replacing f by consecutive elements of a basis in $L^2(\mathbb{R}^{d-1})$ creates, roughly speaking, a basis in the Hilbert space $\mathcal{H} \subseteq L^2([-t_0, t_0] \times \mathbb{R}^{d-1})$.

Step 2 We introduce generalized solutions by

$$h_{s}(t,\vec{X}) := \int_{\mathbb{R}^{d-1}} f(q_{1},\ldots,q_{d-1}) F_{s}(q,t) \prod_{k} \exp(-iq_{k}X^{k}) dq_{1} \ldots dq_{d-1},$$
(25)

where $f \in L^2(\mathbb{R}^{d-1})$, s = 1, 2 and where $q^2 = q_1^2 + \dots + q_{d-1}^2$, $(\vec{X}) \equiv (X^1, \dots, X^{d-1})$.

Eq.(25) includes (21) due to the term $\exp(-iq_kX^k)$, with $q_k \in \mathbb{R}$. One has $\hat{H}_T h_S = 0$.

Step 3 Eq.(25) defines the Fourier transform of the product f F_s . Thus, due to the Fourier transform theory it defines the mapping

$$L^{2}(\mathbb{R}^{d-1})\ni f\longrightarrow h_{s}\in L^{2}([-t_{0},t_{0}]\times\mathbb{R}^{d-1}). \tag{26}$$

Replacing f by consecutive elements of a basis in $L^2(\mathbb{R}^{d-1})$ creates, roughly speaking, a basis in the Hilbert space $\mathcal{H}\subseteq L^2([-t_0,t_0]\times\mathbb{R}^{d-1})$.

Example: $L^2(\mathbb{R}^{d-1}) := \bigotimes_{k=1}^{d-1} L_k^2(\mathbb{R})$, where $L_k^2(\mathbb{R}) \equiv L^2(\mathbb{R})$, with the basis $f_n \in L^2(\mathbb{R})$ defined as

$$f_n(q) := \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} \exp(-q^2/2) H_n(q), \quad n = 0, 1, 2, \dots,$$
 (27)

where $H_n(q)$ is the Hermite polynomial.

The orthonormal basis (27) can be used to define a sequence of vectors $\bigotimes_{k=1}^{d-1} f_{n_k}(q^k) \in L^2(\mathbb{R}^{d-1})$, and further used to create a sequence of vectors in $\mathcal{H} = L^2([-t_0,t_0] \times \mathbb{R}^{d-1})$, owing to (26). Obtained set of vectors can be used to build another set of independent vectors by a standard method, and turned into an orthonormal basis by making use of the Gram-Schmidt procedure. Completion of the span of such an orthonormal basis defines the Hilbert space $\mathcal{H} \subseteq L^2([-t_0,t_0] \times \mathbb{R}^{d-1})$. For more details: P. Małkiewicz and W. P., Class. Quantum Grav. **24** (2007) 915, 'Propagation of a string across the cosmological singularity'

Example: $L^2(\mathbb{R}^{d-1}) := \bigotimes_{k=1}^{d-1} L_k^2(\mathbb{R})$, where $L_k^2(\mathbb{R}) \equiv L^2(\mathbb{R})$, with the basis $f_n \in L^2(\mathbb{R})$ defined as

$$f_n(q) := \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} \exp(-q^2/2) H_n(q), \quad n = 0, 1, 2, \dots,$$
 (27)

where $H_n(q)$ is the Hermite polynomial.

The orthonormal basis (27) can be used to define a sequence of vectors $\bigotimes_{k=1}^{d-1} f_{n_k}(q^k) \in L^2(\mathbb{R}^{d-1})$, and further used to create a sequence of vectors in $\mathcal{H} = L^2([-t_0, t_0] \times \mathbb{R}^{d-1})$, owing to (26).

Obtained set of vectors can be used to build another set of independent vectors by a standard method, and turned into an orthonormal basis by making use of the Gram-Schmidt procedure. Completion of the span of such an orthonormal basis defines the Hilbert space $\mathcal{H} \subseteq L^2([-t_0, t_0] \times \mathbb{R}^{d-1})$. For more details: P. Małkiewicz and W. P., Class. Quantum Grav. **24** (2007) 915, 'Propagation of a string across the cosmological singularity'

Example: $L^2(\mathbb{R}^{d-1}) := \bigotimes_{k=1}^{d-1} L_k^2(\mathbb{R})$, where $L_k^2(\mathbb{R}) \equiv L^2(\mathbb{R})$, with the basis $f_n \in L^2(\mathbb{R})$ defined as

$$f_n(q) := \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} \exp(-q^2/2) H_n(q), \quad n = 0, 1, 2, \dots,$$
 (27)

where $H_n(q)$ is the Hermite polynomial.

The orthonormal basis (27) can be used to define a sequence of vectors $\bigotimes_{k=1}^{d-1} f_{n_k}(q^k) \in L^2(\mathbb{R}^{d-1})$, and further used to create a sequence of vectors in $\mathcal{H} = L^2([-t_0,t_0] \times \mathbb{R}^{d-1})$, owing to (26). Obtained set of vectors can be used to build another set of independent vectors by a standard method, and turned into an orthonormal basis by making use of the Gram-Schmidt procedure.

Completion of the span of such an orthonormal basis defines the Hilbert space $\mathcal{H} \subseteq L^2([-t_0,t_0] \times \mathbb{R}^{d-1})$. For more details: P. Małkiewicz and W. P., Class. Quantum Grav. **24** (2007) 915, 'Propagation of a string across the cosmological singularity'

Example: $L^2(\mathbb{R}^{d-1}) := \bigotimes_{k=1}^{d-1} L_k^2(\mathbb{R})$, where $L_k^2(\mathbb{R}) \equiv L^2(\mathbb{R})$, with the basis $f_n \in L^2(\mathbb{R})$ defined as

$$f_n(q) := \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} \exp(-q^2/2) H_n(q), \quad n = 0, 1, 2, \dots,$$
 (27)

where $H_n(q)$ is the Hermite polynomial.

The orthonormal basis (27) can be used to define a sequence of vectors $\bigotimes_{k=1}^{d-1} f_{n_k}(q^k) \in L^2(\mathbb{R}^{d-1})$, and further used to create a sequence of vectors in $\mathcal{H} = L^2([-t_0, t_0] \times \mathbb{R}^{d-1})$, owing to (26). Obtained set of vectors can be used to build another set of independent vectors by a standard method, and turned into an orthonormal basis by making use of the Gram-Schmidt procedure. Completion of the span of such an orthonormal basis defines the Hilbert space $\mathcal{H} \subseteq L^2([-t_0, t_0] \times \mathbb{R}^{d-1})$. For more details:

Example: $L^2(\mathbb{R}^{d-1}) := \bigotimes_{k=1}^{d-1} L_k^2(\mathbb{R})$, where $L_k^2(\mathbb{R}) \equiv L^2(\mathbb{R})$, with the basis $f_n \in L^2(\mathbb{R})$ defined as

$$f_n(q) := \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} \exp(-q^2/2) H_n(q), \quad n = 0, 1, 2, \dots,$$
 (27)

where $H_n(q)$ is the Hermite polynomial.

The orthonormal basis (27) can be used to define a sequence of vectors $\bigotimes_{k=1}^{d-1} f_{n_k}(q^k) \in L^2(\mathbb{R}^{d-1})$, and further used to create a sequence of vectors in $\mathcal{H} = L^2([-t_0, t_0] \times \mathbb{R}^{d-1})$, owing to (26). Obtained set of vectors can be used to build another set of independent vectors by a standard method, and turned into an orthonormal basis by making use of the Gram-Schmidt procedure. Completion of the span of such an orthonormal basis defines the Hilbert space $\mathcal{H} \subseteq L^2([-t_0, t_0] \times \mathbb{R}^{d-1})$. For more details: P. Małkiewicz and W. P., Class. Quantum Grav. 24 (2007) 915, 'Propagation of a string across the cosmological singularity'

Classical dynamics of a membrane

The physical phase space of a membrane (in the zero-mode, winding around the θ -dimension) is defined by the constraints

$$C = \Pi_{\mu}(\tau,\sigma) \, \Pi_{\nu}(\tau,\sigma) \, \eta^{\mu\nu} + \kappa^2 \, t^2(\tau,\sigma) \acute{X}^{\mu}(\tau,\sigma) \acute{X}^{\nu}(\tau,\sigma) \, \eta_{\mu\nu} \approx 0, \quad (28)$$

$$C_1 = \acute{X}^{\mu}(\tau, \sigma) \Pi_{\mu}(\tau, \sigma) \approx 0, \quad C_2 = 0,$$
 (29)

where $\dot{X}^{\mu} := \partial X^{\mu}/\partial \sigma$, $\sigma \equiv \sigma^1$, and where $\kappa \equiv \pi \mu_2$. For some states

$$\check{A} := \int_0^\pi d\sigma \ f(\sigma) A(\tau, \sigma), \quad f \in C_0^\infty[0, \pi]. \tag{30}$$

$$\{\check{A}, \check{B}\} := \int_0^{\pi} d\sigma \left(\frac{\partial \check{A}}{\partial X^{\mu}} \frac{\partial \check{B}}{\partial \Pi_{\mu}} - \frac{\partial \check{A}}{\partial \Pi_{\mu}} \frac{\partial \check{B}}{\partial X^{\mu}} \right) \tag{31}$$

Classical dynamics of a membrane

The physical phase space of a membrane (in the zero-mode, winding around the θ -dimension) is defined by the constraints

$$C = \Pi_{\mu}(\tau,\sigma) \, \Pi_{\nu}(\tau,\sigma) \, \eta^{\mu\nu} + \kappa^2 \, t^2(\tau,\sigma) \acute{X}^{\mu}(\tau,\sigma) \acute{X}^{\nu}(\tau,\sigma) \, \eta_{\mu\nu} \approx 0, \quad (28)$$

$$C_1 = \acute{X}^{\mu}(\tau, \sigma) \Pi_{\mu}(\tau, \sigma) \approx 0, \quad C_2 = 0,$$
 (29)

where $\dot{X}^{\mu} := \partial X^{\mu}/\partial \sigma$, $\sigma \equiv \sigma^{1}$, and where $\kappa \equiv \pi \mu_{2}$. For some states of a membrane the expressions for C and C_1 are well defined³.

$$\check{A} := \int_0^{\pi} d\sigma \ f(\sigma) A(\tau, \sigma), \quad f \in C_0^{\infty}[0, \pi].$$
 (30)

$$\{\check{A}, \check{B}\} := \int_0^{\pi} d\sigma \left(\frac{\partial \check{A}}{\partial X^{\mu}} \frac{\partial \check{B}}{\partial \Pi_{\mu}} - \frac{\partial \check{A}}{\partial \Pi_{\mu}} \frac{\partial \check{B}}{\partial X^{\mu}} \right) \tag{31}$$

³G. Niz and N. Turok, Phys. Rev. D **75** (2007) 026001

Classical dynamics of a membrane

The physical phase space of a membrane (in the zero-mode, winding around the θ -dimension) is defined by the constraints

$$C = \Pi_{\mu}(\tau,\sigma) \, \Pi_{\nu}(\tau,\sigma) \, \eta^{\mu\nu} + \kappa^2 \, t^2(\tau,\sigma) \acute{X}^{\mu}(\tau,\sigma) \acute{X}^{\nu}(\tau,\sigma) \, \eta_{\mu\nu} \approx 0, \quad (28)$$

$$C_1 = \acute{X}^{\mu}(\tau, \sigma) \Pi_{\mu}(\tau, \sigma) \approx 0, \quad C_2 = 0,$$
 (29)

where $X^{\mu} := \partial X^{\mu}/\partial \sigma$, $\sigma \equiv \sigma^{1}$, and where $\kappa \equiv \pi \mu_{2}$. For some states of a membrane the expressions for C and C_{1} are well defined³.

To examine the algebra of constraints we 'smear' the constraints as follows

$$\check{A} := \int_0^\pi d\sigma \ f(\sigma) A(\tau, \sigma), \quad f \in C_0^\infty[0, \pi]. \tag{30}$$

The Lie bracket is defined as

$$\{\check{A}, \check{B}\} := \int_0^{\pi} d\sigma \left(\frac{\partial \check{A}}{\partial X^{\mu}} \frac{\partial \check{B}}{\partial \Pi_{\mu}} - \frac{\partial \check{A}}{\partial \Pi_{\mu}} \frac{\partial \check{B}}{\partial X^{\mu}} \right) \tag{31}$$

³G. Niz and N. Turok, Phys. Rev. D **75** (2007) 026001 ← □ ▶ ← ■ ▶ ← ■ ▶ ◆ ■ ▶ ◆ ● ◆ ◆ ◆

Classical dynamics of a membrane (cont)

Constraints in an integral form satisfy the algebra

$$\{\check{C}(f_1), \check{C}(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) 4\kappa^2 t^2(\tau, \sigma) C_1(\tau, \sigma), \qquad (32)$$

$$\{\check{C}_1(f_1), \check{C}_1(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) C_1(\tau, \sigma),$$
 (33)

$$\{\check{C}(f_1), \check{C}_1(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) C(\tau, \sigma).$$
 (34)

Quantization of the dynamics of a membrane means finding an essentially self-adjoint representation of this algebra on a dense subspace of a Hilbert space.

However, the 'structure constant', t^2 , is not a constant, but a function on the phase space.

Little is known about representations of such type of an algebra!

Classical dynamics of a membrane (cont)

Constraints in an integral form satisfy the algebra

$$\{\check{C}(f_1), \check{C}(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) 4\kappa^2 t^2(\tau, \sigma) C_1(\tau, \sigma), \qquad (32)$$

$$\{\check{C}_{1}(f_{1}), \check{C}_{1}(f_{2})\} = \int_{0}^{\pi} d\sigma \, (f_{1} f_{2} - f_{1} f_{2}) C_{1}(\tau, \sigma), \tag{33}$$

$$\{\check{C}(f_1), \check{C}_1(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) C(\tau, \sigma).$$
 (34)

Quantization of the dynamics of a membrane means finding an essentially self-adjoint representation of this algebra on a dense subspace of a Hilbert space.

However, the 'structure constant', t^2 , is not a constant, but a function on the phase space.

Little is known about representations of such type of an algebra!

Classical dynamics of a membrane (cont)

Constraints in an integral form satisfy the algebra

$$\{\check{C}(f_1), \check{C}(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) 4\kappa^2 t^2(\tau, \sigma) C_1(\tau, \sigma), \qquad (32)$$

$$\{\check{C}_1(f_1), \check{C}_1(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) C_1(\tau, \sigma),$$
 (33)

$$\{\check{C}(f_1), \check{C}_1(f_2)\} = \int_0^{\pi} d\sigma \, (f_1 f_2 - f_1 f_2) C(\tau, \sigma).$$
 (34)

Quantization of the dynamics of a membrane means finding an essentially self-adjoint representation of this algebra on a dense subspace of a Hilbert space.

However, the 'structure constant', t^2 , is not a constant, but a function on the phase space.

Little is known about representations of such type of an algebra!

- classical dynamics of a particle can be quantized despite the fact that it is unstable
- dynamics of a string in the zero-mode of winding string is well defined both at classical and quantum levels
- quantizing dynamics of a membrane appears to be a challenge
- compactified Milne space seems to be a promising model of the neighborhood of the cosmological singularity deserving further investigations.

- classical dynamics of a particle can be quantized despite the fact that it is unstable
- dynamics of a string in the zero-mode of winding string is well defined both at classical and quantum levels
- quantizing dynamics of a membrane appears to be a challenge
- compactified Milne space seems to be a promising model of the neighborhood of the cosmological singularity deserving further investigations.

- classical dynamics of a particle can be quantized despite the fact that it is unstable
- dynamics of a string in the zero-mode of winding string is well defined both at classical and quantum levels
- quantizing dynamics of a membrane appears to be a challenge
- compactified Milne space seems to be a promising model of the neighborhood of the cosmological singularity deserving further investigations.

- classical dynamics of a particle can be quantized despite the fact that it is unstable
- dynamics of a string in the zero-mode of winding string is well defined both at classical and quantum levels
- quantizing dynamics of a membrane appears to be a challenge
- compactified Milne space seems to be a promising model of the neighborhood of the cosmological singularity deserving further investigations.

- quantization of a string taking into account
 - non-zero modes of the winding string
 - possible modification of the singularity by a string
- quantization of dynamics of a membrane
- obtaining classical phase from quantum phase and vice versa
- quantization of CM space (by making use of LQG methods): big-crunch / big-bang (change of spacetime dimension) or big-bounce (no change of dimensionality of spacetime), or
 Big-Crunch (destruction of spacetime)
 - Big-Crunch (destruction of spacetime)
- making predictions for the CMB polarization spectra: tensor-to-scalar ratio and spectral index of the scalar perturbations, to compare with cosmological observations to be done by Planck, BPol, Spider and Polatron missions.

- quantization of a string taking into account
 - non-zero modes of the winding string
 - possible modification of the singularity by a string
- quantization of dynamics of a membrane
- obtaining classical phase from quantum phase and vice versa
- quantization of CM space (by making use of LQG methods): big-crunch / big-bang (change of spacetime dimension) or big-bounce (no change of dimensionality of spacetime), or
 Big-Crunch (destruction of spacetime)
 - Big-Crunch (destruction of spacetime)
- making predictions for the CMB polarization spectra: tensor-to-scalar ratio and spectral index of the scalar perturbations, to compare with cosmological observations to be done by Planck, BPol, Spider and Polatron missions.

- quantization of a string taking into account
 - non-zero modes of the winding string
 - possible modification of the singularity by a string
- quantization of dynamics of a membrane
- obtaining classical phase from quantum phase and vice versa
- quantization of CM space (by making use of LQG methods): big-crunch / big-bang (change of spacetime dimension) or big-bounce (no change of dimensionality of spacetime), or Big-Crunch (destruction of spacetime)
- making predictions for the CMB polarization spectra: tensor-to-scalar ratio and spectral index of the scalar perturbations, to compare with cosmological observations to be done by Planck, BPol, Spider and Polatron missions.

- quantization of a string taking into account
 - non-zero modes of the winding string
 - possible modification of the singularity by a string
- quantization of dynamics of a membrane
- obtaining classical phase from quantum phase and vice versa
- quantization of CM space (by making use of LQG methods): big-crunch / big-bang (change of spacetime dimension) or
 - big-bounce (no change of dimensionality of spacetime), or
 - Big-Crunch (destruction of spacetime)
- making predictions for the CMB polarization spectra: tensor-to-scalar ratio and spectral index of the scalar perturbations, to compare with cosmological observations to be done by Planck, BPol, Spider and Polatron missions.

- quantization of a string taking into account
 - non-zero modes of the winding string
 - possible modification of the singularity by a string
- quantization of dynamics of a membrane
- obtaining classical phase from quantum phase and vice versa
- quantization of CM space (by making use of LQG methods): big-crunch / big-bang (change of spacetime dimension) or
 - big-bounce (no change of dimensionality of spacetime), or
 - Big-Crunch (destruction of spacetime)
- making predictions for the CMB polarization spectra: tensor-to-scalar ratio and spectral index of the scalar perturbations, to compare with cosmological observations to be done by Planck, BPol, Spider and Polatron missions.

