
Transition of an extended object
across

the cosmological singularity

Włodzimierz Piechocki

Department of Theoretical Physics
Sołtan Institute for Nuclear Studies

Warsaw, Poland

Based on collaboration with

Ewa Czuchry and Przemysław Małkiewicz

Włodzimierz Piechocki (SINS) Transition of an extended object across the cosmological singularity47th CSTP, June 14-22, 2007 1 / 22



Outline

1 Introduction

2 Model of universe with cosmic singularity

3 Classical dynamics of p-brane

4 Dynamics of a particle (0-brane)

5 Dynamics of a string (1-brane)
Classical dynamics of a string
Quantum dynamics of a string

6 Dynamics of a membrane (2-brane)

7 Conclusions
Summary
Next steps

Włodzimierz Piechocki (SINS) Transition of an extended object across the cosmological singularity47th CSTP, June 14-22, 2007 2 / 22



Introduction
Motivation:
Finding general theoretical framework that can be used
to describe possibly all available cosmological data.
Assumptions:

evolution of the universe includes at least one quantum phase
and two classical phases
quantum phase can be described in terms of quantum p-branes
propagating in higher dimensional (d > 4) spacetime
with the cosmic singularity
the cosmic singularity consists of pre-singularity
and post-singularity epochs
classical phase can be obtained from the quantum phase
by changing topology of its spacetime, and vice versa

Remark:
We address, to some extent, the question of mathematical consistency
of a cyclic universe scenario.
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Introduction (cont)

Restriction of considerations to the neighborhood
of the cosmological singularity
Basic criterion for the choice of the model of universe
in the quantum phase:
Reasonable model should allow for propagation of quantum
p-brane (i.e., particle, string, membrane,...) from pre-singularity
to post-singularity epoch.
If quantum p-brane cannot go through the cosmic singularity,
the evolution cannot be realized.
Model of the universe in the quantum phase:
compactified Milne space - the simplest model of universe
with the cosmic singularity that is implied by string/M theory
(the simplest example of time dependent singular orbifold)
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Compactified Milne space

Isometric embedding of 2d compactified
Milne space into 3d Minkowski space

y0(t , θ) = t
√

1 + r2, r ∈ R1

y1(t , θ) = rt sin(θ/r), y2(t , θ) = rt cos(θ/r)

r2

1 + r2 (y0)2 − (y1)2 − (y2)2 = 0

Induced metric (for t 6= 0)

ds2 = −dt2 + t2dθ2, (t , θ) ∈ R1 × S1

Local isometry with 2d Minkowski space (for t 6= 0)

ds2 = −(dx0)2 + (dx1)2, x0 := t cosh θ, x1 := t sinh θ
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Compactified Milne space (cont)
Metric of the compactified Milne, CM, space

ds2 = −dt2 + dxkdxk + t2dθ2, (t , xk ) ∈ R1 × Rd−1, θ ∈ S1

One term in metric disappears/appears at t = 0 ⇒ CM space
may be used to model big-crunch/big-bang type singularity
Other properties of the CM space:

I not manifold, but orbifold due to the vertex at t = 0
I Riemann’s tensor components equal 0 for t 6= 0
I singularity at t = 0 of removable type: any time-like geodesic with

t < 0 can be extended to some time-like geodesic with t > 0
I extension cannot be unique due to the Cauchy problem at t = 0

for the geodesic equation (compact dimension shrinks away and
reappears at t = 0)

Orbifolding S1 to the segment S1/Z2 gives the model
of two flat parallel “end of the world” branes1 which collide
and re-emerge at t = 0

1J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok,
Phys. Rev. D 65(2002)086007
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Classical dynamics of p-brane

The Polyakov action integral for test p-brane embedded in fixed
background spacetime with metric gµ̃ν̃ reads

Sp = −1
2
µp

∫
dp+1σ

√
−γ

[
γab∂aX µ̃∂bX ν̃gµ̃ν̃ − p + 1

]
, (1)

where
µp is mass per unit p-volume,
(σa) ≡ (σ0, σ1, . . . , σp) are p-brane worldvolume coordinates,
γab is p-brane worldvolume metric, γ := det [γab],
(X µ̃) ≡ (Xµ,Θ) ≡ (T ,X k ,Θ) ≡ (T ,X 1, . . . ,X d−1,Θ) are embedding
functions of p-brane, i.e. X µ̃ = X µ̃(σ0, . . . , σp),
corresponding to (t , x1, . . . , xd−1, θ) directions od d + 1 dimensional
background spacetime.
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Classical dynamics of p-brane (cont)

Total Hamiltonian, HT , corresponding to the Polyakov action2

HT =

∫
dpσHT , (2)

HT := AC + AiCi , i = 1, . . . ,p (3)

where A = A(σa) and Ai = Ai(σa) are any ‘regular’ functions,
and C and Ci are first-class constraints

C := Πµ̃Πν̃gµ̃ν̃ + µ2
p det [∂aX µ̃∂bX ν̃gµ̃ν̃ ] ≈ 0, (4)

Ci := ∂iX µ̃Πµ̃ ≈ 0. (5)

HT does not generate time translations, but gauge transformations!

2N. Turok, M. Perry and P. J. Steinhardt, Phys. Rev. D 70 (2004) 106004
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Classical dynamics of p-brane (cont)
Hamilton’s equations

Ẋ µ̃ ≡ ∂X µ̃

∂τ
= {X µ̃,HT}, Π̇µ̃ ≡

∂Πµ̃

∂τ
= {Πµ̃,HT}, τ ≡ σ0, (6)

where
{·, ·} :=

∫
dpσ

( ∂·
∂X µ̃

∂·
∂Πµ̃

− ∂·
∂Πµ̃

∂·
∂X µ̃

)
. (7)

Degrees of freedom
nc =: 2np = 2(d − p),

where
nc , number of independent canonical variables,
np, number of physical degrees of freedom,
d + 1, dimension of spacetime,
p + 1, number of constraints,
p, dimension of p-brane
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Propagation of a particle

Classical dynamics of a test particle in the CM space is unstable,
however it can be quantized, i.e. there exists mathematically well
defined quantum dynamics of a particle. For details see:

P. Małkiewicz and WP, Class. Quantum Grav. 23 (2006) 2963,
“A simple model of big-crunch / big-bang transition”
P. Małkiewicz and WP, Class. Quantum Grav. 23 (2006) 7045,
“Probing the cosmological singularity with a particle”
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Propagation of a string
Dynamics of a string winding around the θ-dimension in its lowest
energy mode:
The string in such a state is defined by the conditions

σp := θ ≡ Θ and ∂θXµ = 0 = ∂θΠµ. (8)

In the mode (8) the constraints read

C = Πµ(τ) Πν(τ) η
µν + µ̌2

1 t2(τ) ≈ 0, C1 = 0, (9)

where µ̌1 ≡ θ0µ1, and where θ0 = 2π for S1 and θ0 = π for S1/Z2
compactifications, respectively.
The equations of motion are

Π̇t(τ) = −2A(τ) µ̌2
1 T (τ), Π̇k (τ) = 0, (10)

Ṫ (τ) = −2A(τ) Πt(τ), Ẋ k (τ) = 2A(τ) Πk (τ), (11)

where A = A(τ) is any function.
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Propagation of string (cont)

In the gauge A(τ) = 1, the solutions are

Πt(τ) = b1 exp(2µ̌1τ) + b2 exp(−2µ̌1τ), Πk (τ) = Π0k , (12)

T (τ) = a1 exp(2µ̌1τ) + a2 exp(−2µ̌1τ), X k (τ) = X k
0 + 2Π0k τ, (13)

where b1,b2,Π0k ,a1,a2,X k
0 ∈ R.

Elimination of τ leads finally to

X k (t) = X k
0 +

Πk
0
µ̌1

sinh−1
( µ̌1√

Πk
0Π0k

t
)
. (14)

where t(τ) ≡ T (τ) plays the role of an evolution parameter.
The solution (14) is smooth at t = 0, and describes stable propagation
of a string across the cosmic singularity.
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Quantum string in the winding mode
In the gauge A = 1, the Hamiltonian of a string is

HT = C = Πµ(τ) Πν(τ) η
µν + µ̌2

1 t2. (15)

The quantum Hamiltonian corresponding to (15) has the form
(we use the Laplace-Beltrami mapping)

ĤT =
∂2

∂t2 −
∂2

∂X k∂Xk
+ µ̌2

1t2, t ≡ T . (16)

According to Dirac’s quantization method physical states ψ
should satisfy the equation

ĤT ψ(t ,X k ) = 0. (17)

Eq. (17) has the form of the Klein-Gordon equation. Due to this
analogy we interpret t as an evolution parameter in our quantum
description.
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analogy we interpret t as an evolution parameter in our quantum
description.
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Quantum string (cont)

To solve (17) we make the substitution

ψ(t ,X 1, . . . ,X d−1) = F (t) G1(X 1) G2(X 2) · · ·Gd−1(X d−1), (18)

which turns (17) into the following set of equations

d2Gk (qk ,Xk )

dX 2
k

+ q2
k Gk (qk ,Xk ) = 0, k = 1, . . . ,d − 1, (19)

d2F (q, t)
dt2 + (µ̌2

1t2 + q2) F (q, t) = 0, q2 := q2
1 + . . .+ q2

d−1, (20)

where q2
k ,q

2 ∈ R are the separation constants.
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Quantum string (cont)

Two independent solutions to (19) have the form

G1k (qk ,Xk ) = cos(qkX k ), G2k (qk ,Xk ) = sin(qkX k ) (21)

(no summation in qkX k with respect to k ).
Two independent solutions of (20) read

F̃1(q, t) = exp (−iµ̌1t2/2) H
(
− µ̌1 + iq2

2µ̌1
, (−1)1/4

√
µ̌1 t

)
, (22)

F2(q, t) = exp (−iµ̌1t2/2) 1F1

( µ̌1 + iq2

4µ̌1
,
1
2
, iµ̌1t2

)
, (23)

where H(a, t) is the Hermite function and 1F1(a,b, t) denotes the
Kummer function.
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Quantum string (cont)
Construction of the Hilbert space, H, based on the solutions (21)-(23):
Step 1 The method works if the solutions are bounded functions
on R× [−t0, t0]. The function F2(q, t) is bounded, whereas F̃1(q, t)
blows up as |q| → ∞. Replacement:

F1(q, t) :=
√

q exp (− π

8µ̌1
q2) F̃1(q, t). (24)

Example of two independent
bounded solutions to Eq.(20),
for q = 1 , on [−t0, t0].
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Quantum string (cont)

Step 2 We introduce generalized solutions by

hs(t , ~X ) :=

∫
Rd−1

f (q1, . . . ,qd−1) Fs(q, t)
∏

k

exp(−iqkX k ) dq1 . . .dqd−1,

(25)
where f ∈ L2(Rd−1), s = 1,2
and where q2 = q2

1 + . . .q2
d−1, (~X ) ≡ (X 1, . . . ,X d−1).

Eq.(25) includes (21) due to the term exp(−iqkX k ), with qk ∈ R.
One has ĤT hs = 0.
Step 3 Eq.(25) defines the Fourier transform of the product f Fs.
Thus, due to the Fourier transform theory it defines the mapping

L2(Rd−1) 3 f −→ hs ∈ L2([−t0, t0]× Rd−1). (26)

Replacing f by consecutive elements of a basis in L2(Rd−1) creates,
roughly speaking, a basis in the Hilbert space H ⊆ L2([−t0, t0]×Rd−1).
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Quantum string (cont)
Example: L2(Rd−1) :=

⊗d−1
k=1 L2

k (R), where L2
k (R) ≡ L2(R),

with the basis fn ∈ L2(R) defined as

fn(q) :=
1√

2nn!
√
π

exp(−q2/2) Hn(q), n = 0,1,2, . . . , (27)

where Hn(q) is the Hermite polynomial.
The orthonormal basis (27) can be used to define a sequence of
vectors

⊗d−1
k=1 fnk (q

k ) ∈ L2(Rd−1), and further used to create a
sequence of vectors in H = L2([−t0, t0]× Rd−1), owing to (26).
Obtained set of vectors can be used to build another set of
independent vectors by a standard method, and turned into an
orthonormal basis by making use of the Gram-Schmidt procedure.
Completion of the span of such an orthonormal basis defines
the Hilbert space H ⊆ L2([−t0, t0]× Rd−1). For more details:
P. Małkiewicz and W. P., Class. Quantum Grav. 24 (2007) 915,
‘Propagation of a string across the cosmological singularity’
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Classical dynamics of a membrane
The physical phase space of a membrane (in the zero-mode, winding
around the θ-dimension) is defined by the constraints

C = Πµ(τ, σ) Πν(τ, σ) ηµν + κ2 t2(τ, σ)X́µ(τ, σ)X́ ν(τ, σ) ηµν ≈ 0, (28)

C1 = X́µ(τ, σ) Πµ(τ, σ) ≈ 0, C2 = 0, (29)

where X́µ := ∂Xµ/∂σ , σ ≡ σ1, and where κ ≡ πµ2. For some states
of a membrane the expressions for C and C1 are well defined3.
To examine the algebra of constraints we ‘smear’ the constraints
as follows

Ǎ :=

∫ π

0
dσ f (σ)A(τ, σ), f ∈ C∞0 [0, π]. (30)

The Lie bracket is defined as

{Ǎ, B̌} :=

∫ π

0
dσ

( ∂Ǎ
∂Xµ

∂B̌
∂Πµ

− ∂Ǎ
∂Πµ

∂B̌
∂Xµ

)
(31)

3G. Niz and N. Turok, Phys. Rev. D 75 (2007) 026001
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Classical dynamics of a membrane (cont)

Constraints in an integral form satisfy the algebra

{Č(f1), Č(f2)} =

∫ π

0
dσ (f1 f́2 − f́1f2)4κ2t2(τ, σ)C1(τ, σ), (32)

{Č1(f1), Č1(f2)} =

∫ π

0
dσ (f1 f́2 − f́1f2)C1(τ, σ), (33)

{Č(f1), Č1(f2)} =

∫ π

0
dσ (f1 f́2 − f́1f2)C(τ, σ). (34)

Quantization of the dynamics of a membrane means finding
an essentially self-adjoint representation of this algebra on a dense
subspace of a Hilbert space.
However, the ‘structure constant’, t2, is not a constant, but a function
on the phase space.
Little is known about representations of such type of an algebra!
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Summary

classical dynamics of a particle can be quantized despite
the fact that it is unstable
dynamics of a string in the zero-mode of winding string
is well defined both at classical and quantum levels
quantizing dynamics of a membrane appears to be a challenge
compactified Milne space seems to be a promising model
of the neighborhood of the cosmological singularity deserving
further investigations.
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Next steps
quantization of a string taking into account

I non-zero modes of the winding string
I possible modification of the singularity by a string

quantization of dynamics of a membrane
obtaining classical phase from quantum phase
and vice versa
quantization of CM space (by making use of LQG methods):
big-crunch / big-bang (change of spacetime dimension)
or
big-bounce (no change of dimensionality of spacetime),
or
Big-Crunch (destruction of spacetime)
making predictions for the CMB polarization spectra:
tensor-to-scalar ratio and spectral index of the scalar
perturbations, to compare with cosmological observations
to be done by Planck, BPol, Spider and Polatron missions.
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