From Quark-Gluon Plasma to the Perfect Liquid

Berndt Mueller – *Duke University*

Krakow School of Theoretical Physics Zakopane, 14-22 June 2007

Part I

Quark-Gluon Plasma

Matter at extreme conditions

- Squeeze slowly \rightarrow Cold, dense matter
- Squeeze fast \rightarrow Hot, "dense" matter

(1) is much more difficult to do than (2): Cold matter beyond nuclear matter density ($\rho_B > \rho_0 = 0.15$ fm⁻³) exists only in the core of collapsed (neutron) stars.

(2) Happened once: t < 20 μ s after inflation. Can also be achieved by colliding nuclei at high energy. 30 years of history: Bevalac, AGS, SPS, RHIC \rightarrow LHC. Goal: energy density $\epsilon \gg M_N \rho_0 = 0.14 \text{ GeV/fm}^3$.

Quantum chromodynamics

Cosmic Connection

Degrees of freedom

At extreme (energy) density, particle masses can be neglected relative to the kinetic energy:

$$\varepsilon = v \bigwedge_{(2\pi)^3} \frac{\delta^3 \pi}{\varepsilon^{E/T} \pm 1} \quad \text{orm} \quad E = \sqrt{\pi^2 + \mu^2}$$

$$\varepsilon = v \frac{\pi^2}{30} a T^4 \quad \text{with} \quad a = \begin{cases} \epsilon^{7/8} \text{(fermions)} \\ 1 \text{ (bosons)} \end{cases}$$
Quarks: $v = 2 \times 2 \times N_C \times N_F = 12N_F$
Gluons: $v = 2 \times (N_C^2 - 1) = 16$

Hadrons or partons?

If QCD had N_F light quark flavors, there would be (N_F^2-1) nearly massless Goldstone bosons ("pions"):

$$v_{\pi} = N_F^2 - 1$$

For large N_F the pions win out over quarks, but for N_F =3 the quarks and gluons win out:

 \rightarrow at high *T* matter is composed of a colored plasma of quarks and gluons, not of hadrons!

QCD phase diagram

From hadrons to QGP

Crossover of phases

Susceptibilities peak at T_c , but do not diverge. Vacuum properties change smoothly, but rapidly \rightarrow "crossover"

Aokietal (Nature 2006)

A fuzzy transition?

Quasi-particles in the QGP

Physical excitation modes at high *T* are not elementary quarks and gluons, but "dressed" quarks and gluons:

Propagator of transversely polarized gluons

$$D(k,\omega)^{-1} = \omega^2 - k^2 - \frac{1}{2}(gT)^2 \left[e^{1} - \frac{1}{2} \left(\frac{\omega}{k} - \frac{k}{\omega} \right) \ln \frac{\omega + k}{\omega - k} \right]$$

 \rightarrow Effective mass of gluon:

$$m_G^* \mid n \to 0' \to \frac{1}{\sqrt{2}} gT$$

 $m_G^* \mid H \to H \to \frac{1}{\sqrt{3}} gT$

Lattice - susceptibilities

$$\chi_{XY} = \frac{\partial^2}{\partial \mu_X \partial \mu_Y} \ln Z(T, \mu_i) = \langle XY \rangle - \langle X \rangle \langle Y \rangle$$
$$\langle XS \rangle \approx \int_i^i x_i s_i n_i$$

 $C_{XS} = \# \frac{\langle XS \rangle - \langle X \rangle \langle S \rangle}{\langle S^2 \rangle - \langle S \rangle^2}$

Color screening

Static color charge (heavy quark) generates screened potential

$$\phi^a = t^a \frac{\alpha_s}{r} e^{-\mu r} -$$

$$-\mathbf{\acute{N}}^{2}\boldsymbol{\phi}^{a} = g\boldsymbol{\rho}_{G}^{a}(\boldsymbol{\phi}^{b}) + g\boldsymbol{\rho}_{Q}^{a}(\boldsymbol{\phi}^{b})$$

Induced color density $\rho^a = -\mu^2 \phi^a$

with
$$\mu_G^2 = (gT)^2$$
, $\mu_Q^2 = \frac{N_F}{6} (gT)^2$

14

Plasma two-stream instability

Turbulent color fields

Length (z)

Quark masses

QCD m ass disappears above T_c : (partial) chiral sym m etry restoration

The QCD EoS (at μ =0)

The precise value of T_c is still under debate:

 $T_c = 170 \pm 20$ MeV with 20 - 30 MeV width.

EoS near T_c is far from ideal ultrarelativistic gas! Sound velocity $c_s^2 = \partial P/\partial \epsilon << 1/3$.

Into the T- μ_B plane

Is there a phase transition?

A triple point ?

Fodoretalhep-ht/0701022

