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Introduction

B Spherical steady accretion: Bondi (1952), Michel (1972) Hefliects of
selfgravitation are neglected.

B Selfgravity in spherical accretion — simple but nontriviabdels, an
illustration of what selfgravitation can change in the enpicture.

B Karkowski, Kinasiewicz, Mach, MaleGwierczyhski (2006), Kinasiewicz,
Mach, Malec (2006).
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Basics

B Spherical symmetry:
ds’ = —N(t, r)’dt® + a(t, r)dr? + R(t,r)* (d6” + sin? dg?).

B Mean Cauchy curvature of two-sphetes const,r = const

20,R
RVa

Energy-momentum tensor of the perfect fluid

k =trK’ =

T=(p+o)u®u+ pg.

B Comoving gaugeu, = Uy = U, = 0.
B Define functions

OR e 2
U= W, m(R) = Mot — A7 dR'R 0.
R
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Basics

We search for a steady flow:

B Accretion rate
m = (0 — (6:R)GR)M(R)

for a givenR should be constant in time.

B The fluid velocityU, energy density, sound speed (a2 = dp/do) etc. are
constant at a giveR, i.e.

(0 — (0:R)IR)X = 0,

whereX = U, o, 4q, ...
B Boundary conditions|U.| < M(R,)/R. < a..
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Basics

Equations for the steady flow:
B | apse equation

“ (p+o)dR
N = kooRoo’B(R) ,B(R)_exp( 167rf 2R )

B Integrated continuity equation

A

U=—,
R2n

whereA is an integration constant amdhe baryonic density (divl) = 0).
General equations:

2m(R B
szz\/1— m )+U2, 8Rm=47rR2Q and N = k ,
R P+o

whereB stands for another integration constatnt.
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Equation of state

Assume polytopic equation of state of the form
p=Ko', 1<I'<5/3

or
p=Kn', 1<I'<5/3

Many estimates can be obtained also for general barotrdpieie= p(o) = p(o(n)).
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Sonic point

The sonic point is defined as a location where

1
U| = =kRa.
|U| >

Precise information about parameters of the sonic poinpcavide other important

characteristics of the accretion.
In test fluid approximation (Michel's model), i.e., when

At f dR'R?0 < m
R>2m

with p = Kn!, there exist precisely one sonic point, and

1
a? = 5{61"—7+2(31“—2)cos

1
%+ Zarcco (54F3 +

1
33 E{2(3r )%

35112 — 558 + 486( — 1)a2 — 243" — 259)}]}.
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Sonic point

This, in turn, allows us to write

m = -47NRPU(o+ p) = —47AB =
3 1
S 1+3a2\2(a2T-1-a%\™t
- Tr-i-a e ) \@r-1-@)

This result can be used to estimatalso for more general barotropic EOS.
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Selfgravitating vs. test-fluid flow

B Consider two models with the same politropic E@PS Ko' and asymptotic
datap.., a., and|U.| <« m(R.,)/R. < a,: one computed assuming
selfgravitation of the fluid and another in test-fluid appneation. For these 2
models the following sonic point parameteas; U2 andm(R.)/R. can be
shown to be respectively the same.

B The accretion rate fliers! One can show, that(R,) = Mt — Y0, I.e. M(R,)
IS, for a fixed total massy, a linear function op.,.

One can also show that the following formula holds

2 —1 2
i = —4rm(R.)%0., m(% U (%) (1+ %)

Here the whole dependence @n is contained im(R,)%o... It follows that
the maximum oim exists form(R,) = 2my;/3 andm(R,) — O for 0., — 0 and
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Examples

Numerical solutions for polytropic EOS of both typpso and p—n agree with above
considerations.

1610 F—T—T a1 EOS:p = Kn'. Models with
14.107}F . ° I = 1.4, a% = 0.1 and diferent
1.2-10 | L e - N .
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Examples
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Mhyid /Mot
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Same as before. Hereyiq =
Mot — Mep & Mgt — M(R.).
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Examples
20-10°%7 I, : Boundary conditions:
- R. = 10"
15.107 F i i d N, = 0.1- 10_18,
az, = 0.1,
I'=14.
~ 1.0-10Y7 F -

50-1018

0.0-10°
0

Sonic point parameterf, = 2.318 a2 = 0.15116 |U,| = 0.3225 m(R,)/ Myt =
0.4814 Horizon: Rgy = 0.9627, myiq /Mot = 0.5186
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Examples

- - Boundary conditions:
1 R.=10%

- N = 0.1-10718,

] az, = 0.1,

=14

U]

4 5 6

Sonic point parameterf, = 2.318 a2 = 0.15116 |U,| = 0.3225 m(R,)/ Myt =
0.4814 Horizon: Rgy = 0.9627, myiq /Mot = 0.5186
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Examples
0.35 - Boundary conditions:
R, = 107,
9% 1 n.=01-107%,
az, = 0.1,
0.25 1 I'=14.
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Sonic point parameterf, = 2.318 a2 = 0.15116 |U,| = 0.3225 m(R,)/ Myt =
0.4814 Horizon: Rgy = 0.9627, myiq /Mot = 0.5186
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Stability of selfgravitating fluids

B Newtonian case (simplicity).

Lagrangian approach.

B Stability of Bondi accretion has been analized by BalasZ2).9Correct but
iInconclusive approach — too stringent understanding ohtitesn of
linearized stability.

B Using Lagrangian variables one can reproduce the Euletadnilisy result
obtained for non selfgravitating fluids by Moncrief (1980).
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Stability of selfgravitating fluids

B Equations:

B orp mM(R)
8U +UdRU = Q =
atQ = _QGR (RZQU)

B Introduce/(r,t) = AR(r,t) — deviation from the particle position in the
unperturbed flow.

Perturbation of velocityAU = dF = (6; + UdR)<.

Perturbation of density (follows frolmdm(R(r = const))= 0 or continuity
equation)

2
Ao = —Q(é +0R§)-
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Stability of selfgravitating fluids

B Main equation:

2 2m(R){ 2\\ X
(6r) ¢ = e QaR( (aRg+ E))_ EaRp.

B Standard way (Balazs): try to find solutions of the form
C(R(r),t) = explwt)(R(r)), wherew? is positive and modulug(R(r)) is time
independent. This cannot be done!

B Instead, define the energy

1 1 2
— fvdvg(é(é)t{)z + é(aRg)Z (a2 — )+ % (a — g — Roga ))

whereV is an annulus betwedR. andR.,.

Cracow School of Theoretical Physics — p.17



Stability of selfgravitating fluids

B |s this energy positive?
B One can show that

E-E- [4:ng Q(a - ﬂ)rm

2R
where
E:}de(X2+Y2)—2ﬂde§2Q2
2 V V
and
X = \/Eaté’
2a°R—m
— 2 _
Y = \/_(RZ §+ Va 6R§)

B E may be negative due to the last term appearing in the selfgtiag case.
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Stability of selfgravitating fluids

B \We computejE to get

oim(R)
_ 271
OE = fv dve2 == +

+ 4r|Ro(aors (82 - U?) - U (atg)z)]z’" |

B One can show that the boundary terms are negative definiexgi£g of
perturbations cannot grow for critical flow. Unstable babavis still
possible as is not necessarily positive.

B For test fluids

E:E:%fvdV(X2+YZ)

IS positive andE < 0. This excludes exponential growth XfY and
long-term exponential growth of linear modg&sThe modulug/(R)| may
depend on time.
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Stability of Selfgravitating fluids

B The absence of exponentially growing linear modes doesurntagtee that
the perturbed solution will be always close to backgrouridtsm.

B This kind of stability means that the evolving perturbas@an be bounded
by initial solutions in a suitable sense.

B The linear instability means that the “strength” of the evwad perturbation
does not depend on the “strength” of the initial perturbatiather than the
perturbation grows infinitely.

Generalisation onto general-relativistic case is possibl
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Summary

B Spherical accretion provides a simple playground in whiod can observe
different éfects caused by selfgravity of the accreting fluid.

B Many properties of those solutions can by obtained by aicalytneans.

B Steady, selfgravitating solutions are relatively easye@btained numerically
(oridinary dfferential equations) and can serve as tests for more saatedi
numerical schemes.

B The stability of the selfgravitating solutions needs tomeestigated carefully.
Many issues (e.g. stability of subsonic accretion flows)a®nunclear.
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