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Introduction

� Spherical steady accretion: Bondi (1952), Michel (1972) — all effects of
selfgravitation are neglected.

� Selfgravity in spherical accretion — simple but nontrivialmodels, an
illustration of what selfgravitation can change in the entire picture.

� Karkowski, Kinasiewicz, Mach, Malec,́Swierczýnski (2006), Kinasiewicz,
Mach, Malec (2006).
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Basics

� Spherical symmetry:

ds2
= −N(t, r)2dt2

+ α(t, r)dr2
+ R(t, r)2

(

dθ2 + sin2 dφ2
)

.

� Mean Cauchy curvature of two-spherest = const,r = const

k = trK′ =
2∂rR

R
√
α
.

� Energy-momentum tensor of the perfect fluid

T = (p + ̺)u ⊗ u + pg.

� Comoving gauge:ur = uθ = uφ = 0.

� Define functions

U =
∂tR
N
, m(R) = mtot − 4π

∫ R∞

R
dR′R′2̺.
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Basics

We search for a steady flow:

� Accretion rate
ṁ = (∂t − (∂tR)∂R)m(R)

for a givenR should be constant in time.

� The fluid velocityU, energy density̺ , sound speeda (a2
= dp/d̺) etc. are

constant at a givenR, i.e.

(∂t − (∂tR)∂R)X = 0,

whereX = U, ̺, a, . . .

� Boundary conditions:|U∞| ≪ m(R∞)/R∞ ≪ a∞.
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Basics

Equations for the steady flow:

� Lapse equation

N =
kR

k∞R∞
β(R), β(R) = exp

(

−16π
∫ R∞

R

(p + ̺)dR′

k2R′

)

.

� Integrated continuity equation

U =
A

R2n
,

whereA is an integration constant andn the baryonic density (div(nu) = 0).

General equations:

Rk = 2

√

1−
2m(R)

R
+ U2, ∂Rm = 4πR2̺ and N =

Bn
p + ̺

,

whereB stands for another integration constatnt.
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Equation of state

Assume polytopic equation of state of the form

p = K̺Γ, 1 < Γ 6 5/3

or
p = KnΓ, 1 < Γ 6 5/3.

Many estimates can be obtained also for general barotropic EOS p = p(̺) = p(̺(n)).

Cracow School of Theoretical Physics – p.6



Sonic point

The sonic point is defined as a location where

|U | =
1
2

kRa.

Precise information about parameters of the sonic point canprovide other important
characteristics of the accretion.
In test fluid approximation (Michel’s model), i.e., when

4π
∫

R>2m
dR′R′2̺ ≪ m

with p = KnΓ, there exist precisely one sonic point, and

a2
∗ =

1
9
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Sonic point

This, in turn, allows us to write

ṁ = −4πNR2U(̺ + p) = −4πAB =

= πn∞m2 Γ − 1
Γ − 1− a2

∞

(

1+ 3a2
∗

a2
∗

)
3
2
(

a2
∗

a2
∞

Γ − 1− a2
∞

Γ − 1− a2
∗

)
1
Γ−1

.

This result can be used to estimate ˙m also for more general barotropic EOS.
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Selfgravitating vs. test-fluid flow

� Consider two models with the same politropic EOSp = K̺Γ and asymptotic
data̺∞, a∞ and|U∞| ≪ m(R∞)/R∞ ≪ a∞: one computed assuming
selfgravitation of the fluid and another in test-fluid approximation. For these 2
models the following sonic point parameters:a2

∗, U2
∗ andm(R∗)/R∗ can be

shown to be respectively the same.

� The accretion rate differs! One can show, thatm(R∗) = mtot − γ̺∞, i.e. m(R∗)
is, for a fixed total massmtot, a linear function of̺ ∞.

� One can also show that the following formula holds

ṁ = −4πm(R∗)
2̺∞

R2
∗

m(R∗)2
U∗

(

a∗
a∞

)
2
Γ−1

(

1+
a2
∗

Γ

)

.

Here the whole dependence on̺∞ is contained inm(R∗)2̺∞. It follows that
the maximum of ˙m exists form(R∗) = 2mtot/3 andm(R∗)→ 0 for ̺∞ → 0 and
m(R∗)/mtot→ 0.
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Examples

Numerical solutions for polytropic EOS of both typesp–̺ andp–n agree with above
considerations.

mfluid/mtot

ṁ

10.90.80.70.60.50.40.30.20.10

1.6 · 10−17

1.4 · 10−17

1.2 · 10−17

1.0 · 10−17

8.0 · 10−18

6.0 · 10−18

4.0 · 10−18

2.0 · 10−18

0.0 · 100

EOS: p = KnΓ. Models with
Γ = 1.4, a2

∞ = 0.1 and different
n∞.
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Examples

n∞

m
flu

id
/m

to
t

2.0 · 10−191.6 · 10−191.2 · 10−198.0 · 10−204.0 · 10−200.0 · 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Same as before. Heremfluid ≡
mtot − mBH ≈ mtot − m(R∗).
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Examples

R∗RBH

R

̺

6543210

2.0 · 10−17

1.5 · 10−17

1.0 · 10−17

5.0 · 10−18

0.0 · 100

Boundary conditions:
R∞ = 104,

n∞ = 0.1 · 10−18,

a2
∞ = 0.1,
Γ = 1.4.

Sonic point parameters:R∗ = 2.318, a2
∗ = 0.15116, |U∗| = 0.3225, m(R∗)/mtot =

0.4814. Horizon: RBH = 0.9627, mfluid/mtot = 0.5186.
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Examples

R∗RBH

R

|U
|

6543210

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Boundary conditions:
R∞ = 104,

n∞ = 0.1 · 10−18,

a2
∞ = 0.1,
Γ = 1.4.

Sonic point parameters:R∗ = 2.318, a2
∗ = 0.15116, |U∗| = 0.3225, m(R∗)/mtot =

0.4814. Horizon: RBH = 0.9627, mfluid/mtot = 0.5186.
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Examples

R∗RBH

R

a2

6543210

0.35

0.3

0.25

0.2

0.15

0.1

Boundary conditions:
R∞ = 104,

n∞ = 0.1 · 10−18,

a2
∞ = 0.1,
Γ = 1.4.

Sonic point parameters:R∗ = 2.318, a2
∗ = 0.15116, |U∗| = 0.3225, m(R∗)/mtot =

0.4814. Horizon: RBH = 0.9627, mfluid/mtot = 0.5186.
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Stability of selfgravitating fluids

� Newtonian case (simplicity).

� Lagrangian approach.

� Stability of Bondi accretion has been analized by Balasz (1972). Correct but
inconclusive approach — too stringent understanding of thenotion of
linearized stability.

� Using Lagrangian variables one can reproduce the Eulerian stability result
obtained for non selfgravitating fluids by Moncrief (1980).
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Stability of selfgravitating fluids

� Equations:

∂tU + U∂RU = −
∂R p
̺
−

m(R)
R2
,

∂t̺ = −
1
R2
∂R

(

R2̺U
)

.

� Introduceζ(r, t) = ∆R(r, t) — deviation from the particle position in the
unperturbed flow.

� Perturbation of velocity:∆U = ∂L
t = (∂t + U∂R)ζ.

� Perturbation of density (follows from∆m(R(r = const))= 0 or continuity
equation)

∆̺ = −̺
(

2ζ
R
+ ∂Rζ

)

.
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Stability of selfgravitating fluids

� Main equation:

(

∂L
t

)2
ζ =

2m(R)ζ
R3

+
1
̺
∂R

(

a2̺

(

∂Rζ +
2ζ
R

))

−
2ζ
̺
∂R p.

� Standard way (Balazs): try to find solutions of the form
ζ(R(r), t) = exp(iωt)ζ(R(r)), whereω2 is positive and modulusζ(R(r)) is time
independent. This cannot be done!

� Instead, define the energy

E =
∫

V
dV̺

(

1
2

(∂tζ)
2
+

1
2

(∂Rζ)
2
(

a2 − U2
)

+
ζ2

R2

(

a2 −
m
R
− R∂Ra2

)

)

,

whereV is an annulus betweenR∗ andR∞.
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Stability of selfgravitating fluids

� Is this energy positive?

� One can show that

E = Ẽ −
[

4πRζ2̺
(

a2 − m
2R

)]R∞

R∗
,

where

Ẽ =
1
2

∫

V
dV

(

X2
+ Y2

)

− 2π
∫

V
dVζ2̺2

and

X =
√
̺∂tζ,

Y =
√
̺

(

2a2R − m

R2
√

a2 − U2
ζ +
√

a2 − U2∂Rζ

)

.

� Ẽ may be negative due to the last term appearing in the selfgravitating case.
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Stability of selfgravitating fluids

� We compute∂tE to get

∂tE = −
∫

V
dVζ2

∂tm(R)
R3

+

+ 4π
[

R2̺
(

∂tζ∂Rζ
(

a2 − U2
)

− U (∂tζ)
2
)]R∞

R∗
.

� One can show that the boundary terms are negative definite. EnergyE of
perturbations cannot grow for critical flow. Unstable behaviour is still
possible asE is not necessarily positive.

� For test fluids

E = Ẽ =
1
2

∫

V
dV

(

X2
+ Y2

)

is positive and∂tE 6 0. This excludes exponential growth ofX, Y and
long-term exponential growth of linear modesζ. The modulus|ζ(R)|may
depend on time.
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Stability of Selfgravitating fluids

� The absence of exponentially growing linear modes does not guarantee that
the perturbed solution will be always close to background solution.

� This kind of stability means that the evolving perturbations can be bounded
by initial solutions in a suitable sense.

� The linear instability means that the “strength” of the evolving perturbation
does not depend on the “strength” of the initial perturbation rather than the
perturbation grows infinitely.

� Generalisation onto general-relativistic case is possible.
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Summary

� Spherical accretion provides a simple playground in which one can observe
different effects caused by selfgravity of the accreting fluid.

� Many properties of those solutions can by obtained by analytical means.

� Steady, selfgravitating solutions are relatively easy to be obtained numerically
(oridinary differential equations) and can serve as tests for more sophisticated
numerical schemes.

� The stability of the selfgravitating solutions needs to be investigated carefully.
Many issues (e.g. stability of subsonic accretion flows) remain unclear.

Cracow School of Theoretical Physics – p.21


	Introduction
	Basics
	Basics
	Basics
	Equation of state
	Sonic point
	Sonic point
	Selfgravitating vs. test-fluid flow
	Examples
	Examples
	Examples
	Examples
	Examples
	Stability of selfgravitating fluids
	Stability of selfgravitating fluids
	Stability of selfgravitating fluids
	Stability of selfgravitating fluids
	Stability of selfgravitating fluids
	Stability of Selfgravitating fluids
	Summary

