The dark side of Belle

(searches for the light dark matter)

Tadeusz Lesiak

Institute of Nuclear Physics PAN, Kraków

The KEKB accelerator and Belle detector

□ Search for invisible decays of the Y(1S)

□ Search for $B \rightarrow h^{(*)}vvv$ decays

□ Future prospects of B-factories

Motivation

➤ The previous accelerator searches for dark matter (DM) in e⁺e⁻ annihilation

→ based on the DM coupling to the Z (see LEP):

Belle: search for the DM coupled to a quarkonium

PRL 98, 132001 (2007)

R

 χ – an overall dark matter
 particle that is lighter than
 the beauty quark

The basic idea is to look for decays of the Y(1S) to the 'invisible' particles in the final state

a

Expectations for B(Y(3S) \rightarrow invisible)

The upper limits from previous searches (ARGUS and CLEO):

 $Br(Y(1S) \rightarrow invisible) < 50 \times 10^{-3}$ (90%C.L.) CLEO, Phys. Rev. D 30, 1433 (1984) $Br(Y(1S) \rightarrow invisible) < 23 \times 10^{-3}$ (90%C.L.) ARGUS, Phys. Lett. B 179, 403 (1986)

> The only invisible decay in the Standard Model:

$$\mathcal{B}(\Upsilon(1S) \rightarrow \nu \overline{\nu}) = (9.9 \pm 0.5) \times 10^{-6}$$

L.N. Chang et al., PLB 441, 419 (1998)

The theoretical expectation for the invisible decay to the pair of overall dark matter particles that are lighter than the beauty quark

A dedicated trigger

Selection of the $Y(3S) \rightarrow \pi^+\pi^-$ ($Y(1S) \rightarrow invisible$)

- Signature: just two oposite-charge tracks in the events
- Main background: two-photon processes: $e^+e^- \rightarrow e^+e^-X$ (no-tag, $X \rightarrow \pi^+\pi^-(\pi^0)$, $\mu^+\mu^-$)
- A dedicated two-track trigger applied (looser than at the Y(45)):

 e^+

- The total visible energy in the electromagnetic calorimeter less than 3 GeV (rejection of $Y(1S) \rightarrow$ neutral particles)
- Rejection of tracks identified as electrons, muons or kaons

Suppression of two photon processes

The recoil mass against the $(\pi^+\pi^-)$ subsystem peaks at the mass of Y(1S) for those cases where all of the Y(1S) decay products go outside of the detector acceptance

→ The control sample provides a peaking background

The peaking background

The source

of events

The dominant contribution:

Y(1S) → μ⁺μ⁻	77.3	±12.0
Y(1S) → e⁺e-	50.3	±8.0
Y(1S) → τ⁺τ⁻	5.2	±1.0
Y(1S) → v⊽	0.4	±0.1
$Y(1S) \rightarrow other modes$	0.0	+2.8
Others	0.0	+12.9
Total	133.2	+19.7 -14.6

Future prospects

Disfavored by this talk at 90% C.L.

 $B \rightarrow K^* v v v results$

SM Branching fraction x 20 Number of Entries / 0.15 GeV $B^0 \to K^{*0} \nu \overline{\nu}$ 0.2 0.4 0,6 8,0 1.2 1.4 E_{ECL} [GeV] Number of Entries / 0.15 GeV $B^+ \to K^{*+} \nu \overline{\nu}$ 12 0.2 0.4 0.6 0.8 1.4 E_{ECL} [GeV]

SM Predictions:

 $Bf(B \to K^* \nu \overline{\nu}) \sim 1.3 \times 10^{-5}$ $Bf(B \to K \nu \overline{\nu}) \sim 4 \times 10^{-6}$

Ref. Buchalla et al. PRD 63, 014015 (2001)

Reconstructed modes:

 $K^{*0} \rightarrow K^{+}\pi^{-}, K^{*+} \rightarrow K_{s}^{0}\pi^{+}\&K^{+}\pi^{0}$ Supersedes summer 2006 result, with improvements on MC statistics. New results (U.L. @ 90% C.L.):

 $B \rightarrow h^{(*)}v\underline{v}$: summary

Future prospects of B-factories

Achievements of B-factories

Quantitative confirmation of the CKM model

Future prospects of B-factories

- ~2/ab from BaBar+Belle by the end of 2008
- BaBar will end in 2008
- Belle proposing a major upgrade
 - part of the "Japanese HEP master plan"
 - luminosity goal : 8 x 10³⁵/cm²/s (peak), 50/ab (integrated)

Important topics with 2ab⁻¹

- b \rightarrow s tCPV: 2.6 σ \rightarrow ~4 σ (for the same central values)
- Improved study of D⁰ mixing
- Follow-up studies of $B \rightarrow \tau v$
- **Evidence** for $\mathbf{B} \rightarrow \mu \mathbf{v}$
- More precise angle measurements, in particular φ₃ with significant observation in B → D^(*)K^(*)

9		Today	2ab ⁻¹
	$\sin 2\phi_1/\beta (b \rightarrow c)$	0.026	0.020
reach at	$\sin 2\phi_1/\beta (b \rightarrow s)$	0.05	0.035
	ϕ_2	11°	6°
	ϕ_3	19°	12°
	V _{ub} (inclusive)	6.3%	4.9%
	Δm_{d}	0.8%	0.8%
Sanda and	$B(B \rightarrow (\rho, \omega)\gamma)$	20.4%	10.3%
- Western	$B(B \to \tau \nu)$	36%	27%
The second	A _{FB} (K*I ⁺ I ⁻)	23%	10%
		$\frac{\delta(\overline{\rho}, \eta)}{(10.0\%)} = \frac{\delta(\overline{\rho}, \eta)}{(10.0\%)}$ <u>R. Itoh, @LHC</u> Jan. 2007	<mark>4.4%)</mark> upgrade WS,

ρ

SuperKEKB

- Asymmetric energy e^+e^- collider at $E_{CM}=m(\Upsilon(4S))$ to be realized by upgrading the existing KEKB collider.
- Super-high luminosity $\cong 8 \times 10^{35}$ /cm²/sec $\rightarrow 1 \times 10^{10}$ BB per yr.

T. Lesiak

The dark side of Belle

Flavour physics at SuperKEKB

- 1. Are there new CP-violating phases ?
- 2. Are there new right-handed currents ?
- 3. Are there new flavor-changing interactions with b, c or τ ?

SuperKEKB will answer these questions by scrutinizing loop diagrams.

T. Lesiak

-0.4

-0.3

-0.2

-0.1

0

0.1

 $\Delta S_{\phi K^0}$ (SuperKEKB)

LFV search at the SuperKEKB cf) Hayasaka at BNM2006 PDG2006 $\tau \rightarrow |\gamma|$ Belle $ilde{\chi}_0$ Babar **4**10 ^{−6} based on eff. $\mu(e)$ and N_{BG} of most sensitive (*M*)₂₃₍₁₃₎ analysis 10 Estimated $\tau \rightarrow 3I$, I η 10 upper limit range of Br \mathcal{T} h $\mu(s)$ $\overline{\mu}(\overline{s})$ Search region enters into $O(10^{-8} \rightarrow 10^{-9})$ T. Lesiak

The dark side of Belle

Summary

Invisible decays of the Y(3S)

 $B \rightarrow h^{(*)} v v$

No observation of light dark matter (LDM) $\mathcal{B}(\Upsilon(1S) \rightarrow \text{invisible}) < 2.5 \times 10^{-3} (90 \% \text{ C.L.})$

The experimental limit disfavours theoretical expectations for LDM

Possibility of a substantial improvement in the sensitivity

- The search for six exclusive decays \rightarrow negative results
- → a restriction on the existence of light dark matter (provided by the Kvv limit) $m_S > 1.4 \text{ GeV/c}^2$

Prospects for a rich harvest of interesting results at the SUPER KEKB