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Lie Symmetries

Lie groups play an outstanding role in modern mathematical physics.
Origins of the theory lie in the development of methods for solving
nonlinear differential equations by great mathematicians such as Gustav
Jacobi and Sophus Lie.

Nowdays the Lie symmetries method is a powerfull technique for solving
nonlinear differential equations, or at least detecting integrable regimes
of systems of differential equations.

The method is based on looking at differential equations in the
geometrical way - more geometrico.
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Basic Concepts

Let v be a vector field in space of dependent and independent variables

v ≡ ξ(x , u)∂x +
m∑

j=1

φj(x , u)∂uj .

Let Σ be a system of ordinary differential equations

Σ = {ψ1 = 0, ψ2 = 0 . . . , ψr = 0}

with one independent variable x and m dependent variables

u = (u1, u2, . . . um)

with derivatives up to N − th order
{

u(n)
k , n ≤ N

}
.
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A Computational Recipe-The Main Algorithm

In order to find Lie point symmetries of the system Σ, we consider
one-parameter Lie group of transformations

x? = Ψ (x , u, ε) ,

u? = Φ(x , u, ε) ,

under which Σ must be invariant. The group action is infinitesimally given by

x? = x + εξ(x , u) + O(ε2)

u?
j = uj + εφj(x , u) + O(ε2) j = 1, . . . ,m.

To determinate the infinitesimals ξ, φj we require that the previous
transformation leaves invariant the space of solutions of Σ:

SΣ = {u : ψ1 = 0, ψ2 = 0 . . . , ψr = 0} .

This is equivalent to

pr (N)v(ψi)|Σ = 0 i = 1, . . . , r (1)
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pr (N)v = ξ∂x +
m∑

k=1

φk∂uk +
m∑

k=1

N∑
n=1

φ
[n]
k ∂u(n)

k

is N-th prolongation of the vector field v , φ[n]
k is defined recursively by

φ
[n+1]
k = Dxφ

[n]
k − u(n+1)

k Dxξ

where Dx is the total derivative with respect to x
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Examples

The simplest second order equation has eight Lie symmetries

u′′ = 0

Its general Lie symmetry is given by

v = (a1 + a2x + a3y + a4xy + a5x2)
∂

∂x
+

(a6 + a7x + a8y + a5xy + a4y2)
∂

∂u

Example of a second order differential equation
which has no symmetries:

u′′ = xu + eu′
+ e−u′
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Perfect fluid in shearfree motion

Because of the high symmetry of the problem the field equations become
very simple: for the line element

g = −e2ν(r,t)dt2 + e2λ(r,t)
[
dr 2 + r 2dΩ2

]
(2)

Kustaanheimo and Qvist (1948) showed that for the metric function

y(x , t) = e−λ(r,t), x ≡ r 2,

they reduce to one ordinary differential equation

y ′′ = F (x)y2 (3)
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The second metric function is then

eν(r,t) = λ,te
−f (t)

where f (t) is an arbitrary function connected with the freedom of scaling t.
The function F (x) depends on the equation of state of the fluid, and mass
density µ as well as pressure p can be computed from λ and f .
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The symmetry approach

One finds that for given F (x) the equation admits a symmetry if there exists
B(x) which satisfies

F (
5
2

B′ + c) + BF ′ = 0

B′′′ = 4(dx + e)F

where c,d and e are arbitrary constants. One can detect all possible choices
of F (x) when there exist symmetries. If for a given F there is no symmetry
then Lie method does not help. There are also cases with one or two distinct
symmetries. In the first case one can solve exactly the equation under certain
conditions, in the second case it is always exactly solvable.
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Weyl Conformal Gravity

The lagrangian density is

L =
1
3

R2 − RµνRµν =
1
2

{
LGB − CαβµνCαβµν

}
where LGB = RαβµνRαβµν − 4RµνRµν + R2, the Gauss-Bonnet term, is a
total divergence in four dimensional spaces, i.e. it doesn’t contribute to the
field equations. The Bach equations which follow for the lagrangian (4) read

2∇α∇βC µ
α νβ + RαβC µ

α νβ = Bµ
ν = 0

where Bµ
ν is the Bach tensor. the isotropic coordinates

g = −e2ν(x)dτ 2 + e2(ν−α(x)
[
dx2 + x2dΩ2

]
(4)
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The the only nonvanishing components of the Bach tensor in the static
spherically symmetric case are

B0
0 =

e4(α−ν)

3

{
2α′′′′ +

(
4α′ +

8
x

)
α′′′ + 3α

′′ 2
− 2α′2α′′ − α′

4

+
2α′3 + 22α′α′′

x
+

5α′2

x2

}

B1
1 =

e4(α−ν)

3

{
2
(
α′ − 1

x

)
α′′′ − α

′′ 2
+ 2α′2α′′ − α′

4
+

6α′3

x

− 4α′′ + 9α′2

x2
+

4α′

x3

}

B2
2 =

e4(α−ν)

3

{
−α′′′′ − 3

(
α′ +

1
x

)
α′′′ − α

′′ 2
+ α′

4 − 11α′α′′ + 4α′3

x

+
2α′′ + 2α′2

x2
− 2α′

x3

}
B3

3 = B2
2
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By direct inspection one sees that there is a simple Lie symmetry

v = d1
∂

∂α
+ d2

∂

∂ν

which appears to be the conformal symmetry of the field equations. With help
of this symmetry one can find the general solution

g = −a(x)b2(x)dτ 2 +
1

a(x)
dx2 + x2dΩ2

where

a(x) = c1 +
c2

x
+ c3x + c4x2 , with a constraint 1− c2

1 + 3c2c3 = 0

b = const
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Higher – Derivative – Gravities (Lagrange picture)
& Einstein-matter fields systems (Hamilton pictures)

Jordan frame
L = R̃ + aR̃2 + bR̃µνR̃µν

g̃ satisfies 4th order
field equations.

Lagrange picture

- �
���

��*

HH
HHHHj

u

Legandre
transformation

A
A
A
A
AU

{g,Φµν} satisfy2nd order
field equations
H = ......

Einstein frame

Helmholtz-Jordan frame
H = d

4(ad+b)
χ2 + 1

4bπµνπ
µν

{g̃, χ, π} satisfy 2nd

order field eqs

Hamilton picture

Figure: Higher Derivative Gravities-General Relativity CorrespondenceArtur Janda Lie Symmetries of Spherically Symmetric Systems in General Relativity
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Jordan and Helmholtz-Jordan Frames

We restrict only to the case when a = 1
3 and b = −1, which describes in

Hamilton picture spin-2 field interacting to the standard Einsten gravity.
Euler – Lagrange equations read

Gµ
ν +

{
−�Rµ

ν + 2R µ β
α ν Rα

β +
1
2

Rα
βRβ

αδ
µ

ν

+
1
6

(�R − R2)δµ
ν +

1
3
∇µ∇νR +

2
3

RRµ
ν

}
= 0

i.e. Einsten tensor + Bach tensor = 0.
We point out that trace of this system implies vanishing of the Ricci scalar :

R = 0
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Let v be a vector field on an open subset M ⊂ <×<2

v = ξ (x , ν, λ)
∂

∂x
+ ψ (x , ν, λ)

∂

∂ν
+ φ (x , ν, λ)

∂

∂λ

where ξ, φ, ψ are real functions on M. The second prolongation (see [2]) of v
is a vector field in :

pr (2)v = v +
∑

J

ψJ

(
x , ν(2), λ(2)

) ∂

∂νJ
+
∑

J

φJ

(
x , ν(2), λ(2)

) ∂

∂λJ

where

ψJ

(
x , ν(2), λ(2)

)
= DJ

(
ψ − ξν

′)
+ ξν(J+1)

φJ

(
x , ν(2), λ(2)

)
= DJ

(
φ− ξλ

′)
+ ξλ(J+1)
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DJ is J-th total derivative and J is integer 1 ≤ J ≤ 2.(
ν

′

x
− 1

x2

)
λ

′′
+
ν

′ 3
+ ν

′ 2
λ

′
− 2ν

′
λ

′ 2

x
+
− 3

2ν
′ 2

+ ν
′
λ

′
+ 1

2λ
′ 2

x2

+
(

1− e2λ
)(λ′

x3
− 1

x4

)
+e2λ

(
ν

′

x
+

1− e2λ

2x2

)
= 0

−2e−2λ

{
ν

′′
+ ν

′ 2
− ν

′
λ

′
+ 2

ν
′
− λ

′

x
+

1
x2

}
+

2
x2

= 0

Conditions of being v a symmetry generator are:

pr (2)v(ψ1) = 0

pr (2)v(ψ2) = 0

Solving the above system of partial differential equations one obtains that the
only one symmetry vector field is

v = const
∂

∂ν

which can be found at first sight since there is no variable ν in the equations
of the system but only ν

′
and ν

′′
. This is insufficient to make a reduction
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procedure to the system. The second order system not possesing Lie point
symmetries may be rich in nonlocal symmetries providable one route for
integration.
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Summary

When a direct approach to differential equations fails one can use the
Lie symmetry method, which is probably the most powerful one. In case
of perfect fluid or conformal gravity existence of symmetries appears to
be very helpful for solving those difficult equations.

In Jordan Frame the field equations have trivial Lie point symmetries, but
one expects there exist non-trivial generalized Lie Backlund symmetries,
however they are much more difficult to detect.

The field equations in Jordan frame turn out to be a slight generalization
of the Klein-Gordon equations for the traceless part of the Ricci tensor
Sµ

ν = Rµ
ν − 1

4 Rδµ
ν + coupling to the conformal curvature.

Therefore we hope to understand what is the dynamics of the spin-2 field
in Helmholtz-Jordan frame at least close to the Minkowski spacetime

From algebraic structure of the field equations we understand why we
did not detect non-trivial Lie symmetries.

We know from the Painleve analysis that there are more general
integrable cases than only Schwarzschild solutions
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