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Introduction

matter created in RHIC is strongly coupled and deconfined
studying dynamics of AV = 4 SYM may be relevant
let's use AdS/CFT. ..

to study the dynamics on energy-momentum tensor

... bearing in mind differences:
e coupling does not run
e no hadrons

simplest dynamics to study

1D expansion + boost invariance (Bjorken)

From now on we are only within A =4 SYM plasma!



Boost-invariant energy-momentum tensors

no dependence on transverse coordinates x3

3 nonzero components T, Ty, T = T,22 = T,3,3
boost invariance forces T, (7,y) = T, (7)
constraints on energy—momentum T/w dynamics:

e conservation 74 TTT + T+ Tyy =0

o tracelessness T, + 5T, + 2Txx =0

T, can be expressed in terms of a single function
e(r) = Trr
(1) is plasma’s energy density

i . 1
perfect fluid case: € ~ gy



Second order viscous hydrodynamics

Perfect fluid - equation of motion for energy density
e+p  4e

O, = —

T 3T

we want to include 'dissipative corrections
equations of motion in Bjorken regime read

4e &
Ore=—=—+ —
¢ 3T+T
R
37

in hydrodynamical simulation formula

TBoItzmann — éﬂ
™ 2p
is commonly used
assumption: 7, = rr.2°tZmann holds for N = 4 SYM plasma

our goal is to calculate coefficient r



How to determine _ and _ of

N =4 SYM from AdS/CFT correspondence?



Let's consider scalar field (dilaton) coupled to gravity

equations of motion

Il
o

1
Gaﬁ - Rozﬁ + 4ga,8 - §8a¢8ﬂ¢
06 = 0

there are two equivalent frames

differ only by local rescaling, crucial later on



How to extract (T,,) from 5D geometry?

We need to adopt Fefferman-Graham coordinates

_ Budxtdx” + dz?

72

ds®

where

B dxtdx? = —e2(tD) dr2 4 12eb(12) gy 2 | ec(m2) gx?

Near-boundary metric expansion takes the form (only even powers

of z)
Gu = &) + 2785 + 280 + 0(2°)
where
o g;(u%) = 1w (4D Minkowski metric)
o g,j) = 0 (consistency condition)

o gﬁ) — % (Tuw) (VEV of energy-momentum tensor)

Does the gravity in the bulk specifies uniquely < T,, >7?



Reproducing 5D geometry from field theory data

Task:
e find a solution of Einstein eqns

1
Rag—ERgag—l—/\(: —6)gag:0

e with boundary conditions

; N2
& = g (= mw) + 210 (= 5.5 (Tw) + O(2°)

Solution:
e one can iteratively find higher order terms g( ) (constraints!)
e asymptotic large proper time formula for

energy density € ~ % , where 0 < s < 4 (energy positivity)

e instead of iterating, let's introduce scaling variable v = —Z
-

o keeping v fixed while 7 — oo reduces Einstein eqns to ODEs

e these can be solved, but 'how to determine s ?



Perfect fluid metric

Regularity of Rangaﬁ'Y‘s chooses energy density € = —75

Asymptotic geometry looks like

4
w o L U5

2 e 2 2,2 2 2
= dr —|—(1+§—)(T dy +de_)+dz)

4
1+3 ‘:1/3 43

Similar to standard AdS-Schwarzshild, but with horizon " moving
away”
3
20 = (7)1/47_1/3
e
Naive extraction of thermodynamical quantities
o T~ Zio ~ 713 (temperature)
e S~ AREA ~ % ~ const (entropy per u. rapidity and area )

20

(Janik, Peschanski [hep-th/0512162])



Subasymptotic solution

e we start with

a(r,z) = ap(v) + #al(v) + #az(v) + ...

—Z_

where v = —Z=. Similar relations for b(7,z) and c(r, z)

e rescaling Einstein tensor G,3 = Rag — %Rgag — 68as
G= (T2/3 Grr, /3 Gz, T4/3 ny7 72/3 Gxxs 72/3 Gzz)
leads to systematic expansion in powers of 7271/3

G = éo(v) + #C}(v) + TT1/3@2(V) + ...

e solving problem in |perturbative manner:

Gi=0



Viscosity coefficient |

first order ( 2/3) solution reads
ar(v) = 20 C”

9—v8
V4 —V4
bi(v) = —2n031,z + 2o log §+V4
4 4
a(v) = 2035 —molog 574

giving regular Riemann squared 2

second order solution = lengthy formulas with two parameters
e 1) (viscostity coefficient)
o C (needed to calculate relaxation time)

Riemann squared takes the form

# + polynomial in v, ng and C
4/3 (3—v*)* (3+v4)

is nonsingular only for

1o = 5i7azsa (Janik [hep-th/0710144])

C cannot be determined in this order



Third order solution

Riemann squared up to this order gives % =

4+ T%(polyn?inia;lli/ri)\;andC + g01/233/4 log (31/4 _ V) 4. )

cancelation of 4th order pole at v = 31/4 fixes

_ —17+6log?2
C - 31/2

logarithmic singularity survives

idea = in string frame dilaton contribution cancels singularity
: _ 1.1 01/223/4 3—v4

indeed the case for ¢ = %17 2 /233/ log 377

regularity restored, but in the string frame



Relaxation time in N = 4 SYM

we assume
Boltzmann __
r7'7r

3
= — 31
in the leading order

€~ # and n ~ % so let's write
’[’] = A63/4
goal = determine A and r

second order dissipative hydrodynamics gives
3/4 ’ 7
_4Ae +%+T€/+21Are +9Arte =0

T 2¢el/4 2el/4
vanishing of this expression for energy density
e— 1 V2 + 14+2log?2
= F4/3 T 33/4.2 121/378/3
requires
_ 1l—log2 _ 1
r=-—g>- and A_—ﬁ33/4
relaxation times than takes the form

1-log?2
Tr = e~ (T - temperature)




e nontrivial dilaton profile leads to

tr F2 <0

(E2)# (%)

approximation

e this means that



Summary and outlook
Summary

e studying 1D expansion of strongly coupled plasma using
AdS/CFT

e regularity of dual geometry chooses the physical behavior
e results are consistent with second order dissipative
hydrodynamics
Perspectives

e applying dynamical horizons framework to calculate the
entropy (work in progress)

e determining short time behavior from geometry regularity
(work in progress)

e generalizing dynamics to less symmetric situation



