AdS/CFT and Second Order Viscous Hydrodynamics

Michał P. Heller
Institute of Physics
Jagiellonian University, Cracow
Cracow School of Theoretical Physics
XLVII Course
Zakopane, 20.06.2007

Based on [hep-th/0703243] (MH and Romuald A. Janik)

Boost-invariant energy-momentum tensors
Bjorken hydrodynamics
Dissipative hydrodynamics

Einstein and string frame

Gravity duals

Holography
Perfect fluid metric
Subasymptotic corrections

AdS/CFT and Israel-Stewart theory

Third order solution
Calculation of relaxation time
Discussion
Summary and Outlook

Introduction

- matter created in RHIC is strongly coupled and deconfined
- studying dynamics of $\mathcal{N}=4$ SYM may be relevant
- let's use AdS/CFT...
- to study the dynamics on energy-momentum tensor
- ... bearing in mind differences:
- coupling does not run
- no hadrons
- simplest dynamics to study

1D expansion + boost invariance (Bjorken)

From now on we are only within $\mathcal{N}=4$ SYM plasma!

Boost-invariant energy-momentum tensors

- no dependence on transverse coordinates $x^{2,3}$
- 3 nonzero components $T_{\tau \tau}, T_{y y}, T_{x x}=T_{x^{2} x^{2}}=T_{x^{3} x^{3}}$
- boost invariance forces $T_{\mu \nu}(\tau, y)=T_{\mu \nu}(\tau)$
- constraints on energy-momentum $T_{\mu \nu}$ dynamics:
- conservation $\tau \frac{d}{d \tau} T_{\tau \tau}+T_{\tau \tau}+\frac{1}{\tau^{2}} T_{y y}=0$
- tracelessness $T_{\tau \tau}+\frac{1}{\tau^{2}} T_{y y}+2 T_{x x}=0$
- $T_{\mu \nu}$ can be expressed in terms of a single function

$$
\epsilon(\tau)=T_{\tau \tau}
$$

- $\epsilon(\tau)$ is plasma's energy density
- perfect fluid case: $\epsilon \sim \frac{1}{\tau^{4 / 3}}$

Second order viscous hydrodynamics

- Perfect fluid - equation of motion for energy density

$$
\partial_{\tau} \epsilon=-\frac{\epsilon+p}{\tau}=-\frac{4}{3} \frac{\epsilon}{\tau}
$$

- we want to include dissipative corrections
- equations of motion in Bjorken regime read

$$
\begin{gathered}
\partial_{\tau} \epsilon=-\frac{4}{3} \frac{\epsilon}{\tau}+\frac{\Phi}{\tau} \\
\tau_{\pi} \partial_{\tau} \Phi=-\Phi+\frac{4}{3} \frac{\eta}{\tau}
\end{gathered}
$$

- in hydrodynamical simulation formula

$$
\tau_{\pi}^{\text {Boltzmann }}=\frac{3}{2} \frac{\eta}{p}
$$

is commonly used

- assumption: $\tau_{\pi}=r \tau_{\pi}^{\text {Boltzmann }}$ holds for $\mathcal{N}=4$ SYM plasma
- our goal is to calculate coefficient r

Crucial question

How to determine energy density $\epsilon(\tau)$ and relaxation time τ_{π} of $\mathcal{N}=4$ SYM from AdS/CFT correspondence?

String and Einstein frames

Let's consider scalar field (dilaton) coupled to gravity

- equations of motion

$$
\begin{aligned}
G_{\alpha \beta}=R_{\alpha \beta}+4 g_{\alpha \beta}-\frac{1}{2} \partial_{\alpha} \phi \partial_{\beta} \phi & =0 \\
\square \phi & =0
\end{aligned}
$$

- there are two equivalent frames
- Einstein frame, with metric g_{E} entering directly above eqns
- string frame, with rescaled metric $g_{s}=e^{\frac{1}{2} \phi} g_{E}$
- differ only by local rescaling, crucial later on
- string frame - curved geometry probed by string

How to extract $\left\langle T_{\mu \nu}\right\rangle$ from 5D geometry?

We need to adopt Fefferman-Graham coordinates

$$
d s^{2}=\frac{\tilde{g}_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}}{z^{2}}
$$

where

$$
\tilde{g}_{\mu \nu} d x^{\mu} d x^{\nu}=-e^{a(t, z)} d \tau^{2}+\tau^{2} e^{b(\tau, z)} d y^{2}+e^{c(\tau, z)} d x_{\perp}^{2}
$$

Near-boundary metric expansion takes the form (only even powers of z)

$$
\tilde{g}_{\mu \nu}=\tilde{g}_{\mu \nu}^{(0)}+z^{2} \tilde{g}_{\mu \nu}^{(2)}+z^{4} \tilde{g}_{\mu \nu}^{(4)}+O\left(z^{6}\right)
$$

where

- $\tilde{g}_{\mu \nu}^{(0)}=\eta_{\mu \nu}$ (4D Minkowski metric)
- $\tilde{g}_{\mu \nu}^{(2)}=0$ (consistency condition)
- $\tilde{g}_{\mu \nu}^{(4)}=\frac{N_{c}^{2}}{2 \pi^{2}}\left\langle T_{\mu \nu}\right\rangle$ (VEV of energy-momentum tensor)

Does the gravity in the bulk specifies uniquely $<T_{\mu \nu}>$?

Reproducing 5D geometry from field theory data

Task:

- find a solution of Einstein eqns

$$
R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}+\Lambda(=-6) g_{\alpha \beta}=0
$$

- with boundary conditions

$$
\tilde{g}_{\mu \nu}=g_{\mu \nu}^{0}\left(=\eta_{\mu \nu}\right)+z^{4} g_{\mu \nu}^{(4)}\left(=\frac{N_{c}^{2}}{2 \pi^{2}}\left\langle T_{\mu \nu}\right\rangle\right)+O\left(z^{6}\right)
$$

Solution:

- one can iteratively find higher order terms $\tilde{g}_{\mu \nu}^{(i)}$ (constraints!)
- asymptotic large proper time formula for energy density $\epsilon \sim \frac{1}{\tau^{s}}$, where $0<s<4$ (energy positivity)
- instead of iterating, let's introduce scaling variable $v=\frac{z}{\tau^{s / 4}}$
- keeping v fixed while $\tau \rightarrow \infty$ reduces Einstein eqns to ODEs
- these can be solved, but how to determine s ?

Perfect fluid metric

Regularity of $R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta}$ chooses energy density $\epsilon=\frac{e}{\tau^{4 / 3}}$

Asymptotic geometry looks like

$$
d s^{2}=\frac{1}{z^{2}}\left(-\frac{\left(1-\frac{e}{3} \frac{z^{4}}{\tau^{4 / 3}}\right)^{2}}{1+\frac{e}{3} \frac{z^{4}}{\tau^{4 / 3}}} d \tau^{2}+\left(1+\frac{e}{3} \frac{z^{4}}{\tau^{4 / 3}}\right)\left(\tau^{2} d y^{2}+d x_{\perp}^{2}\right)+d z^{2}\right)
$$

Similar to standard AdS-Schwarzshild, but with horizon "moving away"

$$
z_{0}=\left(\frac{3}{e}\right)^{1 / 4} \tau^{1 / 3}
$$

Naive extraction of thermodynamical quantities

- $T \sim \frac{1}{z_{0}} \sim \tau^{-1 / 3}$ (temperature)
- $S \sim$ AREA $\sim \frac{\tau}{z_{0}^{3}} \sim$ const (entropy per u. rapidity and area ${ }_{\perp}$)
(Janik, Peschanski [hep-th/0512162])

Subasymptotic solution

- we start with

$$
a(\tau, z)=a_{0}(v)+\frac{1}{\tau^{2 / 3}} a_{1}(v)+\frac{1}{\tau^{4 / 3}} a_{2}(v)+\ldots
$$

where $v=\frac{z}{\tau^{1 / 3}}$. Similar relations for $b(\tau, z)$ and $c(\tau, z)$

- rescaling Einstein tensor $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}-6 g_{\alpha \beta}$

$$
\tilde{G}=\left(\tau^{2 / 3} G_{\tau \tau}, \tau^{4 / 3} G_{\tau z}, \tau^{-4 / 3} G_{y y}, \tau^{2 / 3} G_{x x}, \tau^{2 / 3} G_{z z}\right)
$$

leads to systematic expansion in powers of $\frac{1}{\tau^{2 / 3}}$

$$
\tilde{G}=\tilde{G}_{0}(v)+\frac{1}{\tau^{2 / 3}} \tilde{G}_{1}(v)+\frac{1}{\tau^{4 / 3}} \tilde{G}_{2}(v)+\ldots
$$

- solving problem in perturbative manner:

$$
\tilde{G}_{i}=0
$$

Viscosity coefficient I

- first order $\left(\frac{1}{\tau^{2 / 3}}\right)$ solution reads

$$
\begin{aligned}
& a_{1}(v)=2 \eta_{0} \frac{\left(9+v^{4}\right) v^{4}}{9-v^{8}} \\
& b_{1}(v)=-2 \eta_{0} \frac{v^{4}}{3+v^{4}}+2 \eta_{0} \log \frac{3-v^{4}}{3+v^{4}} \\
& c_{1}(v)=-2 \eta_{0} \frac{v^{4}}{3+v^{4}}-\eta_{0} \log \frac{3-v^{4}}{3+v^{4}}
\end{aligned}
$$

- giving regular Riemann squared \Re^{2}
- second order solution = lengthy formulas with two parameters
- η_{0} (viscostity coefficient)
- C (needed to calculate relaxation time)
- Riemann squared takes the form

$$
\Re^{2}=\#+\frac{1}{\tau^{4 / 3}} \frac{\text { polynomial in } \mathrm{v}, \eta_{0} \text { and } C}{\left(3-v^{4}\right)^{4}\left(3+v^{4}\right)^{6}}
$$

- is nonsingular only for

$$
\eta_{0}=\frac{1}{2^{1 / 4} 3^{3 / 4}}(\text { Janik [hep-th/0710144] })
$$

- C cannot be determined in this order

Third order solution

- Riemann squared up to this order gives $\Re^{2}=$

$$
\#+\frac{1}{\tau^{2}}\left(\frac{\text { polynomial in } v \text { and } C}{\left(v-3^{1 / 4}\right)^{4}}+82^{1 / 2} 3^{3 / 4} \log \left(3^{1 / 4}-v\right)+\ldots\right)
$$

- cancelation of 4 th order pole at $v=3^{1 / 4}$ fixes

$$
C=\frac{-17+6 \log 2}{3^{1 / 2}}
$$

- logarithmic singularity survives
- idea $=$ in string frame dilaton contribution cancels singularity
- indeed the case for $\phi=\frac{1}{\tau^{2}} \frac{1}{14} 2^{1 / 2} 3^{3 / 4} \log \frac{3-v^{4}}{3+v^{4}}$
- regularity restored, but in the string frame

Relaxation time in $\mathcal{N}=4 \mathrm{SYM}$

- we assume

$$
\tau_{\pi}=r \tau_{\pi}^{\text {Boltzmann }}=\frac{3 r}{2} \frac{\eta}{p}
$$

- in the leading order
$\epsilon \sim \frac{1}{\tau^{4 / 3}}$ and $\eta \sim \frac{1}{\tau}$ so let's write

$$
\eta=A \epsilon^{3 / 4}
$$

- goal $=$ determine A and r
- second order dissipative hydrodynamics gives

$$
-\frac{4 A \epsilon^{3 / 4}}{\tau}+\frac{4 \epsilon}{3}+\tau \epsilon^{\prime}+\frac{21 A r \epsilon^{\prime}}{2 \epsilon^{1 / 4}}+\frac{9 A r t \epsilon^{\prime \prime}}{2 \epsilon^{1 / 4}}=0
$$

- vanishing of this expression for energy density

$$
\epsilon=\frac{1}{\tau^{4 / 3}}-\frac{\sqrt{2}}{3^{3 / 4} \tau^{2}}+\frac{1+2 \log 2}{12 \sqrt{3} \tau^{8 / 3}}
$$

requires

$$
r=\frac{1-\log 2}{9} \text { and } A=\frac{1}{\sqrt{2} 3^{3 / 4}}
$$

- relaxation times than takes the form

$$
\tau_{\pi}=\frac{1-\log 2}{6 \pi T}(T-\text { temperature })
$$

Discussion

- nontrivial dilaton profile leads to

$$
\operatorname{tr} F^{2}<0
$$

- this means that

$$
\left\langle\vec{E}^{2}\right\rangle \neq\left\langle\vec{B}^{2}\right\rangle
$$

- in fact magnetic modes dominate
- relaxation time is almost $30 \times$ shorter than weak coupling approximation

Summary and outlook

Summary

- studying 1D expansion of strongly coupled plasma using AdS/CFT
- regularity of dual geometry chooses the physical behavior
- results are consistent with second order dissipative hydrodynamics

Perspectives

- applying dynamical horizons framework to calculate the entropy (work in progress)
- determining short time behavior from geometry regularity (work in progress)
- generalizing dynamics to less symmetric situation

