# AdS/CFT and Second Order Viscous Hydrodynamics

Michał P. Heller

Institute of Physics Jagiellonian University, Cracow

Cracow School of Theoretical Physics XLVII Course Zakopane, 20.06.2007

Based on [hep-th/0703243] (MH and Romuald A. Janik)

Roadmap

Boost-invariant energy-momentum tensors

Bjorken hydrodynamics Dissipative hydrodynamics

Einstein and string frame

Gravity duals

Holography Perfect fluid metric Subasymptotic corrections

AdS/CFT and Israel-Stewart theory

Third order solution Calculation of relaxation time Discussion

Summary and Outlook

- matter created in RHIC is strongly coupled and deconfined
- studying dynamics of  $\mathcal{N}=4$  SYM may be relevant
- let's use AdS/CFT...
- to study the dynamics on energy-momentum tensor
- ... bearing in mind differences:
  - coupling does not run
  - no hadrons
- simplest dynamics to study

1D expansion + boost invariance (Bjorken)

From now on we are only within  $\mathcal{N} = 4$  SYM plasma!

### Boost-invariant energy-momentum tensors

- no dependence on transverse coordinates  $x^{2,3}$
- 3 nonzero components  $T_{\tau\tau}$ ,  $T_{yy}$ ,  $T_{xx} = T_{x^2x^2} = T_{x^3x^3}$
- boost invariance forces  $T_{\mu
  u}( au, y) = T_{\mu
  u}( au)$
- constraints on energy-momentum  $T_{\mu\nu}$  dynamics:
  - conservation  $au rac{d}{d au} T_{ au au} + T_{ au au} + rac{1}{ au^2} T_{yy} = 0$
  - tracelessness  $T_{ au au}+rac{1}{ au^2}T_{yy}+2T_{xx}=0$
- $T_{\mu\nu}$  can be expressed in terms of a single function

$$\epsilon(\tau) = T_{\tau\tau}$$

•  $\epsilon(\tau)$  is plasma's energy density

• perfect fluid case:  $\epsilon \sim \frac{1}{\tau^{4/3}}$ 

## Second order viscous hydrodynamics

· Perfect fluid - equation of motion for energy density

$$\partial_{ au}\epsilon = -rac{\epsilon+p}{ au} = -rac{4}{3}rac{\epsilon}{ au}$$

- we want to include dissipative corrections
- equations of motion in Bjorken regime read

$$\partial_{\tau}\epsilon = -\frac{4}{3}\frac{\epsilon}{\tau} + \frac{\Phi}{\tau}$$
$$\tau_{\pi}\partial_{\tau}\Phi = -\Phi + \frac{4}{3}\frac{\eta}{\tau}$$

in hydrodynamical simulation formula

$$\tau_{\pi}^{Boltzmann} = \frac{3}{2} \frac{\eta}{p}$$

is commonly used

- assumption:  $\tau_{\pi} = r \tau_{\pi}^{Boltzmann}$  holds for  $\mathcal{N} = 4$  SYM plasma
- our goal is to calculate coefficient r

## Crucial question

# How to determine energy density $\epsilon(\tau)$ and relaxation time $\tau_{\pi}$ of $\mathcal{N} = 4$ SYM from AdS/CFT correspondence?

Let's consider scalar field (dilaton) coupled to gravity

equations of motion

$$egin{array}{lll} G_{lphaeta} = R_{lphaeta} + 4g_{lphaeta} - rac{1}{2}\partial_lpha\phi\,\partial_eta\phi &= 0 \ \ \Box\phi &= 0 \end{array}$$

- there are two equivalent frames
  - Einstein frame, with metric  $g_E$  entering directly above eqns
  - string frame, with rescaled metric  $g_s = e^{\frac{1}{2}\phi}g_E$
- · differ only by local rescaling, crucial later on
- string frame curved geometry probed by string

# How to extract $\langle T_{\mu\nu} \rangle$ from 5D geometry?

We need to adopt Fefferman-Graham coordinates

$$ds^2=rac{ ilde{g}_{\mu
u}dx^\mu dx^
u+dz^2}{z^2}$$

where

$$ilde{g}_{\mu
u}dx^{\mu}dx^{
u} = -e^{a(t,z)}d au^2 + au^2e^{b( au,z)}dy^2 + e^{c( au,z)}dx_{\perp}^2$$

Near-boundary metric expansion takes the form (only even powers of z)

$$ilde{g}_{\mu
u} = ilde{g}^{(0)}_{\mu
u} + z^2 ilde{g}^{(2)}_{\mu
u} + z^4 ilde{g}^{(4)}_{\mu
u} + O(z^6)$$

where

• 
$$\tilde{g}^{(0)}_{\mu\nu} = \eta_{\mu\nu}$$
 (4D Minkowski metric)

• 
$$\tilde{g}_{\mu\nu}^{(2)} = 0$$
 (consistency condition)

•  $\tilde{g}^{(4)}_{\mu\nu} = \frac{N_c^2}{2\pi^2} \langle T_{\mu\nu} \rangle$  (VEV of energy-momentum tensor)

Does the gravity in the bulk specifies uniquely  $< T_{\mu\nu} >$ ?

# Reproducing 5D geometry from field theory data

#### Task:

• find a solution of Einstein eqns

$$R_{lphaeta} - rac{1}{2} R g_{lphaeta} + \Lambda (= -6) g_{lphaeta} = 0$$

• with boundary conditions

$$ilde{g}_{\mu
u} = g^0_{\mu
u} \, (= \eta_{\mu
u}) + z^4 g^{(4)}_{\mu
u} \, (= rac{N_c^2}{2\pi^2} \, \langle T_{\mu
u} 
angle) + O(z^6)$$

#### Solution:

- one can iteratively find higher order terms  $ilde{g}^{(i)}_{\mu
  u}$  (constraints!)
- asymptotic large proper time formula for energy density  $\epsilon \sim \frac{1}{\tau^s}$ , where 0 < s < 4 (energy positivity)
- instead of iterating, let's introduce scaling variable  $v = \frac{z}{\tau^{s/4}}$
- keeping v fixed while  $au 
  ightarrow \infty$  reduces Einstein eqns to ODEs
- these can be solved, but how to determine *s* ?

## Perfect fluid metric

Regularity of  $R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}$  chooses energy density  $\epsilon = \frac{e}{\tau^{4/3}}$ 

Asymptotic geometry looks like

$$ds^{2} = \frac{1}{z^{2}} \Big( -\frac{(1 - \frac{e}{3}\frac{z^{4}}{\tau^{4/3}})^{2}}{1 + \frac{e}{3}\frac{z^{4}}{\tau^{4/3}}} d\tau^{2} + (1 + \frac{e}{3}\frac{z^{4}}{\tau^{4/3}})(\tau^{2}dy^{2} + dx_{\perp}^{2}) + dz^{2} \Big)$$

Similar to standard AdS-Schwarzshild, but with horizon "moving away"

$$z_0 = (\frac{3}{e})^{1/4} \tau^{1/3}$$

Naive extraction of thermodynamical quantities

• 
$$T \sim rac{1}{z_0} \sim au^{-1/3}$$
 (temperature)

•  $S \sim \text{AREA} \sim rac{ au}{z_0^3} \sim \textit{const}$  (entropy per u. rapidity and area\_)

(Janik, Peschanski [hep-th/0512162])

## Subasymptotic solution

we start with

$$a(\tau, z) = a_0(v) + \frac{1}{\tau^{2/3}}a_1(v) + \frac{1}{\tau^{4/3}}a_2(v) + \dots$$
  
where  $v = \frac{z}{\tau^{1/3}}$ . Similar relations for  $b(\tau, z)$  and  $c(\tau, z)$ 

- rescaling Einstein tensor  $G_{\alpha\beta} = R_{\alpha\beta} \frac{1}{2}Rg_{\alpha\beta} 6g_{\alpha\beta}$   $\tilde{G} = (\tau^{2/3}G_{\tau\tau}, \tau^{4/3}G_{\tau z}, \tau^{-4/3}G_{yy}, \tau^{2/3}G_{xx}, \tau^{2/3}G_{zz})$ leads to systematic expansion in powers of  $\frac{1}{\tau^{2/3}}$  $\tilde{G} = \tilde{G}_0(v) + \frac{1}{\tau^{2/3}}\tilde{G}_1(v) + \frac{1}{\tau^{4/3}}\tilde{G}_2(v) + \dots$
- solving problem in perturbative manner:

$$\tilde{G}_i = 0$$

# Viscosity coefficient I

• first order 
$$(\frac{1}{\tau^{2/3}})$$
 solution reads  
 $a_1(v) = 2\eta_0 \frac{(9+v^4)v^4}{9-v^8}$   
 $b_1(v) = -2\eta_0 \frac{v^4}{3+v^4} + 2\eta_0 \log \frac{3-v^4}{3+v^4}$   
 $c_1(v) = -2\eta_0 \frac{v^4}{3+v^4} - \eta_0 \log \frac{3-v^4}{3+v^4}$ 

- giving regular Riemann squared  $\Re^2$
- second order solution = lengthy formulas with two parameters
  - $\eta_0$  (viscostity coefficient)
  - *C* (needed to calculate relaxation time)
- Riemann squared takes the form

$$\Re^2 = \# + \frac{1}{\tau^{4/3}} \frac{\operatorname{polynomial} \operatorname{in} v, \eta_0 \operatorname{and} C}{(3 - v^4)^4 (3 + v^4)^6}$$

• is nonsingular only for

$$\eta_0 = rac{1}{2^{1/4} \, 3^{3/4}} \, \left( {
m Janik} \, \left[ {
m hep-th}/0710144 
ight] 
ight)$$

• C cannot be determined in this order

## Third order solution

• Riemann squared up to this order gives  $\Re^2 =$ 

$$\# + \frac{1}{\tau^2} \left( \frac{\text{polynomial in } v \text{ and } C}{(v-3^{1/4})^4} + 8 \, 2^{1/2} \, 3^{3/4} \, \log \left( 3^{1/4} - v \right) + \ldots \right)$$

• cancelation of 4th order pole at  $v = 3^{1/4}$  fixes

$$C = \frac{-17 + 6\log 2}{3^{1/2}}$$

- logarithmic singularity survives
- idea = in string frame dilaton contribution cancels singularity
- indeed the case for  $\phi = \frac{1}{\tau^2} \frac{1}{14} \, 2^{1/2} \, 3^{3/4} \, \log \frac{3 v^4}{3 + v^4}$
- regularity restored, but in the string frame

# Relaxation time in $\mathcal{N} = 4$ SYM

we assume

$$\tau_{\pi} = r \tau_{\pi}^{Boltzmann} = \frac{3 r}{2} \frac{\eta}{p}$$

in the leading order

$$\epsilon \sim \frac{1}{\tau^{4/3}}$$
 and  $\eta \sim \frac{1}{\tau}$  so let's write 
$$\eta = A \, \epsilon^{3/4}$$

- goal = determine A and r
- second order dissipative hydrodynamics gives

$$-\frac{4A\epsilon^{3/4}}{\tau} + \frac{4\epsilon}{3} + \tau\epsilon' + \frac{21Ar\epsilon'}{2\epsilon^{1/4}} + \frac{9Art\epsilon''}{2\epsilon^{1/4}} = 0$$

vanishing of this expression for energy density

$$\epsilon = \frac{1}{\tau^{4/3}} - \frac{\sqrt{2}}{3^{3/4}\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}\tau^{8/3}}$$

requires

$$r = \frac{1 - \log 2}{9}$$
 and  $A = \frac{1}{\sqrt{2} \, 3^{3/4}}$ 

• relaxation times than takes the form  $\tau_{\pi} = \frac{1 - \log 2}{6\pi T} (T - \text{temperature})$ 



• nontrivial dilaton profile leads to

$$\mathrm{tr}\,F^2 < 0$$

• this means that

$$\left\langle \vec{E}^{2}\right\rangle \neq\left\langle \vec{B}^{2}\right\rangle$$

- in fact magnetic modes dominate
- relaxation time is almost 30 x shorter than weak coupling approximation

#### Summary

- studying 1D expansion of strongly coupled plasma using AdS/CFT
- regularity of dual geometry chooses the physical behavior
- results are consistent with second order dissipative hydrodynamics

#### Perspectives

- applying dynamical horizons framework to calculate the entropy (work in progress)
- determining short time behavior from geometry regularity (work in progress)
- generalizing dynamics to less symmetric situation