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Introduction

• matter created in RHIC is strongly coupled and deconfined

• studying dynamics of N = 4 SYM may be relevant

• let’s use AdS/CFT. . .

• to study the dynamics on energy-momentum tensor

• . . . bearing in mind differences:

• coupling does not run

• no hadrons

• simplest dynamics to study

1D expansion + boost invariance (Bjorken)

From now on we are only within N = 4 SYM plasma!



Boost-invariant energy-momentum tensors

• no dependence on transverse coordinates x2,3

• 3 nonzero components Tττ , Tyy , Txx = Tx2x2 = Tx3x3

• boost invariance forces Tµν(τ, y) = Tµν(τ)

• constraints on energy-momentum Tµν dynamics:

• conservation τ d
d τ Tττ + Tττ + 1

τ 2 Tyy = 0

• tracelessness Tττ + 1
τ 2 Tyy + 2Txx = 0

• Tµν can be expressed in terms of a single function

ε(τ) = Tττ

• ε(τ) is plasma’s energy density

• perfect fluid case: ε ∼ 1
τ4/3



Second order viscous hydrodynamics

• Perfect fluid - equation of motion for energy density

∂τ ε = −ε + p

τ
= −4
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τ

• we want to include dissipative corrections
• equations of motion in Bjorken regime read

∂τ ε = −4
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τ
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τπ∂τΦ = −Φ +
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• in hydrodynamical simulation formula

τBoltzmann
π =

3

2

η

p

is commonly used
• assumption: τπ = rτBoltzmann

π holds for N = 4 SYM plasma

• our goal is to calculate coefficient r



Crucial question

How to determine energy density ε(τ) and relaxation time τπ of

N = 4 SYM from AdS/CFT correspondence?



String and Einstein frames

Let’s consider scalar field (dilaton) coupled to gravity

• equations of motion

Gαβ = Rαβ + 4gαβ − 1

2
∂αφ∂βφ = 0

@φ = 0

• there are two equivalent frames

• Einstein frame, with metric gE entering directly above eqns

• string frame, with rescaled metric gs = e
1
2 φgE

• differ only by local rescaling, crucial later on

• string frame - curved geometry probed by string



How to extract 〈Tµν〉 from 5D geometry?

We need to adopt Fefferman-Graham coordinates

ds2 =
g̃µνdxµdxν + dz2

z2

where

g̃µνdxµdxν = −ea(t,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2
⊥

Near-boundary metric expansion takes the form (only even powers
of z)

g̃µν = g̃ (0)
µν + z2g̃ (2)

µν + z4g̃ (4)
µν + O(z6)

where
• g̃

(0)
µν = ηµν (4D Minkowski metric)

• g̃
(2)
µν = 0 (consistency condition)

• g̃
(4)
µν = N2

c
2 π2 〈Tµν〉 (VEV of energy-momentum tensor)

Does the gravity in the bulk specifies uniquely < Tµν >?



Reproducing 5D geometry from field theory data

Task:

• find a solution of Einstein eqns

Rαβ − 1

2
R gαβ + Λ (= −6) gαβ = 0

• with boundary conditions

g̃µν = g0
µν (= ηµν) + z4g (4)

µν (=
N2

c

2π2
〈Tµν〉) + O(z6)

Solution:

• one can iteratively find higher order terms g̃
(i)
µν (constraints!)

• asymptotic large proper time formula for

energy density ε ∼ 1
τ s , where 0 < s < 4 (energy positivity)

• instead of iterating, let’s introduce scaling variable v = z
τ s/4

• keeping v fixed while τ →∞ reduces Einstein eqns to ODEs

• these can be solved, but how to determine s ?



Perfect fluid metric

Regularity of RαβγδR
αβγδ chooses energy density ε = e

τ4/3

Asymptotic geometry looks like

ds2 =
1

z2

(
− (1− e

3
z4

τ4/3 )
2

1 + e
3

z4

τ4/3

dτ2 + (1 +
e

3

z4

τ4/3
)(τ2dy2 + dx2

⊥) + dz2
)

Similar to standard AdS-Schwarzshild, but with horizon ”moving
away”

z0 = (
3

e
)1/4τ1/3

Naive extraction of thermodynamical quantities

• T ∼ 1
z0
∼ τ−1/3 (temperature)

• S ∼ AREA ∼ τ
z3
0
∼ const (entropy per u. rapidity and area⊥)

(Janik, Peschanski [hep-th/0512162])



Subasymptotic solution

• we start with

a(τ, z) = a0(v) + 1
τ2/3 a1(v) + 1

τ4/3 a2(v) + . . .

where v = z
τ1/3 . Similar relations for b(τ, z) and c(τ, z)

• rescaling Einstein tensor Gαβ = Rαβ − 1
2Rgαβ − 6gαβ

G̃ = (τ2/3Gττ , τ
4/3Gτz , τ

−4/3Gyy , τ2/3Gxx , τ
2/3Gzz)

leads to systematic expansion in powers of 1
τ2/3

G̃ = G̃0(v) + 1
τ2/3 G̃1(v) + 1

τ4/3 G̃2(v) + . . .

• solving problem in perturbative manner:

G̃i = 0



Viscosity coefficient I

• first order ( 1
τ2/3 ) solution reads

a1(v) = 2η0
(9+v4)v4

9−v8

b1(v) = −2η0
v4

3+v4 + 2η0 log 3−v4

3+v4

c1(v) = −2η0
v4

3+v4 − η0 log 3−v4

3+v4

• giving regular Riemann squared <2

• second order solution = lengthy formulas with two parameters
• η0 (viscostity coefficient)

• C (needed to calculate relaxation time)

• Riemann squared takes the form

<2 = # + 1
τ4/3

polynomial in v, η0 andC
(3−v4)4(3+v4)6

• is nonsingular only for

η0 = 1
21/4 33/4 (Janik [hep-th/0710144])

• C cannot be determined in this order



Third order solution

• Riemann squared up to this order gives <2 =

# + 1
τ2 (

polynomial in v and C
(v−31/4)4

+ 8 21/2 33/4 log (31/4 − v) + . . .)

• cancelation of 4th order pole at v = 31/4 fixes

C = −17+6 log 2
31/2

• logarithmic singularity survives

• idea = in string frame dilaton contribution cancels singularity

• indeed the case for φ = 1
τ2

1
14 21/2 33/4 log 3−v4

3+v4

• regularity restored, but in the string frame



Relaxation time in N = 4 SYM

• we assume

τπ = rτBoltzmann
π = 3 r

2
η
p

• in the leading order

ε ∼ 1
τ4/3 and η ∼ 1

τ so let’s write

η = A ε3/4

• goal = determine A and r

• second order dissipative hydrodynamics gives

−4 A ε3/4

τ + 4 ε
3 + τε′ + 21A r ε′

2ε1/4 + 9A r t ε′′
2ε1/4 = 0

• vanishing of this expression for energy density

ε = 1
τ4/3 −

√
2

33/4τ2 + 1+2 log 2

12
√

3 τ8/3

requires

r = 1−log 2
9 and A = 1√

2 33/4

• relaxation times than takes the form

τπ = 1−log 2
6 π T (T - temperature)



Discussion

• nontrivial dilaton profile leads to

trF 2 < 0

• this means that 〈
~E 2

〉
6=

〈
~B2

〉

• in fact magnetic modes dominate

• relaxation time is almost 30 x shorter than weak coupling
approximation



Summary and outlook

Summary

• studying 1D expansion of strongly coupled plasma using
AdS/CFT

• regularity of dual geometry chooses the physical behavior

• results are consistent with second order dissipative
hydrodynamics

Perspectives

• applying dynamical horizons framework to calculate the
entropy (work in progress)

• determining short time behavior from geometry regularity
(work in progress)

• generalizing dynamics to less symmetric situation


