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Introduction

@ We shall be discussing van Stockum spacetimes of rotating dust.
In this case Einstein’s Eq. can be solved exactly.
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@ Without careful analysis a class of solutions may be wrongly interpreted
as star-like rotating objects. Bonnor’s solution is an example.

In fact, global van Stockum flow cannot be considered astrophysically
interesting.
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Introduction

@ We shall be discussing van Stockum spacetimes of rotating dust.
In this case Einstein’s Eq. can be solved exactly.

@ Without careful analysis a class of solutions may be wrongly interpreted
as star-like rotating objects. Bonnor’s solution is an example.
In fact, global van Stockum flow cannot be considered astrophysically
interesting.

@ Recently van Stockum flow has been used in a linear approximation by
Cooperstock (cooperstock, Tieu, astro-ph/0507619) as a relativistic model of rotation
of spiral galaxies. He claimed the model could be used to explain
rotation curves without dark matter.

Actually, even better results can be obtained in the framework of
Newtonian dynamics at least for spiral galaxies that can not be
immersed in a massive spherical halo (Bratek, Jalocha, Kutschera, astro-ph/0611113).
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Asymptotically flat Bonnor spacetime of rotating dust

considered nonsingular — W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)

@ has a physically acceptable proper energy distribution
Figure: density diagram of proper
energy distribution (or of curvature
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Asymptotically flat Bonnor spacetime of rotating dust

considered nonsingular — W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)

@ has a physically acceptable proper energy distribution

Figure: density diagram of proper
energy distribution (or of curvature
scalar)
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@ structure functions defining the spacetime geometry

NS pad p? (02 8@+ [z)?)

K=—F2Y P2 _ w=
(o2 + @+ 1212) 2 (024 (2l +ap)"

and the corresponding line element

ds? = —dt?+2K (p, 2)dtdg+(p? —K2(p, 2))dg> +e2¥(#:2) (dpz +dzz) .
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Asymptotically flat Bonnor spacetime of rotating dust

considered nonsingular — W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)

@ has a physically acceptable proper energy distribution
Figure: density diagram of proper
energy distribution (or of curvature
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@ Einstein’s Eq. imply that R = 87D
the other curvature invariants are continuous and bounded, as
well

@ structure functions defining the spacetime geometry

NS pad p? (02 8@+ [z)?)
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and the corresponding line element
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Asymptotically flat Bonnor spacetime of rotating dust

considered nonsingular — W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)

@ has a physically acceptable proper energy distribution
Figure: density diagram of proper

3 2 2 RN
a p°+4(a+|z])
Do BE ( 2 e, L / 62V Ddpddz gg:llgr))/ distribution (or of curvature
T (P r@riz)?)
@ Einstein’s Eq. imply that R = 87D
the other curvature invariants are continuous and bounded, as
well
@ structure functions defining the spacetime geometry
. NS T G L 0 A
= 3/2° = 4
(P2 +(a+121?) 2 (p2+ (2l +27)

and the corresponding line element
ds? = —dt?+2K (p, z)dtde-+(p% —K2(p, 2))de> +e2¥(P:2) (dpz +dz2) ..

@ asymptotic expansion of the line element

o2 = —dt2+\/2a% 450076 gt o r 2(do? 4 sin? 0dp?) T

o total angular momentum J = /2 a3
e and total mass M =0 !l!
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van Stockum spacetimes — an equivalent definition

another formulation 1937: W.J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937)

@ Time translation symmetry + Axial symmetry

= 3¢ & dn, (Killing vectors)
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van Stockum spacetimes — an equivalent definition

another formulation 1937: W.J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937)

@ Time translation symmetry + Axial symmetry
= 3¢ & dn, (Killing vectors)
@ these symmetries should commute

En=0 & ¢&a.0"=n"0,8"
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van Stockum spacetimes — an equivalent definition

another formulation 1937: W.J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937)

@ Time translation symmetry + Axial symmetry
= 3¢ & dn, (Killing vectors)
@ these symmetries should commute
E,n=0 << ¢&on =n"0,8"

@ Asymptotic Flatness
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van Stockum spacetimes — an equivalent definition

another formulation 1937: W.J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937)

@ Time translation symmetry + Axial symmetry
= 3¢ & dn, (Killing vectors)
@ these symmetries should commute
E,n=0 << ¢&on =n"0,8"

@ Asymptotic Flatness
@ Dust matter (pressureless perfect fluid)

Ty = Duyu,
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van Stockum spacetimes — an equivalent definition

another formulation 1937: W.J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937)

@ Time translation symmetry + Axial symmetry
= 3¢ & dn, (Killing vectors)
@ these symmetries should commute
E,n=0 << ¢&on =n"0,8"

@ Asymptotic Flatness
@ Dust matter (pressureless perfect fluid)

Ty = Duyu,

@ Our Aim Find spacetimes of dust moving along trajectories of the time
translation Killing field

ut =2z 270 = /=€
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van Stockum spacetimes — an equivalent definition

another formulation 1937: W.J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937)

@ Time translation symmetry + Axial symmetry
= 3¢ & dn, (Killing vectors)
@ these symmetries should commute
E,n=0 << ¢&on =n"0,8"

@ Asymptotic Flatness
@ Dust matter (pressureless perfect fluid)

Ty = Duyu,

@ Our Aim Find spacetimes of dust moving along trajectories of the time
translation Killing field

ut =2z 270 = /=€

@ Is such flow possible? Yes, but... one needs rotation, otherwise dust
would collapse! (static configurations require pressure)
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Characteristics of van Stockum flow

via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
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Characteristics of van Stockum flow

via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
h.. = 9. + U,U, (projectior), u#u, = —1
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Characteristics of van Stockum flow

via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
h.. = 9. + U,U, (projectior), u#u, = —1
o the symmetric and traceless part: shear tensor (local distorsions)

1 1
Our =5 (Valug + Vua) h,h? — 3Vauhu,
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Characteristics of van Stockum flow
via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
h.. = 9. + U,U, (projectior), u#u, = —1
o the symmetric and traceless part: shear tensor (local distorsions)

1 1
Our =5 (Valug + Vua) h,h? — 3Vauhu,
o the antisymmetric part: vorticity tensor or vertex (local rotations)

1 ey

T2y

1
Wi = = (Valg — Vgua) h®, 07 . an Ua Wy

2
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Characteristics of van Stockum flow
via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
h.. = 9. + U,U, (projectior), u#u, = —1
o the symmetric and traceless part: shear tensor (local distorsions)
1 1
Our =5 (Valug + Vua) h,h? — 3Vauhu,

o the antisymmetric part: vorticity tensor or vertex (local rotations)

1 o 1 f L1 eraBy
war = 5 (Valg — Vgua) h*,h7 Q= Eﬁuawm,
@ the trace: dilation tensor (local expansion, scaling)
1
Ouv = gvauahw
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Characteristics of van Stockum flow

via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
h.. = 9. + U,U, (projectior), u#u, = —1
o the symmetric and traceless part: shear tensor (local distorsions)

1 1
Our =5 (Valug + Vua) h,h? — 3Vauhu,

o the antisymmetric part: vorticity tensor or vertex (local rotations)
1 ey

1
> (Vaug = Vgua) ho 0% or = > —
(V ug Vgu ) AL 5 H

2

@ the trace: dilation tensor (local expansion, scaling)

Wyy = Uawpr

1 «@
Ouv = 5Vau huw

@ van Stockum flow ut =Z (" +Wnt), W =0
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Characteristics of van Stockum flow

via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
h.. = 9. + U,U, (projectior), u#u, = —1
o the symmetric and traceless part: shear tensor (local distorsions)
—}(V Ug + VgUa) h® ,h? T
Opv = 2 alp BUa AL 3 et uv
o the antisymmetric part: vorticity tensor or vertex (local rotations)

1 ey

1
Wi = = (Valg — Vgua) h® 0% r = Eﬁuawm,

2

@ the trace: dilation tensor (local expansion, scaling)

1 «@
Ouv = 5Vau huw

@ van Stockum flow ut =Z (" +Wnt), W =0
e isrigid, thatis, o, =0and 6, =0
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Characteristics of van Stockum flow

via algebraic decomposition of V ,u,, for a general flow

@ the unique algebraic decomposition of V,u,,
h.. = 9. + U,U, (projectior), u#u, = —1
o the symmetric and traceless part: shear tensor (local distorsions)

1 1
Our =5 (Valug + Vua) h,h? — 3Vauhu,
o the antisymmetric part: vorticity tensor or vertex (local rotations)

o 1 f B 1 ey
war = 5 (Valg — Vgua) h*,h7 Q= Eﬁuawm,
@ the trace: dilation tensor (local expansion, scaling)
1 «@
Ouv = 5Vau huw
@ van Stockum flow ut =Z (" +Wnt), W =0

e isrigid, thatis, o, =0and 6, =0

e and locally rotates (even though it has zero angular velocity w.r.t. "fixed
stars’)
1 2 2
Qo - LELVSE o g
4 (én)° — €22 133
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Geometry of Stationary and Axisymmetric Spacetime

the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

@ Asymptotic flatness = 7 = 0 on the symmetry axis at least for radii
sufficiently large
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Geometry of Stationary and Axisymmetric Spacetime

the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

@ Asymptotic flatness = 7 = 0 on the symmetry axis at least for radii
sufficiently large
= ) Naéséuny =0 and  Eunsnu.) =0 atleast at one point
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Geometry of Stationary and Axisymmetric Spacetime

the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

@ Asymptotic flatness = 7 = 0 on the symmetry axis at least for radii
sufficiently large
= ) Naéséuny =0 and  Eunsnu.) =0 atleast at one point
Q T, x&& + Einstein's Egs. Ry, — 3RQu, = 87Ty,
=
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Geometry of Stationary and Axisymmetric Spacetime

the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

@ Asymptotic flatness = 7 = 0 on the symmetry axis at least for radii
sufficiently large
= |) 7/[&5:’35;1;7/] =0 and f[a”lﬁ’lu:u] — (0 atleast at one point
Q T, x&.& + Einstein's Egs. Ry, — %ng = 87T,
= i) guRM[ug(w]ﬁ] =0 and p* Rﬂ[t/&anﬁ] —0
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Geometry of Stationary and Axisymmetric Spacetime

the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

@ Asymptotic flatness = 7 = 0 on the symmetry axis at least for radii
sufficiently large
= ) Naéséuny =0 and  Eunsnu.) =0 atleast at one point
Q T, x&& + Einstein's Egs. Ry, — 3RQu, = 87Ty,
= i) f“RM[”&“nﬁ] =0 and 7]“RM[”§“7)‘S] =0
@ commutativity of symmetries
= i) [&n]=0
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Geometry of Stationary and Axisymmetric Spacetime

the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

@ Asymptotic flatness = 7 = 0 on the symmetry axis at least for radii
sufficiently large
= ) Naéséuny =0 and  Eunsnu.) =0 atleast at one point
Q T, x&& + Einstein's Egs. Ry, — 3RQu, = 87Ty,
= i) f“RM[”&“nﬁ] =0 and 7]“RM[”§“7)‘S] =0
@ commutativity of symmetries
= i) [&n]=0

@ (maybe apart from isolated points) there exist a coordinate frame in
which the spacetime line element reads

ds” =~V (dt — Kdg)? +V " p?dg? + e (dp? + Adz”)

structure functions V, K, W, A depend only on p and z
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Geometry of Stationary and Axisymmetric Spacetime

the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

@ Asymptotic flatness = 7 = 0 on the symmetry axis at least for radii
sufficiently large
= ) Naéséuny =0 and  Eunsnu.) =0 atleast at one point
Q T, x&& + Einstein's Egs. Ry, — 3RQu, = 87Ty,
= i) f“RM[”&“nﬁ] =0 and 7]“RM[”§“7)‘S] =0
@ commutativity of symmetries
= i) [&n]=0

@ (maybe apart from isolated points) there exist a coordinate frame in
which the spacetime line element reads

ds” =~V (dt — Kdg)? +V " p?dg? + e (dp? + Adz”)

structure functions V, K, W, A depend only on p and z
@ proof: SEE R. WALD’S HANDBOOK 'GR’
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Reducing the number of structure functions

Q T, =DZz%.6, &'Du=0=10"D,
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Reducing the number of structure functions

Q T =DZ%.8, €D,.=0=19"D,
@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0
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Reducing the number of structure functions

Q T =DZ%.8, €D,.=0=19"D,
@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0
e continuity satisfied identically (no constraints),
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Reducing the number of structure functions

Q T =DZ%.8, €D,.=0=19"D,
@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0

e continuity satisfied identically (no constraints),
@ geodesic Eq. implies Z = const. = V = const., thus we may setV =1
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Reducing the number of structure functions

Q T, =DZz%.6, &'Du=0=10"D,

@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0

e continuity satisfied identically (no constraints),
@ geodesic Eq. implies Z = const. = V = const., thus we may setV =1

@ KM :=&n'n" + 2netn” + neHe”
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Reducing the number of structure functions

Q T, =DZz%.6, &'Du=0=10"D,

@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0

e continuity satisfied identically (no constraints),
@ geodesic Eq. implies Z = const. = V = const., thus we may setV =1

@ KM :=&n'n" + 2netn” + neHe”
e then for dust

KH (T —TOuw/2) =0 & Einst Eq. = KHRu =0
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Reducing the number of structure functions

Q T, =DZz%.6, &'Du=0=10"D,

@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0

e continuity satisfied identically (no constraints),
@ geodesic Eq. implies Z = const. = V = const., thus we may setV =1

@ KM :=&n'n" + 2netn” + neHe”
e then for dust

KH (T —TOuw/2) =0 & Einst Eq. = KHRu =0

e, InVIN =0, = A=A@2)
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Reducing the number of structure functions

Q T, =DZz%.6, &'Du=0=10"D,

@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0

e continuity satisfied identically (no constraints),
@ geodesic Eq. implies Z = const. = V = const., thus we may setV =1

@ KM :=&n'n" + 2netn” + neHe”
o then for dust
KH (T —TOuw/2) =0 & Einst Eq. = KHRu =0
e, InVIN =0, = A=A@2)

@ On comparing with the metric, we may set A(z) = 1
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Reducing the number of structure functions

Q T =DZ%.8, €D,.=0=19"D,
@ Einstein’s Eq. and V,G*, = 0 imply the flow is geodesic (u*V,u* = 0)
and continuous V, (Du*) =0

e continuity satisfied identically (no constraints),
@ geodesic Eq. implies Z = const. = V = const., thus we may setV =1

@ KM :=&n'n" + 2netn” + neHe”
o then for dust
KH (T —TOuw/2) =0 & Einst Eq. = KHRu =0
e, InVIN =0, = A=A@2)

@ On comparing with the metric, we may set A(z) = 1
@ We have thus shown that for van Stockum flow

ds? = —dt® + 2K (p, z)dtde + (> — K2(p, 2))d¢® + 2V (»?) (dp2 + dzz)
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The reduced set of Einstein’s equations

@ LetE*, :=R*, — IR6*, — 87TH,,
2
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The reduced set of Einstein’s equations

Q LetE*, :=R*, — IRé*, —8xT#, thenE”, = 0and E”, = 0 yield

2 2
sz — KyP \; ;= — KvPK;Z

\U} =
” 4p ’ 2p
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The reduced set of Einstein’s equations

Q LetE*, :=R*, — IRé*, —8xT#, thenE”, = 0and E”, = 0 yield

2 2
sz — KyP \; ;= — KvPK;Z

\U} =
” 4p ’ 2p

@ integrability condition ¥ ,, = ¥ ,, imposes on K
the elliptic constraint

LK =0, L:aﬁ—%aeraf
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The reduced set of Einstein’s equations

Q LetE*, :=R*, — IRé*, —8xT#, thenE”, = 0and E”, = 0 yield

2 2
sz — KyP \; ;= — KvPK;Z

\U} =
” 4p ’ 2p

@ integrability condition ¥ ,, = ¥ ,, imposes on K
the elliptic constraint

LK =0, L:aﬁ—%aeraf

© then, the other components of E*,, but E', and E',, vanish identically.
3
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The reduced set of Einstein’s equations

Q LetE*, :=R*, — IRé*, —8xT#, thenE”, = 0and E”, = 0 yield

2 2
sz — KyP \; ;= — KvPK;Z

\U} =
” 4p ’ 2p

@ integrability condition ¥ ,, = ¥ ,, imposes on K
the elliptic constraint
1
LK =0, L:aﬁ—;aﬁaf

© then, the other components of E*,, but E'; and E‘¢, vanish identically.
@ The latter two will also vanish for C? solutions if only

y
87 p?

D2V K2 + K,Zz
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The reduced set of Einstein’s equations

Q LetE*, :=R*, — IRé*, —8xT#, thenE”, = 0and E”, = 0 yield

2 2
sz — KyP \; ;= — KvPK;Z

\U} =
” 4p ’ 2p

@ integrability condition ¥ ,, = ¥ ,, imposes on K
the elliptic constraint
1
LK =0, L:aﬁ—;aﬁaf

© then, the other components of E*,, but E'; and E‘¢, vanish identically.
@ The latter two will also vanish for C? solutions if only

y
87 p?

D2V K2 + K,Zz

@ the elliptic constraint very easy to solve
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The reduced set of Einstein’s equations

Q LetE*, :=R*, — IRé*, —8xT#, thenE”, = 0and E”, = 0 yield

2 2
sz — KyP \; ;= — KvPK;Z

\U} =
” 4p ’ 2p

@ integrability condition ¥ ,, = ¥ ,, imposes on K
the elliptic constraint
1
LK =0, L:aﬁ—;aﬁaf

© then, the other components of E*,, but E'; and E‘¢, vanish identically.
@ The latter two will also vanish for C? solutions if only

y
87 p?

D2V K2 + K,Zz

@ the elliptic constraint very easy to solve
@ energy density positive definite
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The reduced set of Einstein’s equations

Q LetE*, :=R*, — IRé*, —8xT#, thenE”, = 0and E”, = 0 yield

2 2
K,Z — K,p vV, =— KoKz

\U} =
” 4p ’ 2p

@ integrability condition ¥ ,, = ¥ ,, imposes on K
the elliptic constraint
1
LK =0, L:aﬁ—;aﬁaf

© then, the other components of E*,, but E'; and E‘¢, vanish identically.
@ The latter two will also vanish for C? solutions if only

y
87 p?

D2V K2 + K,Zz

@ the elliptic constraint very easy to solve
@ energy density positive definite

too beautiful to be true?... Yes



on nonexistence of physically viable star-like van Stockum spacetimes

LK =0, c:aﬁ—%aﬁaf
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on nonexistence of physically viable star-like van Stockum spacetimes

LK =0, c:aﬁ—%aﬁaf

@ Let LK = 0 almost everywhere in an open subset V of the plane (p, z)
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on nonexistence of physically viable star-like van Stockum spacetimes

LK =0, c:aﬁ—%aﬁaf

@ Let LK = 0 almost everywhere in an open subset V of the plane (p, z)
@ and let K< € C*(V) tend point-wise to K as e — 0 (a regularized K profile)
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on nonexistence of physically viable star-like van Stockum spacetimes

LK =0, c:aﬁ—%aﬁaf

@ Let LK = 0 almost everywhere in an open subset V of the plane (p, z)

@ and let K< € C*(V) tend point-wise to K as e — 0 (a regularized K profile)

example
o U= —GTM is a smooth solution of V2U = 0 forr # 0
o Uc = ——EM s 3 regularized form of U with the same mass and a smooth
vV €2+r2 g

3M €2

—3Me™__ _ arepresentation of §3(r)
4 (r2+52)§

density distribution D, =
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on nonexistence of physically viable star-like van Stockum spacetimes

LK =0, c:aﬁ—%aﬁaf

@ Let LK = 0 almost everywhere in an open subset V of the plane (p, z)

@ and let K< € C*(V) tend point-wise to K as e — 0 (a regularized K profile)

example
o U= —GTM is a smooth solution of V2U = 0 forr # 0
o Uc = ——EM s 3 regularized form of U with the same mass and a smooth
vV €2+r2 g
3M €2

density distribution D, = — a representation of §3(r)

4 (I’2+ez)%

@ LetZ € R® be the set of points where £K does not exist in the sense
that lim._.o fzé (LK) fdm # 0 for any § > O, where Z C Zs,

0 < dist(9Zs,7) < 6, ®f = p 'K, or p~?K*, and dm = e*" pdpdedz
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on nonexistence of physically viable star-like van Stockum spacetimes

LK =0, c:aﬁ—%aﬁaf

@ Let LK = 0 almost everywhere in an open subset V of the plane (p, z)
@ and let K< € C*(V) tend point-wise to K as e — 0 (a regularized K profile)

example
o U= —GTM is a smooth solution of V2U = 0 forr # 0
o Uc = ——EM s 3 regularized form of U with the same mass and a smooth
vV €2+r2 g

3M €2

—3Me™__ _ arepresentation of §3(r)
4 (r2+52)§

density distribution D, =

@ LetZ € R® be the set of points where £K does not exist in the sense
that lim._.o fzé (LK) fdm # 0 for any § > O, where Z C Zs,

0 < dist(9Zs,7) < 6, ®f = p 'K, or p~?K*, and dm = e*" pdpdedz
o theory of elliptic equations = Z has measure zero in R* (here concentric
circles and rotational surfaces) and K e C? elsewhere
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on nonexistence of physically viable star-like van Stockum spacetimes

£. Bratek, J. Jatocha, M. Kutschera, van Stockum-Bonnor spacetimes of rigidly rotating dust,
online: Phys.Rev.D www site (unrevised ver. astro-ph/0603791v4)

Theorem

7 is nonempty. There are no asymptotically flat van-Stockum spacetimes with
globally positive definite energy. Asymptotically flat van-Stockum spacetimes
must contain curvature singularities with negative active masses.
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on nonexistence of physically viable star-like van Stockum spacetimes

£. Bratek, J. Jatocha, M. Kutschera, van Stockum-Bonnor spacetimes of rigidly rotating dust,
online: Phys.Rev.D www site (unrevised ver. astro-ph/0603791v4)

Theorem

7 is nonempty. There are no asymptotically flat van-Stockum spacetimes with
globally positive definite energy. Asymptotically flat van-Stockum spacetimes
must contain curvature singularities with negative active masses.

@ Let's suppose that Z = ()
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on nonexistence of physically viable star-like van Stockum spacetimes

£. Bratek, J. Jatocha, M. Kutschera, van Stockum-Bonnor spacetimes of rigidly rotating dust,
online: Phys.Rev.D www site (unrevised ver. astro-ph/0603791v4)

Theorem

7 is nonempty. There are no asymptotically flat van-Stockum spacetimes with
globally positive definite energy. Asymptotically flat van-Stockum spacetimes
must contain curvature singularities with negative active masses.

@ Let's suppose that Z = ()

@ inside a ball Bgx ¢ R® bounded by a two-sphere Sk of radius R and
centered at the origin

/Dez"’pdp AdgAdz S0 L / K Katp— K, d)ndo = — [ KK 4510
87 p 8 siné
Bgr SR SR

in virtue of the Stokes theorem, provided (K?), = o(sin#),

(rsinf = p, rcosé = z)
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on nonexistence of physically viable star-like van Stockum spacetimes

£. Bratek, J. Jatocha, M. Kutschera, van Stockum-Bonnor spacetimes of rigidly rotating dust,
online: Phys.Rev.D www site (unrevised ver. astro-ph/0603791v4)

Theorem

7 is nonempty. There are no asymptotically flat van-Stockum spacetimes with
globally positive definite energy. Asymptotically flat van-Stockum spacetimes
must contain curvature singularities with negative active masses.

@ Let's suppose that Z = ()

@ inside a ball Bgx ¢ R® bounded by a two-sphere Sk of radius R and
centered at the origin

/Dez"’pdp AdgAdz S0 L / K Katp— K, d)ndo = — [ KK 4510
87 p 8m siné
Br Sr Sr
in virtue of the Stokes theorem, provided (K?), = o(sin#),
(rsinf = p, rcosé = z)
o ds® = —dt?® + 2Kdtdg + (p* — K?) d? + e (dp? + dz?)
by asymptotic flatness K ~ 2Jr~*sin?# as r — oo, hence, for R

sufficiently large, RHS is negative and tends to 0 as R — oo,
while LHS is positive, a contradiction
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On nonexistence... Additional sources of negative active mass

required to concord with the full set of Einstein’s Eq.

e Total mass of asymptotically flat van Stockum spacetimes is zero

1 [ K&K

M=—2 lim aBuy VHEYAX AP = lim —/ dpAde = 0
/ 3V 9anm Ve R 8x | sing %

Sr Sr
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On nonexistence... Additional sources of negative active mass

required to concord with the full set of Einstein’s Eq.

e Total mass of asymptotically flat van Stockum spacetimes is zero

1 [ K&K
M=+ ||m/ Cappuy VHE XA = lim —/ ——~dpAdf =0
87 R—oco 7V 9canum Ve R—oco 87/ sing ¢
SR SR
K% —k2 K, pK
@ Forany smooth W and K satisfying ¥ ,, = Lt and v, = — =Bt

o the trace of spatial stresses

. K
S =Tuw (UHU” +gH) = —e?¥ LK,
v ( +9"") 167p

o the proper energy density
D=T,ulu"=D-38
e Tolman’s active mass density on a hypersurface of constant time

K
T=(8r) 'R g =D+e 2 B p? LK

e the curvature scalar ~ -
R=R", =8r (D - 25)
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On nonexistence... Additional sources of negative active mass

required to concord with the full set of Einstein’s Eq.

e Total mass of asymptotically flat van Stockum spacetimes is zero

1 [ K&K
M=+ ||m/ Cappuy VHE XA = lim —/ ——~dpAdf =0
87 R—oco 7V 9canum Ve R—oco 87/ sing ¢
SR SR
K% —k2 K, pK
@ Forany smooth W and K satisfying ¥ ,, = Lt and v, = — =Bt

o the trace of spatial stresses

. K
S =Tuw (UHU” +gH) = —e?¥ LK,
v ( +9"") 167p

o the proper energy density
D=T,ulu"=D-38
e Tolman’s active mass density on a hypersurface of constant time

K
T=(8r) 'R g =D+e 2 B p? LK

e the curvature scalar

© In the regularity region R® \ Z:
D=Dr =D = (87) 'R, and S=0,

like for dust, and Einstein’s equations are equivalent to our reduced set
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Additional sources of negative active mass

curvature singularities from non-differentiability of structure functions

However,
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Additional sources of negative active mass

curvature singularities from non-differentiability of structure functions

However,
@ For regularized profiles K€ we get

lim / S#£0

50T
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Additional sources of negative active mass

curvature singularities from non-differentiability of structure functions

However,
@ For regularized profiles K€ we get

lim / S#£0
50T
o
§:87r<D—2§) - /ﬁyé/ﬁ:sn/p,
R3 R3\Z R3

= F~3=87TD—|—’\/I

e D is smooth and integrable,
e 7 is a distribution localized on Z
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Additional sources of negative active mass

curvature singularities from non-differentiability of structure functions

However,
@ For regularized profiles K€ we get

lim / S#£0
50T
o
§:87r<D—2§) - /ﬁyé/ﬁ:sn/p,
R3 R3\Z R3

= F~3=87TD—|—’\/I

e D is smooth and integrable,
e 7 is a distribution localized on Z

@ 7 is the set of curvature singularity as R is a distribution on Z.
The singularity is not isolated from regularity regions.
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An example — Asymptotically flat Bonnor spacetime

with an embedded layer of negative active mass
considered nonsingular — W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)

@ has a physically acceptable proper energy distribution
Figure: density diagram of proper
energy distribution (or of curvature

pad (PP+a@+1z)?)
AT T
scalar)

p=22

T s ::/pezw’dedqbdZ
T (P2 +(a+21?)

@ and the following structure functions

p?\/8uad pad PZ (p2—8(a+|2\)2)

(P+@+R?)? 2 (Rezeap)’

@ asymptotic expansion of the corresponding line element

as? = —at?+/283 L g ar? 11 (d? + sin? 0d?)

e total angular momentum J = \/2 adu
e and total mass M =0
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An example — Asymptotically flat Bonnor spacetime

with an embedded surface layer of negative active mass

from now on this and other asymptotically flat solutions with integrable D must be considered singular

an example of regularization of Bonnor’s solution

~3/2
Ks(p,z) = 8a3,u-p24((a+\/22+62)2+p2> , a>0, pu>0
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An example — Asymptotically flat Bonnor spacetime

with an embedded surface layer of negative active mass

from now on this and other asymptotically flat solutions with integrable D must be considered singular

an example of regularization of Bonnor’s solution

~3/2
Ks(p,z) = 8a3,u-p24((a+\/22+62)2+p2> , a>0, pu>0

@ Kg is globally C*
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An example — Asymptotically flat Bonnor spacetime

with an embedded surface layer of negative active mass

from now on this and other asymptotically flat solutions with integrable D must be considered singular

an example of regularization of Bonnor’s solution

~3/2
Ks(p,z) = 8a3,u-p24((a+\/22+62)2+p2> , a>0, pu>0

@ Kg is globally C*
e its limit K2 is not even differentiable in Z (which is the plane z = 0)
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An example — Asymptotically flat Bonnor spacetime

with an embedded surface layer of negative active mass

from now on this and other asymptotically flat solutions with integrable D must be considered singular

an example of regularization of Bonnor’s solution
—3/2
Ks(p,z) = 8a3,u-p24((a+\/22+62)2+p2> , a>0, pu>0
@ Kg is globally C*

e its limit K2 is not even differentiable in Z (which is the plane z = 0)
@ on integrating over R® and taking the limit ¢ — 0 we obtain

. 3 o - o
[o= [ o=u [B=Zu [s5=% [Redmu [Br=0,
r3 r3 T r3 2

R3\T r3
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An example — Asymptotically flat Bonnor spacetime

with an embedded surface layer of negative active mass

from now on this and other asymptotically flat solutions with integrable D must be considered singular

an example of regularization of Bonnor’s solution

~3/2
Ks(p,z) = 8a3,u-p24((a+\/22+62)2+p2> , a>0, pu>0

@ Kg is globally C*
e its limit K2 is not even differentiable in Z (which is the plane z = 0)
@ on integrating over R® and taking the limit ¢ — 0 we obtain

~ 3 o L -

[o= [ o=u [B=Zu [s5=% [Redmu [Br=0,
R3 R3\T R3 z R3 R3

the latter equality holds identically for any c? asymptotically flat profiles as then

8my/—gDrdp Adp Adz =d (pflKK‘de Adg + p KK ,dp A dz)
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An example — Asymptotically flat Bonnor spacetime

with an embedded surface layer of negative active mass

from now on this and other asymptotically flat solutions with integrable D must be considered singular

an example of regularization of Bonnor’s solution

~3/2
Ks(p,z) = 8a3,u-p24((a+\/22+62)2+p2> , a>0, pu>0

@ Kg is globally C*
e its limit K2 is not even differentiable in Z (which is the plane z = 0)
@ on integrating over R® and taking the limit ¢ — 0 we obtain

~ 3 o L -

/D: / D=u, /D:Zu, /S:Z, /R:47'r,u,, /DTEO,
R3 R3\T R3 z R3 R3

the latter equality holds identically for any c? asymptotically flat profiles as then

8my/—gDrdp Adp Adz =d (pflKK‘de Adg + p KK ,dp A dz)

® Since [y5,,D = fsD=n#p/2=8n)"" [sR,
again, the curvature scalar is a distribution and it may be smooth and
bounded only outside a measure zero set
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@ van Stockum spacetime

ds? = —dt? + 2K (p, z)dtde + (p? — K2(p, 2))de? + e2¥(p:2) (dp2 + dzz)

K2 4+ K3 1 KK
D=e V2 _ 2 <8§—78p+822>K:0, w:_/L’Zdz
8w p? p 2p
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@ van Stockum spacetime
ds? = —dt? + 2K (p, z)dtde + (0 — K2(p, z))d¢? + e2¥(p2) (dp2 4 dzz)

K2 4+ K3 1 KK
D=e V2 _ 2 <8§—78p+822>K:0, w:_/L’Zdz
8w p? p 2p

@ Positive definiteness and integrability of proper energy density excludes
asymptotically flat van Stockum spacetimes.
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@ van Stockum spacetime
ds? = —dt? + 2K (p, z)dtde + (0 — K2(p, z))d¢? + e2¥(p2) (dp2 4 dzz)

K2 4+ K3 1 KK
D=e V2 _ 2 (a2— 7ap+a§> K =0, w:_/L’Zdz
8w p? Fop 2p

@ Positive definiteness and integrability of proper energy density excludes
asymptotically flat van Stockum spacetimes.

@ Asymptotic flatness implies the existence of spatial measure zero sets of scalar
curvature singularities. The singularities have distributional character and are not
isolated from regularity regions.
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@ van Stockum spacetime

ds? = —dt? + 2K (p, z)dtde + (p? — K2(p, 2))de? + e2¥(p:2) (dp2 + dzz)

K2 4+ K3 1 KK

poe ez (g Lg L 52k —o, w:_/L’Zdz

8w p? Fop 2p

@ Positive definiteness and integrability of proper energy density excludes
asymptotically flat van Stockum spacetimes.

@ Asymptotic flatness implies the existence of spatial measure zero sets of scalar
curvature singularities. The singularities have distributional character and are not
isolated from regularity regions.

@ Closely related to the singularities are stresses (distinct from dust) that contribute
negative active masses to the total mass.
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@ van Stockum spacetime

ds? = —dt? + 2K (p, z)dtde + (p? — K2(p, 2))de? + e2¥(p:2) (dp2 + dzz)

K2 + K2 1 K K
D=e V22, (82_78/3"‘322)}(:0, w:_/L’Zdz
8mp? Fop 2p
@ Positive definiteness and integrability of proper energy density excludes
asymptotically flat van Stockum spacetimes.

@ Asymptotic flatness implies the existence of spatial measure zero sets of scalar
curvature singularities. The singularities have distributional character and are not
isolated from regularity regions.

@ Closely related to the singularities are stresses (distinct from dust) that contribute
negative active masses to the total mass.

@ Total mass of asymptotically flat van Stockum spacetimes is zero.
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@ van Stockum spacetime

ds? = —dt? + 2K (p, z)dtde + (p? — K2(p, 2))de? + e2¥(p:2) (dp2 + dzz)

K2 + K2 1 K K
D=e V22, (82_78/3"‘322)}(:0, w:_/L’Zdz
8mp? Fop 2p
@ Positive definiteness and integrability of proper energy density excludes
asymptotically flat van Stockum spacetimes.

@ Asymptotic flatness implies the existence of spatial measure zero sets of scalar
curvature singularities. The singularities have distributional character and are not
isolated from regularity regions.

@ Closely related to the singularities are stresses (distinct from dust) that contribute
negative active masses to the total mass.

@ Total mass of asymptotically flat van Stockum spacetimes is zero.
@ van Stockum flow is rigid.
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van Stockum spacetime

ds? = —dt? + 2K (p, z)dtde + (p? — K2(p, 2))de? + e2¥(p:2) (dp2 + dzz)

K2 4+ K3 1 KK

poe ez (g Lg L 52k —o, w:_/L’Zdz
8w p? Fop 2p

Positive definiteness and integrability of proper energy density excludes

asymptotically flat van Stockum spacetimes.

Asymptotic flatness implies the existence of spatial measure zero sets of scalar

curvature singularities. The singularities have distributional character and are not

isolated from regularity regions.

Closely related to the singularities are stresses (distinct from dust) that contribute

negative active masses to the total mass.

Total mass of asymptotically flat van Stockum spacetimes is zero.
van Stockum flow is rigid.

Angular velocity of the flow with respect to locally non-rotating observers
numerically equals the angular velocity of dragging of inertial frames, while
angular velocity of matter in linearized gravity should be many orders of
magnitude greater. This shows that van Stockum flow is ultra-relativistic even in
the limit of negligible density.
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van Stockum spacetime

ds? = —dt? + 2K (p, z)dtde + (p? — K2(p, 2))de? + e2¥(p:2) (dp2 + dzz)

K2 4+ K3 1 KK
D=e V2 _ 2 (a2— 7ap+a§> K =0, w:_/L’Zdz
8w p? Fop 2p
Positive definiteness and integrability of proper energy density excludes
asymptotically flat van Stockum spacetimes.
Asymptotic flatness implies the existence of spatial measure zero sets of scalar
curvature singularities. The singularities have distributional character and are not
isolated from regularity regions.

Closely related to the singularities are stresses (distinct from dust) that contribute
negative active masses to the total mass.

Total mass of asymptotically flat van Stockum spacetimes is zero.
van Stockum flow is rigid.

Angular velocity of the flow with respect to locally non-rotating observers
numerically equals the angular velocity of dragging of inertial frames, while
angular velocity of matter in linearized gravity should be many orders of
magnitude greater. This shows that van Stockum flow is ultra-relativistic even in
the limit of negligible density.

therefore, van Stockum flow is not physically viable. In particular it cannot be used
for modelling of rotation curves of spiral galaxies (motion of stars is differential)
(such attempts have already been made cf. F.I. Cooperstock, S. Tieu
astro-ph/0507619)
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