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Introduction

We shall be discussing van Stockum spacetimes of rotating dust.
In this case Einstein’s Eq. can be solved exactly.

Without careful analysis a class of solutions may be wrongly interpreted
as star-like rotating objects. Bonnor’s solution is an example.
In fact, global van Stockum flow cannot be considered astrophysically
interesting.

Recently van Stockum flow has been used in a linear approximation by
Cooperstock (Cooperstock, Tieu, astro-ph/0507619) as a relativistic model of rotation
of spiral galaxies. He claimed the model could be used to explain
rotation curves without dark matter.
Actually, even better results can be obtained in the framework of
Newtonian dynamics at least for spiral galaxies that can not be
immersed in a massive spherical halo (Bratek, Jalocha, Kutschera, astro-ph/0611113).
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Asymptotically flat Bonnor spacetime of rotating dust
considered nonsingular – W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)

has a physically acceptable proper energy distribution

D =
µ a3

π
·

(
ρ2 + 4 (a + |z|)2

)
(

ρ2 + (a + |z|)2
)4

e−2Ψ
, µ :=

∫
ρe2ΨDdρdφdz

Einstein’s Eq. imply that R = 8πD
the other curvature invariants are continuous and bounded, as
well

structure functions defining the spacetime geometry

K =
ρ2

√
8µ a3(

ρ2 + (a + |z|)2
)3/2

, Ψ =
µ a3

2

ρ2
(

ρ2 − 8 (a + |z|)2
)

(
ρ2 + (|z| + a)2

)4

and the corresponding line element

ds2 = −dt2+2K (ρ, z)dtdφ+(ρ2−K 2(ρ, z))dφ
2+e2Ψ(ρ,z)

(
dρ

2 + dz2
)

asymptotic expansion of the line element

ds2 = −dt2+

√
2 a3µ

4 sin2 θ

r
dtdφ+dr2+r2

(
dθ

2 + sin2
θdφ

2
)

total angular momentum J =
√

2 a3µ
and total mass M = 0 !!!

Figure: density diagram of proper
energy distribution (or of curvature
scalar)
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van Stockum spacetimes – an equivalent definition
another formulation 1937: W.J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937)

Time translation symmetry + Axial symmetry

⇒ ∃ ξ & ∃ η, (Killing vectors)

these symmetries should commute

[ξ, η] = 0 ⇔ ξν∂νηµ = ην∂νξµ

Asymptotic Flatness

Dust matter (pressureless perfect fluid)

Tµν = Duµuν

Our Aim Find spacetimes of dust moving along trajectories of the time
translation Killing field

uµ = Zξµ, Z−1 =
√
−ξαξα

Is such flow possible? Yes, but... one needs rotation, otherwise dust
would collapse! (static configurations require pressure)
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Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Characteristics of van Stockum flow
via algebraic decomposition of∇µuν for a general flow

the unique algebraic decomposition of ∇µuν

hµν = gµν + uµuν (projectior), uµuµ = −1
the symmetric and traceless part: shear tensor (local distorsions)

σµν =
1

2

(
∇αuβ +∇βuα

)
hα

µhβ
ν −

1

3
∇αuαhµν

the antisymmetric part: vorticity tensor or vertex (local rotations)

ωµν =
1

2

(
∇αuβ −∇βuα

)
hα

µhβ
ν , Ωµ =

1

2

εµαβγ

√
−g

uαωµν

the trace: dilation tensor (local expansion, scaling)

θµν =
1

3
∇αuαhµν

van Stockum flow uµ = Z (ξµ + Wηµ) , W ≡ 0
is rigid, that is, σµν = 0 and θµν = 0
and locally rotates (even though it has zero angular velocity w.r.t. ’fixed
stars’)

ΩµΩµ =
1

4

(ξξ)2 (∇S)2

(ξη)2 − ξ2η2
, S =

ξη

ξξ
6= 0

Łukasz Bratek Curious Spacetime Singularities



Geometry of Stationary and Axisymmetric Spacetime
the most general form of metric tensor

Theorem (on the line element of stationary and axially symmetric spacetime)

1 Asymptotic flatness ⇒ η = 0 on the symmetry axis at least for radii
sufficiently large
⇒ i) η[αξβξµ;ν] = 0 and ξ[αηβηµ;ν] = 0 at least at one point

2 Tµν ∝ ξµξν + Einstein’s Eqs. Rµν − 1
2 Rgµν = 8πTµν

⇒ ii) ξµR [ν
µ ξαηβ] = 0 and ηµR [ν

µ ξαηβ] = 0
3 commutativity of symmetries

⇒ iii) [ξ, η] = 0

(maybe apart from isolated points) there exist a coordinate frame in
which the spacetime line element reads

ds2 = −V (dt − K dφ)2 + V−1ρ2dφ2 + e2Ψ
(

dρ2 + Λdz2
)

structure functions V , K , Ψ, Λ depend only on ρ and z

proof: SEE R. WALD’S HANDBOOK ’GR’
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Reducing the number of structure functions

1 Tµν = DZ 2ξµξν , ξµD,µ = 0 = ηµD,µ

2 Einstein’s Eq. and ∇µGµ
ν = 0 imply the flow is geodesic (uν∇νuµ = 0)

and continuous ∇µ (Duµ) = 0
continuity satisfied identically (no constraints),
geodesic Eq. implies Z = const . ⇒ V = const ., thus we may set V ≡ 1

3 K µν := ξ2ηµην + 2ξηξµην + η2ξµξν

then for dust

K µν (Tµν − Tgµν/2) = 0 & Einst. Eq. ⇒ K µνRµν = 0

ρe−2Ψ∂ρ ln
√
|Λ| = 0, ⇒ Λ = Λ(z)

On comparing with the metric, we may set Λ(z) ≡ 1

4 We have thus shown that for van Stockum flow

ds2 = −dt2 + 2K (ρ, z)dtdφ + (ρ2 − K 2(ρ, z))dφ2 + e2Ψ(ρ,z)
(

dρ2 + dz2
)
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The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



The reduced set of Einstein’s equations

1 Let Eµ
ν := Rµ

ν − 1
2 Rδµ

ν − 8πT µ
ν , then Eρ

ρ = 0 and Eρ
z = 0 yield

Ψ,ρ =
K 2

,z − K 2
,ρ

4ρ
, Ψ,z = −K,ρK,z

2ρ

2 integrability condition Ψ,ρz = Ψ,zρ imposes on K
the elliptic constraint

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

3 then, the other components of Eµ
ν , but E t

t and E t
φ, vanish identically.

4 The latter two will also vanish for C2 solutions if only

D = e−2Ψ K 2
,ρ + K 2

,z

8πρ2
> 0

the elliptic constraint very easy to solve

energy density positive definite

too beautiful to be true?... Yes
Łukasz Bratek Curious Spacetime Singularities



on nonexistence of physically viable star-like van Stockum spacetimes

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

Let LK = 0 almost everywhere in an open subset V of the plane (ρ, z)

and let K ε ∈ C∞(V) tend point-wise to K as ε → 0 (a regularized K profile)

example

U = −GM
r is a smooth solution of ∇2U = 0 for r 6= 0

Uε = − GM√
ε2+r2

is a regularized form of U with the same mass and a smooth

density distribution Dε = 3 M ε2

4 π (r2+ε2)
5
2
→ a representation of δ3(r)

Let I ∈ R3 be the set of points where LK does not exist in the sense
that limε→0

∫
Iδ

(LK ε) fdm 6= 0 for any δ > 0, where I ⊂ Iδ,

0 < dist(∂Iδ, I) < δ, e2Ψf = ρ−1K ε
,ρ or ρ−2K ε, and dm = e2Ψρdρdφdz

theory of elliptic equations ⇒ I has measure zero in R3 (here concentric
circles and rotational surfaces) and K ∈ C2 elsewhere

Łukasz Bratek Curious Spacetime Singularities



on nonexistence of physically viable star-like van Stockum spacetimes

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

Let LK = 0 almost everywhere in an open subset V of the plane (ρ, z)

and let K ε ∈ C∞(V) tend point-wise to K as ε → 0 (a regularized K profile)

example

U = −GM
r is a smooth solution of ∇2U = 0 for r 6= 0

Uε = − GM√
ε2+r2

is a regularized form of U with the same mass and a smooth

density distribution Dε = 3 M ε2

4 π (r2+ε2)
5
2
→ a representation of δ3(r)

Let I ∈ R3 be the set of points where LK does not exist in the sense
that limε→0

∫
Iδ

(LK ε) fdm 6= 0 for any δ > 0, where I ⊂ Iδ,

0 < dist(∂Iδ, I) < δ, e2Ψf = ρ−1K ε
,ρ or ρ−2K ε, and dm = e2Ψρdρdφdz

theory of elliptic equations ⇒ I has measure zero in R3 (here concentric
circles and rotational surfaces) and K ∈ C2 elsewhere

Łukasz Bratek Curious Spacetime Singularities



on nonexistence of physically viable star-like van Stockum spacetimes

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

Let LK = 0 almost everywhere in an open subset V of the plane (ρ, z)

and let K ε ∈ C∞(V) tend point-wise to K as ε → 0 (a regularized K profile)

example

U = −GM
r is a smooth solution of ∇2U = 0 for r 6= 0

Uε = − GM√
ε2+r2

is a regularized form of U with the same mass and a smooth

density distribution Dε = 3 M ε2

4 π (r2+ε2)
5
2
→ a representation of δ3(r)

Let I ∈ R3 be the set of points where LK does not exist in the sense
that limε→0

∫
Iδ

(LK ε) fdm 6= 0 for any δ > 0, where I ⊂ Iδ,

0 < dist(∂Iδ, I) < δ, e2Ψf = ρ−1K ε
,ρ or ρ−2K ε, and dm = e2Ψρdρdφdz

theory of elliptic equations ⇒ I has measure zero in R3 (here concentric
circles and rotational surfaces) and K ∈ C2 elsewhere

Łukasz Bratek Curious Spacetime Singularities



on nonexistence of physically viable star-like van Stockum spacetimes

LK = 0, L = ∂2
ρ −

1
ρ

∂ρ + ∂2
z

Let LK = 0 almost everywhere in an open subset V of the plane (ρ, z)

and let K ε ∈ C∞(V) tend point-wise to K as ε → 0 (a regularized K profile)

example

U = −GM
r is a smooth solution of ∇2U = 0 for r 6= 0

Uε = − GM√
ε2+r2

is a regularized form of U with the same mass and a smooth

density distribution Dε = 3 M ε2

4 π (r2+ε2)
5
2
→ a representation of δ3(r)

Let I ∈ R3 be the set of points where LK does not exist in the sense
that limε→0

∫
Iδ

(LK ε) fdm 6= 0 for any δ > 0, where I ⊂ Iδ,

0 < dist(∂Iδ, I) < δ, e2Ψf = ρ−1K ε
,ρ or ρ−2K ε, and dm = e2Ψρdρdφdz

theory of elliptic equations ⇒ I has measure zero in R3 (here concentric
circles and rotational surfaces) and K ∈ C2 elsewhere
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on nonexistence of physically viable star-like van Stockum spacetimes
Ł. Bratek, J. Jałocha, M. Kutschera, van Stockum-Bonnor spacetimes of rigidly rotating dust,
online: Phys.Rev.D www site (unrevised ver. astro-ph/0603791v4)

Theorem

I is nonempty. There are no asymptotically flat van-Stockum spacetimes with
globally positive definite energy. Asymptotically flat van-Stockum spacetimes
must contain curvature singularities with negative active masses.

Proof.

Let’s suppose that I = ∅
inside a ball BR ⊂ R3 bounded by a two-sphere SR of radius R and
centered at the origin∫

BR

De2Ψρdρ ∧ dφ ∧ dz
LK=0
=

1

8π

∫
SR

K

ρ
(K,zdρ− K,ρdz) ∧ dφ ≡

1

8π

∫
SR

K∂r K

sin θ
dφ ∧ dθ

in virtue of the Stokes theorem, provided (K 2),r = o(sin θ),
(r sin θ = ρ, r cos θ = z)

ds2 = −dt2 + 2K dtdφ +
(
ρ2 − K 2) dφ2 + e2Ψ

(
dρ2 + dz2)

by asymptotic flatness K ∼ 2Jr−1 sin2 θ as r →∞, hence, for R
sufficiently large, RHS is negative and tends to 0 as R →∞,
while LHS is positive, a contradiction
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On nonexistence... Additional sources of negative active mass
required to concord with the full set of Einstein’s Eq.

1 Total mass of asymptotically flat van Stockum spacetimes is zero

M = −
1

8π
lim

R→∞

∫
SR

1

2

√
−gεαβµν∇µξνdxα∧dxβ ≡ lim

R→∞

1

8π

∫
SR

K∂r K

sin θ
dφ∧dθ = 0

2 For any smooth Ψ and K satisfying Ψ,ρ =
K 2

,z−K 2
,ρ

4ρ
and Ψ,z = − K,ρK,z

2ρ

the trace of spatial stresses

S̃ = Tµν (uµuν + gµν) = −e−2Ψ K,ρ

16πρ
LK ,

the proper energy density

D̃ = Tµνuµuν = D − S̃
Tolman’s active mass density on a hypersurface of constant time

D̃T = (8π)−1 Rt
µξµ = D + e−2Ψ K

8πρ2
LK

the curvature scalar
R̃ = Rµ

µ = 8π
(
D − 2S̃

)
3 In the regularity region R3 \ I:

D̃ = D̃T = D = (8π)−1 R̃, and S̃ = 0,

like for dust, and Einstein’s equations are equivalent to our reduced set
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Additional sources of negative active mass
curvature singularities from non-differentiability of structure functions

However,

For regularized profiles K ε we get

lim
ε→0

∫
Iδ⊃I

S̃ 6= 0

R̃ = 8π
(
D − 2S̃

)
⇒

∫
R3

R̃ 6=
∫

R3\I

R̃ = 8π

∫
R3

D,

⇒ R̃ = 8πD + γI

D is smooth and integrable,
γI is a distribution localized on I

I is the set of curvature singularity as R̃ is a distribution on I.
The singularity is not isolated from regularity regions.
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An example – Asymptotically flat Bonnor spacetime
with an embedded layer of negative active mass
considered nonsingular – W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)

has a physically acceptable proper energy distribution

D =
µ a3

π
·

(
ρ2 + 4 (a + |z|)2

)
(

ρ2 + (a + |z|)2
)4

e−2Ψ
, µ :=

∫
ρe2ΨDdρdφdz

and the following structure functions

K =
ρ2

√
8µ a3(

ρ2 + (a + |z|)2
)3/2

, Ψ =
µ a3

2

ρ2
(

ρ2 − 8 (a + |z|)2
)

(
ρ2 + (|z| + a)2

)4

asymptotic expansion of the corresponding line element

ds2 = −dt2+

√
2 a3µ

4 sin2 θ

r
dtdφ+dr2+r2

(
dθ

2 + sin2
θdφ

2
)

total angular momentum J =
√

2 a3µ
and total mass M = 0

Figure: density diagram of proper
energy distribution (or of curvature
scalar)
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An example – Asymptotically flat Bonnor spacetime
with an embedded surface layer of negative active mass
from now on this and other asymptotically flat solutions with integrable D must be considered singular

an example of regularization of Bonnor’s solution

K ε
B(ρ, z) =

√
8a3µ · ρ2 ·

(
(a +

√
z2 + ε2)2 + ρ2

)−3/2
, a > 0, µ > 0

K ε
B is globally C∞

its limit K 0
B is not even differentiable in I (which is the plane z = 0)

on integrating over R3 and taking the limit ε → 0 we obtain
∫

R3

D =

∫
R3\I

D = µ,

∫
R3

D̃ =
3

4
µ,

∫
I

S̃ =
µ

4
,

∫
R3

R̃ = 4πµ,

∫
R3

D̃T ≡ 0,

the latter equality holds identically for any C2 asymptotically flat profiles as then

8π
√
−gD̃T dρ ∧ dφ ∧ dz = d

(
ρ
−1KK,z dρ ∧ dφ + ρ

−1KK,ρdφ ∧ dz
)

Since
∫

R3\I D =
∫

R3 D = µ 6= µ/2 = (8π)−1 ∫
R3 R̃,

again, the curvature scalar is a distribution and it may be smooth and
bounded only outside a measure zero set
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Summary

van Stockum spacetime

ds2 = −dt2 + 2K (ρ, z)dtdφ + (ρ2 − K 2(ρ, z))dφ2 + e2Ψ(ρ,z)
(

dρ2 + dz2
)

D = e−2Ψ
K 2

,ρ + K 2
,z

8πρ2
,

(
∂2

ρ −
1

ρ
∂ρ + ∂2

z

)
K = 0, Ψ = −

∫
K,ρK,z

2ρ
dz

Positive definiteness and integrability of proper energy density excludes
asymptotically flat van Stockum spacetimes.
Asymptotic flatness implies the existence of spatial measure zero sets of scalar
curvature singularities. The singularities have distributional character and are not
isolated from regularity regions.
Closely related to the singularities are stresses (distinct from dust) that contribute
negative active masses to the total mass.
Total mass of asymptotically flat van Stockum spacetimes is zero.
van Stockum flow is rigid.
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