SOLVING SOME GAUGE SYSTEMS AT INFINITE N

G. Veneziano, J.W.

- Supersymmetric Yang-Mills quantum mechanics
- Planar calculus for the Hamiltonian formalism
- A very symmetric supersymmetric system
- One and two gluinos: the spectrum, the phase transition, the duality – an exact solution
- F=2,3 \mapsto arbitrary number of gluinos
- The strong ('t Hooft) coupling limit the magic staircase
- Lattice equivalencies: XXZ model, q-boson gas
- • •

hep-th/0512301 hep-th/0603045 mat-ph/0603082

- **1** SUPERSYMMETRIC QUANTUM MECHANICS AT FINITE N
 - The Hamiltonian (fix D = d + 1 and N = 2, 3, ...)

• The Hilbert space - basis - occupation number representation - gauge invariance

$$|\{n_a^i, \eta_c^j\}\rangle = \sum_{contractions} a^{\dagger i}_{\ c} a^{\dagger j}_{\ d} a^{\dagger k}_{\ e} f^{\dagger m}_{\ b} f^{\dagger n}_{\ a} \dots |0\rangle$$

• The cutoff

i

$$B = \sum_{b,i} a^{\dagger i}{}_b a^i_b < B_{max}.$$

- Representation of the Hamiltonian in the cut Fock space $< I|H|J > \Rightarrow$ spectrum
- Increase B_{max} until results converge.

Figure 1: The spectrum, and its supersymmetry structure, of the three dimensional supersymmetric Yang-Mills quantum mechanics.

M. Campostrini, M. Trzetrzelewski, J. Kotanski, P. Korcyl

P. van Baal, R. Janik

G. Veneziano, E.Onofri

- 2 WHAT IS IT ABOUT ?
 - At large N basis simplifies enormously !
 - Matrix creation/annihilation operators

$$a_{ik} = \sqrt{2}a^a T^a_{ik}, \quad f_{ik} = \sqrt{2}f^a T^a_{ik}, \quad i, k = 1, ..., N.$$

- Gauge invariant elementary building blocks (bricks) for SU(N)
- Fermion number $\Sigma_a f^{\dagger}_a f_a \equiv F = 0$

$$(aa), (aaa), (aaaa), \dots, (a^N), (.) \equiv Tr[.]$$

• F = 2 for example

$$(ffa), (fafa), (faafa)...(fa^{N-1}fa^{N-2}), (ffa...).$$

• AND all products of lower order bricks !?

3 PLANAR CALCULUS

- 't Hooft: Only Feynman planar diagrams contribute to the, leading in N, results (masses, scattering amplitudes, etc.)
- Veneziano: Above applies also to states in a Hilbert space !
- Matrix elements of simple operators (e.g. 4-th, 6-th order polynomials) can be calculated analytically in the large N limit

Technology: the Wick theorem and

$$[a_{ik}, a^{\dagger}{}_{jl}] = \delta_{il}\delta_{kj}$$

EXAMPLE 1: A NORM

A state with n gluons in F=0 sector

$$|n\rangle = \frac{1}{\mathcal{N}_n} Tr[(a^{\dagger})^n]|0\rangle.$$

Its norm

$$\mathcal{N}_{n}^{2} = \langle 0|Tr[a^{n}]Tr[(a^{\dagger})^{n}]|0 \rangle$$

= $\langle 0|(12)(23)...(n1)[1'2'][2'3']...[n'1']|0 \rangle$,
12) $\equiv a_{i_{1}i_{2}}, \qquad [12] \equiv a^{\dagger}_{i_{1}i_{2}}.$

maximal contribution when (n1)[1'2'] are contracted \Rightarrow

 $1 \times (a \text{ single trace}).$

The next contraction of nearest-neighbors $a^{\dagger}a \Rightarrow N$. Continue n-2 times.

The last contraction gives N^2 .

n such contributions (cyclic shift under *one* trace).

$$\mathcal{N}_n^2 = nN^n.$$

• Planar 1: single trace states give maximal contribution .

EXAMPLE 2: A MATRIX ELEMENT

$$H_{n+2,n} = g^2 < n+2|Tr[a^{\dagger}a^{\dagger}a^{\dagger}a]|n>.$$

Act with the operator on an initial state

$$\begin{split} Tr[a^{\dagger}a^{\dagger}a^{\dagger}a]Tr[(a^{\dagger})^{n}|0> &= [12][23][34](41)[1'2'][2'3']...[n'1']|0> \\ &= n[1'2][23][32'][2'3'][3'4']...[n'1']|0>, \end{split}$$

. . .

$$H_{n+2,n} = g^2 N \sqrt{n(n+2)}.$$

$$g^2 N = \lambda \qquad \leftrightarrow \qquad \text{'t Hooft coupling}$$

• Planar 2: The leading operators are again single traces.

4 ONE SUPERSYMMETRIC HAMILTONIAN

$$Q = \sqrt{2}Tr[fa^{\dagger}(1+ga^{\dagger})] = \sqrt{2}Tr[fA^{\dagger}],$$

$$Q^{\dagger} = \sqrt{2}Tr[f^{\dagger}(1+ga)a] = \sqrt{2}Tr[f^{\dagger}A],$$

$$H = \{Q, Q^{\dagger}\} = H_B + H_F.$$

$$H_B = a^{\dagger}a + g(a^{\dagger^2}a + a^{\dagger}a^2) + g^2a^{\dagger^2}a^2.$$

$$H_F = f^{\dagger}f + g(f^{\dagger}f(a^{\dagger} + a) + f^{\dagger}(a^{\dagger} + a)f) + g^2(f^{\dagger}afa^{\dagger} + f^{\dagger}aa^{\dagger}f + f^{\dagger}fa^{\dagger}a + f^{\dagger}a^{\dagger}fa)$$

LARGE N MATRIX ELEMENTS OF H

F=0, n=0,1,2,3,... only H_B contributes.

$$<0, n|H|0, n > = (1 + \lambda(1 - \delta_{n1}))n,$$

$$<0, n + 1|H|0, n > = <0, n|H|0, n + 1 > = \sqrt{\lambda}\sqrt{n(n+1)}.$$

F=1, n=0,1,2,3,.... Both, H_B and H_F contribute.

$$<1, n|H|1, n > = (1+\lambda)(n+1) + \lambda,$$

$$<1, n+1|H|1, n > = <1, n|H_2|1, n+1 > = \sqrt{\lambda}(2+n).$$

Figure 2: First 10 energy levels of H in F=0 and F=1 sectors at $\lambda = 1.0$ SUSY RESTORATION

- Supersymmetry is unbroken in this model.
- Only breaking was due to the cutoff.
- Good test of the planar calculus.

THE SPECTRUM

- Well defined system for all values of 't Hooft coupling.
- Almost equidistant levels
- At $\lambda = 0$ SUSY harmonic oscillators
- All levels collapse at $\lambda_c = 1$.

Figure 3: The cutoff dependence of the spectra of H, in the F=0 sector in a range of λ 's

THE PHASE TRANSITION

- The critical slowing down
- All levels collapse at $\lambda_c = 1$ the spectrum looses its mass gap it becomes continuous.
- Second ground state with E = 0 appears in the strong coupling phase.
- Rearrangement of supermultiplets.
- Witten index has a discontinuity at λ_c .
- The strong weak duality.
- This is not the Gross-Witten phase transition.

ANALYTIC SOLUTION

CONSTRUCTION OF THE SECOND GROUND STATE

$$b \equiv \sqrt{\lambda} \tag{1}$$

$$|0\rangle_2 = \sum_{n=1}^{\infty} \left(\frac{-1}{b}\right)^n \frac{1}{\sqrt{n}} |0, n\rangle \quad .$$

$$(2)$$

STRONG/WEAK DUALITY

• F=0

$$b\left(E_n^{(F=0)}(1/b) - \frac{1}{b^2}\right) = \frac{1}{b}\left(E_{n+1}^{(F=0)}(b) - b^2\right).$$
(3)

• F=1

$$b\left(E_n^{(F=1)}(1/b) - \frac{1}{b^2}\right) = \frac{1}{b}\left(E_n^{(F=1)}(b) - b^2\right)$$

4.1 SPECTRUM AND EIGENSTATES

• The planar basis

$$|0,n\rangle = \frac{1}{\mathcal{N}_n}(a^{\dagger^n})|0\rangle$$

• A non-orthonormal (but useful) basis:

$$|B_n\rangle = \sqrt{n}|n\rangle + b\sqrt{n+1}|n+1\rangle.$$

• The generating function f(x) for the expansion of the eigenstates $|\psi\rangle$ into the $|B_n\rangle$ basis.

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \qquad \leftrightarrow \qquad |\psi\rangle = \sum_{n=0}^{\infty} c_n |B_n\rangle$$

• The solution

$$\begin{aligned} f(x) &= \frac{1}{\alpha} \frac{1}{x+1/b} F(1,\alpha;1+\alpha;\frac{x+b}{x+1/b}), \quad b < 1, \\ f(x) &= \frac{1}{1-\alpha} \frac{1}{x+b} F(1,1-\alpha;2-\alpha;\frac{x+1/b}{x+b}), \quad b > 1, \\ E &= \alpha(b^2-1) \end{aligned}$$

• The quantization condition

 $f(0) = 0 \implies E_n$ reproduces the numerical eigenvalues of $\langle m|H|n \rangle$

• One more check: set $\alpha = 0$ in the b > 1 solution.

$$f_0(x) = \frac{1}{1+bx} \log \frac{b+x}{b-1/b}, \quad b > 1,$$
(4)

- Generates the second vacuum state as it should.
- Cannot do this for b < 1 there is no such state at weak coupling!

Figure 4: The absolute value of the LHS of the quantization condition as a function of α . First four zeros are clearly visible. To see higher zeros one needs to increase the α resolution of the plot.

States are labeled by two integers, n_1, n_2 whose ordering is important modulo a cyclic permutation. Hence we can always take $0 \le n_1 < n_2$.

$$\begin{split} \langle n_1, n_2 | H | n_1, n_2 \rangle &= (n_1 + n_2 + 2)(1 + b^2) - b^2(2 - \delta_{n_1,0}) - 2b^2 \delta_{n_2,n_1+1}, \\ \langle n_1 + 1, n_2 | H | n_1, n_2 \rangle &= b(n_1 + 2) = \langle n_1, n_2 | H | n_1 + 1, n_2 \rangle, \\ \langle n_1, n_2 + 1 | H | n_1, n_2 \rangle &= b(n_2 + 2) = \langle n_1, n_2 | H | n_1, n_2 + 1 \rangle. \\ \langle n_1 + 1, n_2 - 1 | H | n_1, n_2 \rangle &= \langle n_1, n_2 | H | n_1 + 1, n_2 - 1 \rangle \\ &= 2b^2(1 - 2\delta_{n_2,n_1+1}). \end{split}$$

Three fermions: states are labeled by three integers

$$|n_1, n_2, n_3\rangle = \frac{1}{\mathcal{N}_{n_1 n_2 n_3}} Tr[a^{\dagger n_1} f^{\dagger} a^{\dagger n_2} f^{\dagger} a^{\dagger n_3} f^{\dagger}] |0\rangle, 0 \le n_1, \qquad n_1 \le n_2, \qquad n_1 \le n_3.$$

The Hamiltonian matrix

$$\begin{aligned} \langle n_1, n_2, n_3 | H | n_1, n_2, n_3 \rangle &= (n_1 + n_2 + n_3 + 3)(1 + b^2) \\ &- b^2 (3 - \delta_{n_1,0} - \delta_{n_2,0} - \delta_{n_3,0}), \end{aligned}$$

$$\langle n_1 + 1, n_2, n_3 | H | n_1, n_2, n_3 \rangle = b(n_1 + 2)\Delta = \langle n_1, n_2, n_3 | H | n_1 + 1, n_2, n_3 \rangle,$$

plus cyclic

$$\langle n_1 + 1, n_2 - 1, n_3 | H | n_1, n_2, n_3 \rangle = b^2 \Delta = \langle n_1, n_2, n_3 | H | n_1 + 1, n_2 - 1, n_3 \rangle,$$

plus cyclic.

where $\Delta = 1/\sqrt{3}$ if $n_1 = n_2 = n_3$ and $\Delta = \sqrt{3}$ if the final state is of this form, otherwise $\Delta = 1$.

Figure 5: Low lying bosonic and fermionic levels in the first four fermionic sectors.

SUPERMULTIPLETS

- supermultiplets OK
- F=(0 1) accommodate complete representations of SUSY, but F=(2 - 3) do not
- Richer structure than in 0/1, e.g. not equidistant levels.

RARRANGEMENT OF F=2 AND F=3 SUPERPARTNERS

- \bullet The phase transition is there, as in 0/1 sectors.
- Supermultiplets rearrange across the phase transition point.
- Two new vacua appear in the strong coupling phase!
- The exact construction of both vacua.

Figure 6: Rearrangement of the F = 2 (red) and F = 3 (black) levels while passing through the critical coupling $\lambda_c = 1$.

Figure 7: First five supersymmetry fractions.

SUPERSYMMETRY FRACTIONS

$$q_{mn} \equiv \sqrt{\frac{2}{E_m + E_n}} < F + 1, E_m |Q^\dagger| F, E_n >$$
(5)

RESTRICTED WITTEN INDEX

$$W(T,\lambda) = \sum_{i} (-1)^{F_i} e^{-TE_i}$$

No good when supermultiplets are incomplete (if no SUSY). New definition - "analytic continuation" into the critical region.

$$W_R(T,\lambda) = \sum_{i} \left(e^{-TE_i} - e^{-T\bar{E}_i} \right), \quad \bar{E}_i = \frac{\sum_{f} E_f |q_{fi}|^2}{\sum_{f} |q_{fi}|^2}$$

Figure 8: Behaviour of the restricted Witten index, at T = 6, around the phase transition.

5 ARBITRARY F

States with F fermions are labeled by F bosonic occupation numbers (configurations).

$$|n\rangle = |n_1, n_2, \dots, n_F\rangle = \frac{1}{\mathcal{N}_{\{n\}}} Tr(a^{\dagger n_1} f^{\dagger} a^{\dagger n_2} f^{\dagger} \dots a^{\dagger n_F} f^{\dagger})|0\rangle$$

- Cyclic shifts give the same state
- Pauli principle \longrightarrow some configurations are not allowed, e.g.

$$\{n, n\},$$
 or $\{2, 1, 1, 2, 1, 1\}$

• Degeneracy factors

THE STRONG COUPLING LIMIT

$$H_{strong} = \lim_{\lambda \to \infty} \frac{1}{\lambda} H =$$

$$Tr(f^{\dagger}f) + \frac{1}{N} [Tr(a^{\dagger^2}a^2) + Tr(a^{\dagger}f^{\dagger}af) + Tr(f^{\dagger}a^{\dagger}fa)].$$
(6)

- It conserves both F and $B = n_1 + n_2 + \ldots + n_F$.
- Still has exact supersymmetry.
- H_{strong} is the *finite* matrix in each (F, B) sector (c.f. a map of all sectors).
- The SUSY vacua are only in the sectors with even F and $(F, B = F \pm 1)$ - the magic staircase

11	1	1	6	26	91	•••	•••	•••		•••	16796
10	1	1	5	22	73	201	497	1144			
9	1	1	5	19	55	143	335	715	1430	•••	$\boldsymbol{4862}$
8	1	1	4	15	42	99	212	429	809	1430	2424
7	1	1	4	12	30	66	132	247	429	715	1144
6	1	1	3	10	22	42	76	132	217	335	497
5	1	1	3	7	14	26	42	66	99	143	201
4	1	1	2	5	9	14	20	30	43	55	70
3	1	1	2	4	5	7	10	12	15	19	22
2	1	1	1	2	3	3	3	4	5	5	5
1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	0	1	0	1	0	1	0
В											
F	0	1	2	3	4	5	6	7	8	9	10

Table 2: Sizes of gauge invariant bases in the (F,B) sectors.

• The magic staircase \Rightarrow there are always two SUSY vacua at finite λ (in the strong coupling phase).

- 6 q-BOSON GAS
 - A one dimensional, periodic lattice with length F.
 - A boson at each lattice site a_i , i = 1, ..., F
 - The new Hamiltonian

$$H = B + \sum_{i=1}^{F} \delta_{N_i,0} + \sum_{i=1}^{F} b_i b_{i+1}^{\dagger} + b_i b_{i-1}^{\dagger}, \qquad (7)$$

where $N_i = a^{\dagger}{}_i a_i$ and $B = n_1 + n_2 + ... + n_F$.

• The $b_i^{\dagger}(b_i)$ operators create (annihilate) one quantum *without* the usual \sqrt{n} factors – *assisted* transitions.

$$b^{\dagger}|n\rangle = |n+1\rangle, \quad b|n\rangle = |n-1\rangle, \quad b|0\rangle \equiv 0,$$

 $[b, b^{\dagger}] = \delta_{N,0}$ (8)

- This Hamiltonan conserves *B*.
- It is also invariant under lattice shifts U.
- The spectrum of above H, in the sector with $\lambda_U = -1$, exactly coincides with the spectrum of H_{strong} , for even F and any B.

 \bullet q-bosons: the b and b^{\dagger} c/a operators satisfy the q-deformed harmonic oscillator algebra

$$[b, b^{\dagger}] = q^{-2N} \tag{9}$$

with $q \to \infty$.

• The q-Bose gas was considered non-soluble (Bogoliubov) ... until now.

7 THE XXZ MODEL

The one dimensional chain of Heisenberg spins

$$H_{\rm XXZ}^{(\Delta)} = -\frac{1}{2} \sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z \right)$$

• Our planar system, at strong coupling, is equivalent to the XXZ chain with

$$L = F + B$$
, $S^{z} = \sum_{i=1}^{L} s_{i}^{z} = F - B$, and $\Delta = \pm \frac{1}{2}$

- Riazumov-Stroganv conjecture: for odd L and $S^z = \pm 1$ there exists an eigenstate with known, simple eigenvalue $E = \frac{L}{12}$
- \Rightarrow the R-S states are the SUSY vacua of H_{SC} !

8 BETHE ANSATZ

- The XXZ model is soluble by the Bethe Ansatz
- The existence of the magic staircase can be proven using BA
- Even more: there is the hidden supersymmetric structure in the Heisenberg chain.

Bethe phase factors for the first three magic sectors

 $F=4,B=3, 5 \times 5$

$$x = \frac{1}{2} + \frac{i\sqrt{3}}{2}$$

F=4,B=5, 14 × 14

$$x = \frac{1}{64} \left(16 + i\sqrt{2}\sqrt{15 + \sqrt{33}}(7 - \sqrt{33}) - 4\sqrt{-16(3 + \sqrt{33})} - i2\sqrt{2}\sqrt{15 + \sqrt{33}}(9 + \sqrt{33}) \right)$$
$$y = \frac{1}{64} \left(16 + i\sqrt{2}\sqrt{15 + \sqrt{33}}(7 - \sqrt{33}) + 4\sqrt{-16(3 + \sqrt{33})} - i2\sqrt{2}\sqrt{15 + \sqrt{33}}(9 + \sqrt{33}) \right)$$

 $F=6, B=5, 42 \times 42$

$$x = \frac{1}{72} \left(36 + i\sqrt{2}\sqrt{11 + \sqrt{13}}(7 + \sqrt{13}) - 6\sqrt{2}\sqrt{6(-3 + \sqrt{13})} + i\sqrt{2}\sqrt{11 + \sqrt{13}}(-5 + \sqrt{13}) \right)$$
$$y = \frac{1}{72} \left(36 + i\sqrt{2}\sqrt{11 + \sqrt{13}}(7 + \sqrt{13}) + 6\sqrt{2}\sqrt{6(-3 + \sqrt{13})} + i\sqrt{2}\sqrt{11 + \sqrt{13}}(-5 + \sqrt{13}) \right)$$

9 FROM N=3,4,5 TO INFINITY

Figure 9: Behaviour of the restricted Witten index, at T = 6, around the phase transition.

10 THE FUTURE

- Supersymmetric Yang-Mills Quantum Mechanics in d=3 (QFT at $V = 1^3$)
- Supersymmetric Yang-Mills Quantum Mechanics in d=9 (QFT at $V = 1^3$) – M
- QCD in tiny volumes