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Introduction

➽ (infinite and symmetric) many body system of strongly interacting nucleons

➽ its thermodynamic properties can be investigated starting from the free N-N

potential

➽ self-consistent finite-temperature Green’s function approach

G<(p, ω) = A(p, ω)f(ω)

➽ thermodynamical consistency

❄ ❄ ❄

Energy Summation of diagrams (in the T-matrix approximation) vs. Galitskii-Koltun’s

sum rule.

Pressure Including the contribution of the generating functional.

Entropy Full calculation vs. quasiparticle approximation.
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Energy of the interacting system

The (total) internal energy is the expectation value of the Hamiltonian

E

N
=

1

ρ

[

〈Hkin〉

V
+

〈Hpot〉

V

]

.

• kinetic term

〈Hkin〉 = V

∫

d3p

(2π)3
dω

2π

p2

2m
A(p, ω)f(ω) ,

• potential term

〈Hpot〉 =
V

2

∫

d3P

(2π)3
d3k

(2π)3
d3k′

(2π)3
dΩ

2π
V (k,k′)〈k′|G<

2
(P, Ω)|k〉 .

Alternatively, it is possible to estimate the internal energy through the Galitskii-Koltun’s

sum rule

E

N
=

1

ρ

∫

d3p

(2π)3
dω

2π

[

p2

2m
+ ω

]

A(p, ω)f(ω) .
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T-matrix or ladder approximation

Whenever there is a two body interaction the equations of motion for the Green’s

functions couple N-particle and N+1-particle propagators.

Hartree G2 = Gnc
2

Hartree-Fock G2 = Gnc
2

+ ex

T-matrix G2 = Gnc
2

+ Gnc
2

T Gnc
2

+ ex

G2

G2

G2G2

where the in-medium two-particle scattering matrix T is introduced:
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The functional Φ

All the previous approximations are Φ-derivable. It means they can be constructed by

introducing a generating functional Φ[G, V ] defined as a set of two-particle irreducible

diagrams:

Σ(x, y) =
δΦ

δG(x, y)
(Baym, Kadanoff 1961)

Hartree Fock T-matrix

self-energy Σ

functional Φ
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Self-consistent T-matrix approach

The following iterative scheme si em-

ployed:

• calculation of the T-matrix

• calculation of the self-energy

• use of the Dyson equation

In order to calculate the potential term,

one needs V G2:

V G2 = V Gnc
2

+ V Gnc
2

T Gnc
2

= [V + V Gnc
2

T ] Gnc
2

= TGnc
2

.
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Results: energy
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Pressure

The pressure is related to the thermodynamical potential

Ω(T, µ, V ) = −PV .

In the scheme of a self-consistent approximation

Ω = −Tr{ln[G−1]} − Tr{ΣG} + Φ .

The first contribution to the pressure is

PI =
1

V

[

Tr{ln[G−1]} + Tr{ΣG}
]

= T

∫

d3p

(2π)3
dω

2π
ln(1 + e−βω) [ A(p, ω)

+
∂A(p, ω)

∂ω
ReΣR(p, ω) − 2ImΣR(p, ω)

∂ReGR(p, ω)

∂ω
]

= T

∫

d3p

(2π)3
dω

2π
ln(1 + e−βω)B(p, ω) .
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The spectral function B(p, ω)

A new spectral function, B(p, ω), is introduced; it is normalized exactly as the ordinary

spectral function A(p, ω): ∫

dω

2π
B(p, ω) = 1 .

-0.5

0

0.5

-100 -50 0 50 100

p=0 T=2 MeV

-1

0

1

-100 -50 0 50 100

p=140 MeV

-5

0

5

-100 -50 0 50 100

p=280 MeV

ω  (MeV)

A
(p

,ω
) 

 (
M

eV
-1

)

-0.5

0

0.5

-100 -50 0 50 100

p=0 T=2 MeV

-1

0

1

-100 -50 0 50 100

p=140 MeV

-5

0

5

-100 -50 0 50 100

p=280 MeV

ω  (MeV)

A
(p

,ω
) 

 (
M

eV
-1

)

-0.5

0

0.5

-100 -50 0 50 100

p=0 T=10 MeV

-1

0

1

-100 -50 0 50 100

p=140 MeV

-2

0

2

-100 -50 0 50 100

p=280 MeV

ω  (MeV)

A
(p

,ω
) 

 (
M

eV
-1

)

Thermodynamical quantities in nuclear matter – p.9/16



The contribution from Φ

The second contribution to the pressure comes from the functional Φ. It is calculated

by introducing an integration over the (artificial) parameter λ:

Φ =
∑

n

1

2n
Tr{(V G2)n}

=

∫

1

0

dλ

λ

∑

n

1

2
Tr{(λV G2)

n}

=

∫

1

0

dλ

λ
< Hpot(λV, Gλ=1) > .

Since < Hpot(V, G) > ∼
1

2
Tr{T Gnc

2
} and T =

V

1 − V Gnc
2

, finally

∫

1

0

dλ

λ
< Hpot(λV, Gλ=1) > ∼

1

2

∫

1

0

dλ
Tr{V Gnc

2
}

1 − Tr{λV Gnc
2

}
.
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Results: pressure

The results are compared with the pressure of a gas of quasiparticles in a mean-field

potential

Pqp =

∫

d3p

(2π)3
f(ωp − µ)

[

p

3

dωp

dp
+

1

2
Σp

]

,

with Σp = Σ(p, ωp) = ωp − p2/2m + µ.

Results are displayed in the table below (in MeV):

T EGK/N Ediag/N PI/ρ PII/ρ Ptot/ρ Pqp/ρ

0 −15.80 −16.63 −40.19 32.50 −7.69 −0.85

2 −15.15 −16.29 −38.40 32.54 −5.86 −0.78

5 −14.40 −15.24 −37.83 32.35 −5.48 −0.74

10 −11.15 −11.72 −34.02 31.36 −2.66 −0.49

20 −1.29 −1.21 −24.43 30.92 6.49 0.17
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Entropy

The entropy is estimated through the thermodynamic relation

S

N
=

1

T

[

E

N
+

Ptot

ρ
− µ

]

.

It is then compared with analytical expressions:

1. the reduced formula

Sred

N
=

1

ρ

∫

d3p

(2π)3
dω

2π
σ(ω)B(p, ω),

where

σ(ω) = −f(ω) ln[f(ω)] − [1 − f(ω)] ln[1 − f(ω)] ;

2. the entropy for a free Fermi gas

Sfree

N
=

1

ρ

∫

d3p

(2π)3
σ(ωp),

in the low T limit
Sfree

N
=

π2mT

pF
2

;

Thermodynamical quantities in nuclear matter – p.12/16



1. re

2. re

3. the entropy calculated as for a free Fermi gas but using the effective mass m∗

instead of the rest mass m

(in the low T limit)
Sfree?

N
=

π2m∗T

pF
2

.

The effective mass m∗ is determined at each temperature by

(

∂ωp

∂p2

)

p=pF

=
1

2m?
.

Results are displayed in the table below:

T (MeV) SGK/N Sdiag/N Sfree/N Sfree?/N Sred/N

2 0.24 −0.37 0.27 0.24 0.11

5 0.53 0.35 0.66 0.60 0.26

10 1.04 0.98 1.22 1.07 0.42

20 1.76 1.76 2.02 1.74 0.75
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Results: entropy
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Summary

• Internal energy, pressure and entropy calculated in the thermodynamically

consistent T-matrix approximation in nuclear matter.

• For what concerns the internal energy, the Galitskii-Koltun’s sum rule and the

summation of diagrams yield similar results (up to 1 MeV difference).

• The pressure was estimated from the summation of diagrams contributing to the

functional Φ; three-body forces needed.

• Accordingly the entropy was calculated; the entropy of a free Fermi gas turns out

to be close to the result of the full calculation (if m → m∗).

• Possible applications are the modeling of neutron stars and intermediate-energy

heavy ion collisions.
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