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Aims of these Lectures

I In these lectures I will not try to:

(i) give a course on the technology of lattice QCD;
(ii) try to review all physical quantities which have been (or could be)

computed in lattice simulations;
(iii) present a catalogue of all the latest results. (Some of these will be

obsolete in any case by the end of Lattice 2006 in July.)

I Instead I will give an introductory overview of the applications of lattice
QCD to phenomenology, so that you will have some feel for:

(i) which quantities can be calculated on the lattice and which cannot;
(ii) the precision which might be reached.

I Of course my presentation will necessarily include some theoretical
background and many numerical results.
I will try to embed a discussion of some of the theoretical ideas into the
discussion of the phenomenology.
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Introduction to Lattice Phenomenology

I Lattice phenomenology starts with the evaluation of correlation functions
of the form:

〈0|O(x1,x2, · · · ,xn) |0〉=
1
Z

∫
[dAµ ] [dψ] [dψ̄]eiS O(x1,x2, · · · ,xn) ,

where O(x1,x2, · · · ,xn) is a multilocal operator composed of quark and
gluon fields and Z is the partition function:

Z =
∫

[dAµ ] [dψ] [dψ̄]eiS .

I These formulae are written in Minkowski space, whereas Lattice
calculations are performed in Euclidean space (exp(iS) → exp(−S) etc.).

I The physics which can be studied depends on the choice of the
multilocal operator O.

I The functional integral is performed by discretising space-time and using
Monte-Carlo Integration.
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Two-Point Correlation Functions

Consider two-point correlation functions of the form:

C2(t) =
∫

d3x ei~p·~x 〈0|J(~x, t)J†(~0,0)|0〉 ,

where J and J† are any interpolating operators for the hadron H which we
wish to study and the time t is taken to be positive.

I We assume that H is the lightest hadron which can be created by J†.

I We take t > 0, but it should be remembered that lattice simulations are
frequently performed on periodic lattices, so that both time-orderings
contribute.
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Two-Point Correlation Functions (Cont.)

C2(t) =
∫

d3x ei~p·~x 〈0|J(~x, t)J†(~0,0)|0〉 ,

Inserting a complete set of states {|n〉}:

C2(t) = ∑
n

∫
d3x ei~p·~x 〈0|J(~x, t) |n〉 〈n|J†(~0,0)|0〉

=
∫

d3x ei~p·~x 〈0|J(~x, t) |H〉 〈H|J†(~0,0)|0〉+ · · ·

where the · · · represent contributions from heavier states with the same
quantum numbers as H.

Finally using translational invariance:

C2(t) =
1

2E
e−iEt

∣

∣

∣

∣

〈0|J(~0,0)|H(p)〉

∣

∣

∣

∣

2

+ · · · ,

where E =
√

m2
H +~p2.
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Two-Point Correlation Functions (Cont.)

C2(t) =
1

2E
e−iEt

∣

∣

∣

∣

〈0|J(~0,0)|H(p)〉

∣

∣

∣

∣

2

+ · · · .

H

0 t

I In Euclidean space exp(−iEt) → exp(−Et).
I By fitting C(t) to the form above, both the energy (or, if~p = 0, the mass)

and the modulus of the matrix element
∣

∣〈0|J(~0,0)|H(p)〉
∣

∣

can be evaluated.
I Example: if J = ūγµ γ5d then the decay constant of the π-meson can be

evaluated,
∣

∣〈0|ūγµ γ5d |π+(p)〉
∣

∣ = fπ pµ ,

(the physical value of fπ ' is 132 MeV).
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Effective Masses
At zero momentum

C2(t) = Constant× e−mt

so that it is sensible to define the effective mass

meff(t) = log

(

C(t)
C(t +1)

)

.
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Effective Mass Plot for a Pseudoscalar Meson. UKQCD Collaboration.
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Three-Point Correlation Functions

Consider now a three-point correlation function of the form:

C3(tx, ty) =
∫

d3xd3y ei~p·~x ei~q·~y 〈0|J2(~x, tx)O(~y, ty)J†
1(~0,0)|0〉 ,

where J1,2 may be interpolating operators for different particles and we
assume that tx > ty > 0.

H1 H2

0 ty tx

For sufficiently large times ty and tx − ty

C3(tx, ty) '
e−E1ty

2E1

e−E2(tx−ty)

2E2
〈0|J2(0)|H2(~p)〉

×〈H2(~p)|O(0)|H1(~p+~q)〉 〈H1(~p+~q)|J†
1(0)|0〉 ,

where E2
1 = m2

1 +(~p+~q)2 and E2
2 = m2

1 +~p2.
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Three-Point Correlation Functions

H1 H2

0 ty tx

I From the evaluation of two-point functions we have the masses and the
matrix elements of the form |〈0|J|H(~p)〉|. Thus, from the evaluation of
three-point functions we obtain matrix elements of the form |〈H2|O|H1〉|.

I Important examples include:

I K0 – K̄0 (B0 – B̄0) mixing. In this case

O = s̄γµ (1− γ5)d s̄γµ (1− γ5)d .

I Semileptonic and rare radiative decays of hadrons of the form
B → π,ρ + leptons or B → K∗γ. Now O is a quark bilinear operator
such as b̄γµ (1− γ5)u or an electroweak penguin operator.
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Systematic Uncertainties
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We would like
L � 1fm and a−1 � ΛQCD .
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Systematic Uncertainties (Cont.)

I Computing resources limit the number of lattice points which can be
included, and hence the precision of the calculation.
Typically in full QCD we can have about 24 – 32 points in each spatial
direction (O(50) points in quenched simulations) and so compromises
have to be made.

I Statistical Errors: The functional integral is evaluated by Monte-Carlo
sampling. The statistical error is estimated from the fluctuations of
computed quantities within different clusters of configurations.

I The different sources of systematic uncertainty are not independent of
each other, so the following discussion is oversimplified.
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Systematic Uncertainties (Cont.)

I Discretization Errors (Lattice Artefacts) : Current simulations are
typically performed with

a ∼ (0.05− .125)fm (0.1fm' 2GeV)

leading to errors of O(aΛQCD) (with Wilson Fermions) or O(a2Λ2
QCD) for

improved fermion actions.
The errors can be estimated and reduced by:

I Performing simulations at several values of a and extrapolating to
a = 0.

I Improvement (Symanzik), i.e. choosing a discretization of QCD so
that the errors are formally smaller.

f ′(x) =
f (x+a)− f (x)

a
+ O(a) or f ′(x) =

f (x+a)− f (x−a)

2a
+ O(a2) .

For example, in this way it is possible to reduce the errors from
O(a) for Wilson fermions to ones of O(a2) by the addition of
irrelevant operators.
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Systematic Uncertainties (Cont.)
I Chiral Extrapolations: Simulations are performed with unphysically

heavy u and d quarks and the results are then extrapolated to the chiral
limit.
Wherever possible, we use χPT to guide the extrapolation, but it is still
very rare to observe chiral logarithms.
Today, in general, the most significant source of systematic uncertainty
is due to the chiral extrapolation.

mq/ms mπ (MeV) mπ/mρ
SU(3) Limit 1 690 0.68

Currently Typical 1/2 490 0.55
Impressive 1/4 340 0.42

MILC 1/8 240 0.31
Physical 1/25 140 0.18

For this reason the results obtained using the MILC Collaboration (using
Staggered lattice fermions) have received considerable attention.
Gradually the challenge set by the MILC Collaboration is being taken up
by groups using other formulations of lattice fermions (e.g. Improved
Wilson, Twisted Mass, Domain Wall, Overlap).

I ρ → ππ decays have not been achieved on the lattice up to now.
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Systematic Uncertainties (Cont.)

I Finite Volume Effects: For the quantities described above the
finite-volume errors fall exponentially with the volume, e.g.

fπ±(L)− fπ±(∞)

fπ±(∞)
'−

6m2
π

f 2
π

e−mπ L

(2πmπ L)3/2
.

Generally these uncertainties are small at the light-quark masses which
can be simulated.

I For two-particle states (e.g. K → ππ decays) the finite-volume
effects decrease as inverse powers of L, and must be removed.

I Renormalization of Lattice Operators: From the matrix elements of
the bare operators computed in lattice simulations we need to determine
matrix elements of operators renormalized in some standard
renormalization scheme (such as MS).

I For sufficiently large a−1 this can be done in perturbation theory,
but lattice perturbation theory frequently has large coefficients ⇒
large uncertainties (O(10%)).

I Non-perturbative renormalization is possible and frequently
implemented, eliminating the need for lattice perturbation theory.
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Lattice QCD
I The quark fields are defined on the lattice sites, ψ i

α (xi).
I In order to ensure gauge invariance the gauge fields are introduced

through link variables, defined on the links between two neighbouring
points.
Uµ (xi) is the link variable between the points xi and xi + µ̂.

I Under a gauge transformation:

ψ(xi) → g(xi)ψ(xi) and Uµ (xi) → g(xi)Uµ (xi)g
†(xi + µ̂) .

Uµ (xi) is the path-ordered exponential of gauge fields between xi and
xi + µ̂.

I Writing

Uµ (xi) = exp

{

ig0Aµ (xi +
µ̂
2

)a

}

,

Wilson proposed the gauge action

S = ∑
Pµν

Pµν where Pµν = β
{

1−
1
3

Re Tr
(

Uµ (x)Uν (x+ µ̂)U†
µ (x+ ν̂)U†

ν (x)
)

}

where β = 6/g2
0 and P is called the plaquette.
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Gauge Action (Cont.)

x x+ µ̂

x+ ν̂ x+ µ̂ + ν̂

µ̂

ν̂

“A little suppressed algebra” [Creutz] ⇒

S =
1
2

∫
d4xTr(Fµν Fµν ) + terms suppressed bya2 .

I Gauge invariance is exact.

I In many current simulations an improved gauge action is used.
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Fermion Actions – The Doubling Problem

I Naive Fermions ⇒ Fermion Doubling Problem. The inverse free
propagator is

m+ ia−1∑
µ

γµ sin(aqµ ) ,

where q is the momentum.

I At low momenta this is correct, but there are also similar contributions
from qµ ' π/a and we have 24 = 16 independent Fermion species.

There is a plethora of Lattice Fermion Actions which overcome this problem:

1. Wilson Fermions (+ improved versions);

2. Staggered Fermions (and modified versions);

3. Twisted Mass QCD;

4. Actions satisfying the Ginsparg-Wilson relation (Domain Wall Fermions,
Overlap Fermions, Perfect Actions)

5. · · ·
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Lattice Fermions (Cont.)

I Wilson Fermions: Add irrelevant term to the action (∝ aψ̄D2ψ) ⇒ the
inverse propagator is modifies by a term a−1 ∑µ{1−cos(aqµ )}.
The Wilson term breaks the chiral symmetry and induces artefacts of
O(aΛQCD).
The artefacts can be reduced to O(a2Λ2

QCD) by adding further irrelevant
operators to the action (and by calculating matrix elements of
appropriate improved operators). Symanzik Improvement .

I Staggered Fermions: By a “spin diagonalization” of the γ-matrices the
16 fermion doublers can be reduced to 4. The chiral Ward Identities are
still satisfied, the artefacts are of O(a2Λ2

QCD), but we still have four quark
tastes or 16 pions.
In attempts to reduce the spectrum to a single pion

det[∆[U]] → det
1
4 [∆[U]]

where ∆ is the Dirac Operator.
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There is a strong polarization in the lattice community concerning the use of
staggered fermions.

I S.Dürr (hep-lat/0509026) started his review talk at Lattice2005 with the
question:

Is “staggered QCD” really QCD, or is it just a model of QCD?

Unphysical tastes removed by taking the fermionic Det1/4. No proof that
this is correct (but growing circumstantial evidence) and no counter
example.
Abstract of Bernard, Golterman & Shamir (hep-lat/0604017):
We show that the use of the fourth-root trick [...] corresponds to a
non-local theory at a 6= 0, but argue that the non-local behaviour is likely
to go away in the continuum limit.

I Staggered Chiral Perturbation theory has to include the a-dependence
and the extrapolation has many parameters (e.g. over 50 for fπ ).
The m → 0 limit cannot be taken before the a → 0 limit.

Bernard hep-lat/0603011

I Renormalization is performed perturbatively.
I It would be nice if the results of the extrapolations and procedures were

confirmed by other groups.
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Lattice Fermions (Cont.)

I Chiral Fermions: Much work is being devoted to developing algorithms
for lattice fermions which have a continuum-like chiral symmetry even at
finite lattice spacing.
Ginsparg Wilson Relation

{

γ5,∆
}

= 2a∆γ5∆ ⇒ Invariance under

ψ → ψ + εγ5(1−a∆)ψ and ψ̄ → ψ̄ + ε ψ̄(1−a∆)γ5

Lüscher - hep-lat/9802011

I Formulations satisfying the Ginsparg-Wilson relation are ultimately likely
to be the preferred ones.
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Evaluation of the Masses of the Light Quarks

I There are a number of ways being used to determine the quark masses.
These should give identical results if the systematic errors (in particular,
lattice artefacts) are negligible.

I One standard method exploits the axial Ward identity

∂µ Aµ = (m1 +m2)P

where A and P are the axial current and pseudoscalar density
corresponding to quarks with masses m1,2:

Aµ (x) = ψ̄1(x)γµ γ5ψ2(x) and P(x) = ψ̄1(x)γ5ψ2(x) .

For illustration here let me take m1 = m2 ≡ mq.
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Evaluation of the Masses of the Light Quarks (Cont)

∂µ Aµ = 2mqP

I Calculate the two-point correlation function

〈0|P(t)P†(0)|0〉 =
Z2

P

2mP
{exp(−mPt)+exp(−mP(Lt − t))} .

0 = Lt

t

0 = Lt

t

I mP is the mass of the pseudoscalar meson.
I ZP is the matrix elements 〈0|P(0)|P〉.

I The use of axial or vector Chiral Ward identities is particularly useful if
chiral symmetry is not exact in the lattice formulation being used.
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Evaluation of the Masses of the Light Quarks (Cont)

∂µ Aµ = 2mqP

〈0|P(t)P†(0)|0〉 =
Z2

P

2mP
{exp(−mPt)+exp(−mP(Lt − t))} .

Also calculate

〈0|A4(t)P
†(0)|0〉 =

ZAZP

2mP
{exp(−mPt)−exp(−mP(Lt − t))} .

In this way we obtain:

m(0)AWI
q ≡

mPZA

2ZP
.

Now we would like the mass in some standard renormalization scheme, and
the axial current and pseudoscalar density are both multiplicatively
renormalizable. The renormalization constants can be fixed and we obtain
the masses.

Vector Ward Identities can also be used.
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Recent Compilation of (Unquenched) Lattice Results

Reference ms m̂

HPQCD, MILC and UKQCD 76±3±7MeV 2.8± .1± .3MeV

HPQCD, MILC and UKQCD
Update including 2-loop Z’s 86±3±4MeV 3.2± .1± .2MeV ∗

CP-PACS & JLQCD (K-input) 80.4±1.9MeV 3.05±.06MeV

CP-PACS & JLQCD (Φ-input) 89.3±2.9MeV 3.04±.06MeV

SPQR (VWI) 111±6MeV 4.8± .5MeV

SPQR (AWI) 103±9MeV 4.5± .5MeV

QCDSF & UKQCD 119±5±8MeV 4.7± .2± .3MeV

Alpha 97±22MeV —

∗ - My estimate from results for m̂u and m̂d.
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Non-Perturbative Renormalization

Since mψψ is renormalization group invariant, the determination of Zm(aµ) is
equivalent to the determination of ZS(aµ), where S is the scalar density.

Here we will consider the NPR of S = ψ̄(x)ψ(x), but the method is applicable
to other composite operators relevant for weak matrix elements and hadronic
structure.

In lattice simulations we compute

〈f |SB(a)|i〉 ,

whereas we would like to know

〈f |SR(µ)|i〉 ,

in some standard renormalization scheme R.

The long distance physics is the same in both.
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Define the renormalized operator SR(µ) to be the one whose matrix element
between quark states, at some scale p2 = µ2 and in some gauge (the Landau
gauge say) is the tree-level one. We compute

p p

SB(a)

〈p|SB(a)|p〉 =

and determine the renormalization constant ZS(aµ) by requiring that

ZS(aµ)〈p|SB(a)|p〉p2=µ2 = tree level value.

The renormalized operator

SRI Mom
R (µ) ≡ ZS(aµ)SB(a)

is independent of the regularization (RI) and can be used in (continuum)
studies of hadronic physics.

Other renormalization conditions that the MOM one can of course be applied.
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Non-Perturbative Renormalization (Cont.)

I To go from RI Mom scheme to any other standard scheme (such as the
MS scheme) only requires continuum perturbation theory.

I We require
Λ2

QCD � p2 � a−2

and this window is small, in practice.

I By calculating the matrix element between quark states on a sequence
of lattices with decreasing a (and hence smaller volumes) and matching,
it is possible to eliminate the constraint p2 � Λ2

QCD. This procedure is
called step scaling.
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Light-Quark Masses – Summary

My current summary of lattice results for the light-quark masses is:

1
2

(

mMS
u (2GeV)+mMS

d (2GeV)
)

= (3.8±0.8)MeV

mMS
s (2GeV) = (95±20)MeV .

These are the values which I submitted to the PDG review of quark masses
(written together with A.Manohar).

Many of the unquenched simulations are new and I’m confident that the
errors will decrease for the next PDG review.
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