Cross-fertilization of QCD and statistical physics

High energy scattering, reaction-diffusion, selective evolution, spin glasses
and their connections

PART 11

Stephane Munier

CPHT, Ecole Polytechnique

gmp  CENTRE NATIONAL
' DE LA RECHERCHE
¥ | SCIENTIFIQUE

Zakopane, June 5, 2006




Previous lecture...

We have shown the relevance of the sF-KPP equation for QCD
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diffusive growth nonlinear damping statistical noise
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X(y)=y*+1 in the F-KPP case
This equation describes reaction-diffusion processes of a discrete system of N particles.

The solutions are fraveling waves: we have quoted some universal features
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What is Known on the sTKPP equation

atu:a§u+u—u2+\/%u(1—u)v

- 1937: Fisher; Kolmogorov, Petrovsky, Piscounov (deterministic part)

- 1983: Mathematical proof that its deterministic version admits
traveling wave solutions by Bramson; computation of the front velocity

- 1997: Computation of the first correction to the front velocity
due to fluctuations by Brunet and Derrida (weak noise)

- 1999: Brunet and Derrida noticed numerically that the variance
of the front position scales like t/In°N

- 2005: Phenomenological understanding of the effect of the
fluctuations on the front position; computation of all its
cumulants.

- 2006: Genealogies, relation to spin glasses

Brunet, Derrida, Mueller, SM (cond-mat)



Outline

Lecture 1
# Universality: lessons from condensed matter
#* Stochastic processes: simple examples
# Reaction-diffusion and traveling wave equations

#* High energy scattering as a reaction-diffusion process

Lecture 2

# Results on noisy traveling waves
# Genealogies in selective evolution models

#* A connection to the Parisi theory of spin glasses?



The infinite particle number limit
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The infinite particle number limit
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The large time asymptotics are exact traveling waves. Mathematical result by Bramson

The evolution of u is driven by the (linear) growing diffusion part.
The nonlinearity only tames the growth when u~1

u




The infinite particle number limit
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The infinite particle number limit

atu:aiujtu—uzﬂ/, w(l—u)v
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X(—0 )u

X

X(y)=y*+1 characteristic function of the diffusion kernel

Look for solutions of the form u =exp(—y(x—v(y)t]|

Solution: V(y)=—=—" V(y):wr% in the F-KPP case

General solution: arbitrary superposition of different wave numbers

u=[dyf(y)u=Jdyf(ylexp[-ylx—v(y)t||

Large times (saddle point at constant u), select the wave that travels with minimum
velocity:
_dX, X(yo)

r VOO—EIV()’o):y—O

L u(x,t)~e %
yo=1,V_=2 in the F-KPP case



Transition to the asymptotics
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traveling wave, asymptotic speed:
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Transition to the asymptotics

Inu
In1l

mitial condition
*B(X7Xt>

traveling wave, asymptotic speed:

VOO:X<Y0)
Yo

In1l

Inu




Transition to the asymptotics

Inu R
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initial condition
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transients:
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traveling wave, asymptotic speed: \
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Accounting for discreteness

Observation: u is either O or larger than 1/N
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Accounting for discreteness

Observation: u is either O or larger than 1/N

Recipe: Whenever there is more than 1 particle
on a site apply the mean field evolution

1/N > % Brunet, Derrida (1997)
Infinite N equation + cut-off o, u=(d2u+u—u’)@(u—1/N)
(still deterministic)
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Summary of the mean field approach

The FKPP equation 6,u=4-u+u-—u’

admits asymptotic traveling wave solutions, of shape e_yO(X_Xt)
: dX, X
and velocity V_= dtt: ;}y") where X(y)=y’+1 and y, minimizes V()’):_X;Y)
0

in the F-KPP case

The traveling wave builds up diffusively from a given initial condition

and its velocity during that phase reads V(t)= X(yo) __3

Yo 23’013

The FKPP equation may be modified to take into account the fact that in real particle

models, occupation numbers are discrete, 0,1,2... : 6, u=(ozu+u—u’)@(u—1/N)
InN

Yo

The front reaches its asymptotic shape of width L=

2 11
after a time L* and the corresponding velocity is V= X(¥o) _ m7yoX"(¥o)

Yo 21n°N

Confirmed to be the right average front velocity Brunet. Derrida: Moro:
in numerical simulations of fully stochastic models! Pechenik, Levine; Panja...
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Accounting for fluctuations

Assumption #1: the evolution of the stochastic front is essentially deterministic,

except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e°dsdt

V(t):X(Yo)_ 3

Yo 2Yot
u X( ) lel( )
) . v (x—X—-AX us
A time L? to reach the asymptotic shape e " **¥ Vip= yyo 2, Lio
0 0
1

position w.r.t. the deterministic front:

L? L?
AX=5+[, dt(V(t)-Vyp)=6—[ dt
3

+const
2y.t
—yo(x—X) —»

e :6——1nL2+const:l(y06—lnL3)+Const
2y, Yo

r NN

2

OSSOSO S S

N

5 X X+AX



Accounting for fluctuations

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e°dsdt

:X(Yo)_ 3
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Accounting for fluctuations

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e°dsdt
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Accounting for fluctuations

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(6)dsdt=C,e°dsdt

1)
eYo

Assumption #3: their effect on the front positionis R(§ ):Xf—X:iln

Yo

1+C,

L3
Stochastic rules for the effective evolution of the position of the front:

X,+Vypdt, ifnofluctuationoccurs

Xirat=
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Fixing the constants...
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Fixing the constants...
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Fixing the constants...

C Yoo
V-V,p=[ dsp()R(s) = 2 [dse™In|1+C, % _G&1% 3k
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integrant Fluctuations that contribute 3
A to the shift of the front extend up to §.=—InL
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NB: when 6~6_, the front due to the fluctuation
is at the same position as the old deterministic front
1.e. most of the particles are replaced. This happens
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Summary of the effect of fluctuations

We proposed a phenomenological model for the propagation stochastic fronts, that we
expect to be valid in the weak noise limit (for a large enough number of particles).
This model is summarized in the following assumptions:

Assumption #1: the evolution of the stochastic front is essentially deterministic,
except for some occasional extra-particles in the tail

Assumption #2: the probability for such extra-particles is p(s)dsdt=C,e*°dsdt

Yo0

Assumption #3: their effect on the front positionis R(§ ):iln 1 +CzeL—3
Yo
Assumption #4: V=V, with the substitution L-L+4,
It leads to quantitative predictions for the position of the front:
V:X(y(’)—nzyox Il(y°)+n2y2x (o) 2N InN>1
Yo 21n*N ° " yoIn®N
In—thcumulant| — 2 X" () n'!c(n) < distribution very wide!
t —T Yo o yRIn®N very far from a Gaussian!



cumulants

Numerical checks

1 | | 1 | | 4I

1 O‘I 5 1 020 1 030 1 040 1 050 1 060 1 D?O

N
Reaction-diffusion model, discrete in space and time



Use the dictionary...

Position x In(k*/k?)
Time t xY

Particle density/fraction u Partonic amplitude T
<>

Maximum/equilibrium 1
number of particles N 2
Position of the wave front X Saturation scale In(QZ/k?)

..to get predictions for QCD!
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Fraction of individuals

Selective evolution

t=0 The individual say at position x has
1 2 descendants at positions x+¢, and X+e,
2 !
distribution p(¢)
Keep only the N rightmost individuals
u
A
< 1
kS
=
2D
2
g
T, —
N : -L' > X




Fraction of individuals

Selective evolution

t=0 e > The individual say at position x has
1 Xte < X+€ 2 descendants at positions x+¢, and X +e,

. A N \

distribution p(e)

,,,,,,,,,,,,,, : \. Keep only the N rightmost individuals
u
A
L u(x,t+1)=Min 1
’ a 2fdep(e)u(x—e,t)
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{<v>0
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Fraction of individuals

Selective evolution

t=0 e > The individual say at position x has
1 Xte < X+€ 2 descendants at positions x+¢, and X +e,

. A N \

distribution p(e)

************** : o \. Keep only the N rightmost individuals
u
A
Z 1 (x,t+1)=Min 1
< AT [deple)ux—c,t)
2 +\/%fdep(e)u(x—e,t)(l—Zfdep(e)u(X—c—:,t))v(X,t+1)
=
° b
“\ {<v>0
2
1 e \L - (v)=1
N - -Ll > X

Traveling wave: all universal results on the front are applicable
with X(y)=In(2 [ dep(c)e”|
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MWhat else can we learn on selective evolution?

With selection Without selection

Average number of generations to the first common ancestor
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Numerical checKs

T, (log scale)
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Relation to the phenomenological model

A very advanced individual will, at a later time,
be the common ancestor of all particles

The condition for that 1s 5>5C=iln

Yo

InN
Yo

This happens precisely once in
1

~In°N timesteps!
p(s,) P

Our assumptions on the mechanism for stochastic front propagation also lead to the
expressions for (Ty)/(Ty)
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Spin glasses

A spin glass i1s a system of Ising spins, for example, with random interactions.
N

Hamiltonian: H,[(S,}|=— > ], ;S;S, J; .=+1(random)
i,j=1
Due to frustration (all interactions cannot be satisfied), there are many different
configurations that are local minima of the free energy F.

A distance between configs a and b may be defined with the help of the overlap function
ab_i agb
q - N Zi Si Si

This distance 1s ultrametric: the configurations may be represented by a (random) tree
Parisi; Mezard, Virasoro... (1980...)

/ We observed that the structure of the tree
. .A\

/ >\ is the same as in the growth model!
Y /\ / ] \0

overlap



Summary

Reaction-diffusion

New results for sFKPP, i.e.:
- stochastic front propagation

Selective evolution

\ - properties of population growth
\
\
(?O §
\ @,
0, %
N % e
: \N % 2,
High energy QCD A
@ C
New insights in high energy evolution; N € 2.
: : , \ 9
simple understanding of the fluctuations \”)0/ %
New results for QCD amplitudes \

Brunet, Derrida, Mueller, Munier, Phys. Rev. E (2006)
Letter submitted to PRL
Extended version to appear

Spin glasses



Outlook

The correspondence high energy QCD/ reaction-diffusion has provided new and fruitful
insights. Lots of points deserve more studies:

- does the impact parameter dependence change the picture?
- can one get phenomenological predictions for e.g. LHC?
- how does the picture fit the traditional approach to QCD through Feynman diagrams?
- does statistical physics have anything to say beyond the energy dependence
of total cross sections?

There 1s an intriguing universality beyond this correspondence, between some evolution
processes with selection related to traveling waves and the theory of spin glasses.

- 1s this deep or accidental?
- what insight can be gained for spin glasses?
- do our results on genealogies have a practical use in QCD/chemistry/biology?



Thank you to the organizers and to all participants

Happy birthday to Prof Bialas!



