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QCD: Currents, Correlators

and Spectral Densities
of Real Particles
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Currents related to m-mesons in QCD

Currents related to 7= meson:

Note that Dirac equation i D ¢(z) = m, q(z) gives relation:
oM Jus(x) = (my +mg) Js(x) . ()
Decay constant f; of physical pion «(P) is delined via
(0]7,5(0) |7 (P)) = i fx Pu

2
Jrmg
My + Mg

Eq. (*) then gives (0]J5(0)|7(P)) =
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Currents related to vector mesons in QCD

Currents related to p™ meson:

Ju(e) = a(@)yd(e);  T(e) = d(@)yulz)

Decay constant f, of physical p*(P,¢)-meson with
polarization ¢ and momentum P, satislying (P¢) =0 and
(g,6) = —1,

<O]JM(O)|,0(P, e)) = fompep.

Decay p! — ete™ allows to measure f, = 150 MeV, that
gives f,+ = 210 MeV.
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Vector current correlator 11,

1 .
So, we have [ —ImTI(¢") = p(¢*)0(|q0|) = p(q°) |, ith

—(27)?

p(q*) B(qo) = 32

S~ 50— p) 6lr0) [(0]0)| X )

X(p)

Lorentz invariance and current conservation dictate
9
(O]J*(2)| X (p)) (X (p)|J*(x)[0) = —|fx| m% <0,

that gives us

X
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Spectral density of correlators 11, and 11,

1
So, we have - Im H(qQ) - p(q2)9(|610\) = P(QQ)

[f we consider correlator
I 0) = [ (0]7(2)1,(0)[0) = [0 — g 0] T (0)

then H ImIT™(¢*) = p(q°)0(q0)

v

Now we can say why we put T-product in correlators
— then spectral densities, defined only by real particles,

are Lorentz invariant and depend only on g*!
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Relation with cross section eTe~ — hadrons

1 :
So, we have - ImII(¢*) = p(¢*)0(lqo]) = p(g?) | with

—(27)°

3 > 0.

p(q%) 0(qo) = > Mg —p) |<0|Ju(0)!X(p)>|2

X(p)

Important! This Iunction naturally appears in
1-photon QED description of eTe™ — hadrons:
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Relation with cross section eTe~ — hadrons

In 1-photon approximation of QED:

Here we explicitly extracted as a lactor cross-section
0,+u-(s) =4ma?/(3s) of the process eTe™ — pfpu.
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Relation with cross section eTe~ — hadrons

In 1-photon approximation of QED:

Here we explicitly extracted as a lactor cross-section
0,+u-(s) =4ma?/(3s) of the process eTe™ — pfp™:

o(eTe” — hadrons)

R(s) =

o(efe” — ptp~)
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Quark and Gluon

Condensates:
What is that?

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 9



Pert. vs Non-Pert. contributions in QCD

QM oscillator: In the presence of confinement potential

1
M (1) = My (771 = % —6w27+%w473+... .

This diflerence vanishes at short distances 7 < 1/w and one
can calculate exact M(u) perturbatively, expanding in
powers of the oscillator potential.
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Pert. vs Non-Pert. contributions in QCD

QM oscillator: In the presence of confinement potential

M(T_l) — My (7'_1) — % —%w27+%w473+... .

In QCD confining potential V°"(r) is not even known.
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Pert. vs Non-Pert. contributions in QCD

QM oscillator: In the presence of confinement potential

M () = Mo (r7Y) = 2% |~z b st

In QCD confining potential V°"(r) is not even known.

How to proceed further?

# to construct perturbation expansion in terms of
quark and gluon propagators;
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Pert. vs Non-Pert. contributions in QCD

QM oscillator: In the presence of confinement potential

1
M () = Mo (r7Y) = 2% |~z b st

In QCD confining potential V°"(r) is not even known.

How to proceed further?

# to construct perturbation expansion in terms of
quark and gluon propagators;

# to postulate that quark and gluon propagators are
modified by the long-range confinement potential;

# this modification is soft: at 7 — 0 the dilference
between exact and perturbative propagators vanishes.
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Condensates in QCD

We write exact propagator S*¢'(x,0) as a vacuum average
in the exact vacuum ¢

S (2,0) = (Q| T(p(2)p(0))]€2) .
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Condensates in QCD

We write exact propagator S*¢'(x,0) as a vacuum average
in the exact vacuum ¢

S (2,0) = (Q| T(p(2)p(0))]€2) .
Using Wick theorem, one can write T-product as the sum

T(p(x)p(0)) = w(z)p(0) + : p(x)p(0) :

of the “pairing” and the “normal” product.
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Condensates in QCD

We write exact propagator S*¢'(x,0) as a vacuum average
in the exact vacuum ¢

S (2,0) = (Q T(i2(2)9(0)))
Using Wick theorem, one can write T-product as the sum
T(p(x)p(0)) = Solz, 0)4 : p(x)e(0) :
Then lor expectation value in the physical vacuum
S (,0) = So(x,0) +(Q : ()¢ (0) : 1)

— the starting point to calculate power corrections in QCD.
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Condensates in QCD

The examples in QCD are

® (qq) referred to as quark condensate;

® (gD?q), characterizing average virtuality of the
vacuum quarks;

# gluon condensate (G},G7.,), etc.

Here D, = 0, — igA, is the covariant derivative and
G = (i/9)[Dy, Dy] is the gluonic field strength.

Further we will use notation |0) for physical vacuum |2).
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'
mu+md

(0] Jus(0)|7(P)) =i fx B (0]J5(0)|7(P)) =
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'
mu+md

(0| J,5(0)|7(P)) =i fr Pu; (0| J5(0)|7(P)) =
Consider now correlator

I,55(q) = i / d*z " (0|T [Ju5(x>Jg (0)} 10) =i q,ap(q°)
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'
mu—l_md

(0| J,5(0)|7(P)) =i fr Pu; (0| J5(0)|7(P)) =
Consider now correlator

I,55(q) = i / d*z " (0|T [Jw(x)Jg (0)} 10) =i q,ap(q°)

and its contraction with ¢*

i Ta(d) = — /d4x eiqxa;;mw () J3(0)] 0).
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

. frm?
O s (O)[(P)) = i fx P 0] 5(0)|m(P)) = ===
Contracting our correlator with ¢#
PP ap(g?) = — / P70 [J03(0,2): 1 (0)] [0)

— (1w + my) / de (O[T [ 15(2) 73(0)] [0)
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

. frm?
O isO|w(P)) =i fr P (O] 5(0)|w(P)) = e
Convoluting our correlator with ¢
PP ap(g?) = — / P70 [J03(0,2): 1 (0)] [0)

— (1w + my) / de (O[T [ 15(2) 73(0)] [0)

= i (uu+dd)+i (my +mg) 55(¢%)
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

. frm?
O3 Olr(PY) = s Pas O s(O)|(P) = =5
Then for correlator ITxp(¢?) we have
uu + dd IT55(qg?
HAP(Q2) _ < qz >+(mu‘|‘md) 55q(;])
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

: . Jr m72r
<O|Ju5(0)|W(P)> =1 frx Py <O|J5(O)’7T(P)> — My +my
Then for correlator ITxp(¢?) we have
wu + dd 55 (q°
Mapl?) = (4 mg) 2
Insert pions in between currents of IIxp(q?):
I m2 I _f2 m2 1 m2
T 2 ~ s _ 7 o 1 O U
ap(") My +mg m2 — ¢? My +mq ¢> " q*
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'
mu+md

(0] Jus(0)|7(P)) =i fx B (0]J5(0)|7(P)) =

Comparing asymptotics O(1/q¢?) gives us the famous PCAC
relation:
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'

(0] Jus(0)|7(P)) =i fx B (0]J5(0)|7(P)) =

In fact we should add other possible PS-meson states to
obtain

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 14



Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'
My, + My

(0] Jus(0)|7(P)) =i fx B (0]J5(0)|7(P)) =

In fact we should add other possible PS-meson states to
obtain

For chiral limit, m, — 0, PCAC tells us:

® f.#0, then m; — 0 = pion is Goldstone boson;
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'
My, + My

(0] Jus(0)|7(P)) =i fx B (0]J5(0)|7(P)) =

In fact we should add other possible PS-meson states to
obtain

For chiral limit, m, — 0, PCAC tells us:
® f.=+£0, then m; — 0 = pion is Goldstone boson,;

® my #0, then frr — 0 = no decays 7’ — v, !
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Condensates and PCAC for pions in QCD

We derived the relations:  0"J,5(x) = (my +mg) J5(x),

2
fﬂ'mﬂ'
My, + My

(0] Jus(0)|7(P)) =i fx B (0]J5(0)|7(P)) =

In fact we should add other possible PS-meson states to
obtain

For chiral limit, m, — 0, PCAC tells us:
® f.=+£0, then m; — 0 = pion is Goldstone boson,;

® m,;~ fr ~ 130 MeV = (gq) =~ —(260 MeV)? at
my = mg =4 MeV.
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Real case:
QCD SRs

for w-mesons
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Diagrams for axial-axial correlator 11,5.,5(q)

i / d*z ' (0|T {JM5(£I?)J£5(O)} 10) = g, Ii(¢7) + quanTla(q?)

Hadronic contribution to Borel transform of IIy(¢?):

2 fi 2
(I)hadr (MQ) _ BQ2—>M2 {Hgadr(q%} M2 4+ M2 mAl/M 4
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Diagrams for axial-axial correlator 11,5.,5(q)

i / d*z " (0|T {Jm(x)J%(O)} 0) = 9, 111(¢°) + qug1T2(q°)

Perturbative contribution to Borel transform of IIy(¢?):

>~ 1

2 (S
prert (72 :/ - {1 %} —s/M= 22
( ) 0 42 + T c
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Diagrams for axial-axial correlator 11,5.,5(q)

i/d4:1: eiqx<O’T [JM5(:1:)JZ5(O)} |O> = gw/Hl(CIQ) + QMQI/HQ(QQ)

Vector QC contribution to Borel transform of IIs(g?):

_ 16 mag(gg)’

(I)VQC (MQ) 1 WG
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Diagrams for axial-axial correlator 11,5.,5(q)

i / d*z " (0|T {JM5(J;)J§5(0)} 0) = 9, 111(¢°) + qug1T2(q°)

QGQC contribution to Borel transform of IIy(¢?):

16 Ta ((jq>2
2
(I)QGQC (M ) — 81 :]9\46
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Diagrams for axial-axial correlator 11,5.,5(q)

q O 5Y%

i/d4:1: eiqx<O’T [JM5(:1:)JZ5(O)} |O> = gw/Hl(CIQ) + qM(JuHQ(CIQ)

4-QC contribution to Borel transform of IIy(¢?):

144 mas{qq)*

(1)4'QC (MQ) 31 VK
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Diagrams for axial-axial correlator 11,5.,5(q)

i/d411: eiqx<O’T {JM5(:1:)J25(0)} 0) = 91 (¢%) + q.q112(¢%)

(GG) contribution to Borel transform of IIy(¢?):

1 {(asGG)

2\ _
(I)<GG> (M ) o 12 71 M4

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 16



QCD SR for axial correlator Iy(g?)

As a result we have SR for pion decay constant

=2

e

0.136
0. 134
0.132

0.13

0.128

0.126
0.124
0.122

\2
—so/M?) [q 4 s 1 (asGG) 176 mag{qq)
‘ ){ +w}+127r M2 s MA

fr(M?) [m + continuum] |
Exp. o
| 0 — P2 — 7
~_ so=0.63Y
B sg = 0.57
I VR
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QCD SR for axial correlator Iy(g?)

In a model with A;-meson we obtain slightly higher value
fr =0.137£0.13 GeV, to be compared with

P —0.132 GeV.

fr(M?) [7+ Aq + continuum]
0.145 f
| s) =24 - —

0. 14

0. 135

0.13

—

1.4 1.6 1

M2
.8
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Generalization:
QCD SRs for

Distribution Amplitude
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Pion distribution amplitude (DA)

#® Matrix element of nonlocal axial current on light cone

(0] d(z)vu15E(2,0)u(0) | 7(P))

22=0

1
ifx Py / dx e *P) oIV (1, 117
0
#® gauge-invariance due to Fock-Schwinger string:

E(2,0) = Peid J§ An(r)ir

# Physical meaning of ¢, (z; u?) — amplitude for
transition m — u 4+ d
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Representation ol Pion DA

# [t is convenient to represent the pion DA:

on (a3 %) = 9% (2) X

x [1 +as(u2) 02?20 — 1) + as(u) O (20 — 1) + ...

where ¢/ 2(2:1; — 1) are the Gegenbauer polynomials
(1-loop eigenfunctions of ER-BL kernel)
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Representation ol Pion DA

# [t is convenient to represent the pion DA:
on (w3 11?) = () %
3/2 N ~3/2
x [1 +as(u2) 02?20 — 1) + as(u) O (20 — 1) + ...

where ¢/ 2(2:1; — 1) are the Gegenbauer polynomials
(1-loop eigenfunctions of ER-BL kernel)

® That means

{(12 ), as(p )a} (:)SOW(SEMLQ)
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Representation ol Pion DA

# [t is convenient to represent the pion DA:
on (w3 11?) = () %
3/2 2\ 13/2
[1 + az(p?)Cy' (20 — 1) + ag(p?)Cy/ " (20 — 1) + ]
where ¢/ 2(2x — 1) are the Gegenbauer polynomials
(1-loop eigenfunctions of ER-BL kernel)

® That means

{a2 ), aq( ),} & or(z; 1)

Mikhailov&Radyushkin; 1986 |
Muiiller; 1994-95
| A.B.&Stefanis; 2005

® ER-BL solution
at 2-loop level
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Non-Local Condensates in QCD SR

® [llustration of .
NLC-model: {g(0)g(2)) = (q(0)q(0))e1="%/*

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 21



Non-Local Condensates in QCD SR

® [llustration of .
NLC-model: {g(0)g(2)) = (q(0)q(0))e1="%/*

» A single scale parameter \; = (k”) characterizing the
average momentum of quarks in QCD vacuum:

0.4+ 0.1 GeV? [ QCD SRs, 1987 |
A2=¢ 0.5+0.05GeV® [ QCD SRs, 1991 |
~ 0.4 — 0.5 GeV? [ Lattice, 1998-2002 |
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Non-Local Condensates in QCD SR

# [llustration of .
NLC-model: (g(0)q(2)) = (q(0)q(0))e~* /3
» A single scale parameter \; = (k”) characterizing the

average momentum of quarks in QCD vacuum:

0.4+ 0.1 GeV? [ QCD SRs, 1987 |
A2=¢ 0.5+0.05GeV® [ QCD SRs, 1991 |
~ 0.4 — 0.5 GeV? [ Lattice, 1998-2002 |

» Correlation length A;' ~ 0.3 Fm ~ p-meson size
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Non-Local Condensates in QCD SR

® [llustration of .
NLC-model: {g(0)g(2)) = (q(0)q(0))e1="%/*

» A single scale parameter \; = (k”) characterizing the
average momentum of quarks in QCD vacuum:

0.4+ 0.1 GeV? [ QCD SRs, 1987 |
A2=¢ 0.5+0.05GeV® [ QCD SRs, 1991 |
~ 0.4 — 0.5 GeV? [ Lattice, 1998-2002 |

» Correlation length A;' ~ 0.3 Fm ~ p-meson size

#® Possible to include second (A ~ 450 MeV) scale with

(7(0)q(2)) A1 F ~ <q(0)q(0)>e_‘Z|A (not included here)
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NLC QCD SR for Pion DA

Here is example of QCD SR with Non-Local Condensates

((as/m)GG)
24 M2

167 as(qq)*
T LD SRETN
1=2V,3L,4Q)

12 onl(z) = /0 P (s 5) M s + (0 A)

Local limit: A\Z/M? = A — 0,

pa(z;A) = [6(x) +0(1 — )]
) = [x8(7) + 20 (2)]
90(x) +6(1 — )]
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NLC contributions to QCD SR

Examples for Gaussian NLC with a single parameter )\g

. 90462(377 A)

; |jl @pert(aj?A) l:‘ :

0 0.2 0.4 0.6 0.8 1
X

Local limit: \Z/M? = A — 0,

lim pag(z; A) = 9[0(z) + (1 — )]
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NLC SRs for pion DA

Moments (¢V)

0,30
0,25 -
0,20
0,15
0,10
0,05

0,00 L

1
- / on(2) 22— )V dz at 42 ~ 1 GeV?2
0

I < N'> :
L X p IqZ:O.4GeV2: i
[ |
A NLC
1 . Asympt
[ |
él
*u An
éll 6 EI3 10

from NLC SRs

A PLB 508 (2001) 279

These (V) values allow one to restore DA ¢ (z)
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NLC SRs for Pion DA

produce bunch of seli-consistent 2-parameter models ¢, (x)
at 2 ~1 GeV*:

or(x) = ©*(x) |14 as 03/2(2:1: —1)+aq 02/2(23: — 1)}

> _o4cV?
2 Ag=0.4GeV | asPl = 40.188
1. a4b’f’ = —0.130
Y2 ~ 0.001

(z~1)SR : 3.30(30)
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NLC SR estimate of {xz~1)>F

BMS [PLB (2001)]: at u? ~ 1 GeV?

a8 (@0 (b)) )\g =04 GeV2,
3.6 — — — — — — — . anaanas
3.4 e ] <x—1>7STR = 3.3 £ 0.3,
3 2;7: __________________ ——

—_— e = <x—1>2.f. — 317
2.8/ -
2.6 M? [GeV?

0.8 1 1.2 1.4 1.6 1.8

SR

s

The moment (z~1)

could be determined only in NLC SRs

because end-point singularities absent
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BMS vs CZ distribution amplitude

2.(/¢Ai—¥7n-4—m7 —n——7 7
> pr(2)

1.5 Curves DAs
15 — BMS

0.5

BMS DA is end-point suppressed!
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BMS vs CZ distribution amplitude

2. 57 ‘ ———
, Pr(T)
Ls 7N . 27N Curves  DAs
-9 / \ e T TS < / \
I /" ~\\ / I EE .
s’ \ / \\\
1 ll ,,I \ / \\ \\
I /’ \ / AN ]
I ’ / AN \
L py \ - O .
0.5- 1 / \ / N\ Asymp
S \ d NV
i /’ ~-=-7 \
' \‘}.
0 0.2 0.4 0.6 0.8 1
X

CZ DA: end-point enhancement
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BMS vs CZ distribution amplitude

2.9
> pr(2)
L | Curves  DAs
-== CZ
— BMS
0. === Asymp.

BMS bunch is 2-humped, but end-point suppressed!
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Histograms for inverse moment {x™ 1),

Contributions of different DAs to inverse moment (z~ 1),
calculated as f5+0'02 ¢(x)dx and normalized to 100%, for:

(a) CZ and BMS DAs; (b) Asympt. and BMS
DAs.
10 10
. C7 (a) gl (b)
\
N BMS * ! BMS
4 < | 4 < As
| L /
0.2 o c; .‘F;s” 0.8 - gl 0.2 0.4 0.6 0.8 1
xT T

In BMS case region = < 0.1 contributes even less than in
Asymptotic DA case.
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NLC SR Constraints on as, ay ol Pion DA

a4 |
0

-0.1

-0.2

-0.3

O 005 0.1 0.15 0.2 0.25 0.3 0.35
a2
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Perturbative Part

NLO Light-Cone Sum Rules =
CLEO data on F.. - (Q*) =

Constraints on Pion DA
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v*v — w: Why Light-Cone Sum Rules’

For Q% > m32, ¢* < m? pQCD factorization valid only in

leading twist and higher twists are ol importance
[Radyushkin—Ruskov, NPB (1996)].

Reason: if ¢> — 0 one needs to take into account interaction
of real photon at long distances of order of O(1/+/¢?)

pQCD is OK LCSR should be applied
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v*v — w: Why Light-Cone Sum Rules’

For Q% > m32, ¢* < m? pQCD factorization valid only in

leading twist and higher twists are ol importance
[Radyushkin—-Ruskov, NPB (1996)].

Reason: if ¢> — 0 one needs to take into account interaction
of real photon at long distances of order of O(1/+/¢?)

To account for long-distance eHertsTn pQCD one needs to

introduce light-cone of real photon
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v*v — m: Light-Cone Sum Rules!

Khodjamirian [EJPC (1999)]: LCSR elfectively accounts for
long-distances elfects of real photon using quark-hadron

duality in vector channel and dispersion relation in ¢?

ds

1 o ImFRL. (Q? s m2 — s
Fw*w(QQ,CIQ) — —/ 727 ”(622 )GXP «
T™ Jo mp—|_q

ds

1 /OO ImF}. . (Q%s)

+ - 2
T Jsg S+ q

sg ~ 1.5 GeV? - effective threshold in vector channel,
M? — Borel parameter (0.5 — 0.9 GeV?).

Real-photon limit q* — 0 can be easily done ...
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v*v — m: Light-Cone Sum Rules!

Khodjamirian [EJPC (1999)]: LCSR elfectively accounts for
long-distances elfects of real photon using quark-hadron

duality in vector channel and dispersion relation in ¢?

1 /5o ImFRL. (Q?s) m? — s
Fo. (0%0) = - VT p ]
e (@7, 0) 77/0 m% exp 172 S
1 [~ ImFSL. (Q? s
+ —/ T @ )ds
T Js, S

sg ~ 1.5 GeV? - effective threshold in vector channel,
M? — Borel parameter (0.5 — 0.9 GeV?).

... as demonstrated here.
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Revision of CLEO data analysis

® Accurate NLO evolution for both ¢(z, Q¢,,) and
2

as(Qexp), taking into account quark thresholds

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 33



Revision of CLEO data analysis

® Accurate NLO evolution for both ¢(z, Q¢,,) and
2

as(Qexp), taking into account quark thresholds

#® The relation between “nonlocality”scale and twist-4

magnitude | 62, ~ )\2/2 was used to re-estimate

07y.q = 0.19£0.02 at A7 = 0.4 GeV?
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Revision of CLEO data analysis

® Accurate NLO evolution for both ¢(z, Q¢,,) and
2

as(Qexp), taking into account quark thresholds

#® The relation between “nonlocality”scale and twist-4

magnitude | 62, ~ Ag/Q was used to re-estimate

07y.q = 0.19£0.02 at A7 = 0.4 GeV?

#® New procedure of data processing to disentangle the
statistical and theoretical uncertainties
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Revision of CLEO data analysis

»

Accurate NLO evolution for both ¢(z, Q) and
2

as(Qexp), taking into account quark thresholds

The relation between “nonlocality”scale and twist-4

magnitude | 62, ~ Ag/Q was used to re-estimate

07y.q = 0.19£0.02 at A7 = 0.4 GeV?

New procedure ol data processing to disentangle the
statistical and theoretical uncertainties

Constraints on (z7!'); from CLEO data
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NLC SR Results vs NLO CLEQO Constraints

[BMS, PRD 67 (2003) 074012]

a4o \ H ©

il < )2 = 0.6 GeV?,
™ 52, = 0.28(3) GeV’
-0. 3}

-0.4;

0 0.1 0.2 0.3 0.4

No agreement with CLEO data for \2 = 0.6 GeV”
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NLC SR Results vs NLO CLEQO Constraints

[BMS, PRD 67 (2003) 074012]

a4OL
o _— )\(2] — 0.5 GeV~,
™ 52, = 0.23(2) GeV’
-0. 3}
-0.4;

0 0.1 0.2 0.3 0.4

Bad agreement with CLEO data for )2 = 0.5 GeV”
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NLC SR Results vs NLO CLEQO Constraints

[BMS, PRD 67 (2003) 074012]

"o -
o RS )\2 — 0.4 GeV?,
™ 52, = 0.19(2) GeV’
-0. 3}
-0. 4. f

Reasonable agreement with CLEO data ior
A2 =04 GeV?
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NLC SR Results vs Revised CLEO Constraint:

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 20% uncertainty of 6%,

BMS [PLB 578 (2004) 91]: )2 = 0.4 GeV?, 62, = 0.19(4) Ge

[] = best-fit point
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NLC SR Results vs Revised CLEO Constraint:

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 20% uncertainty of 6%,

BMS [PLB 578 (2004) 91]: )2 = 0.4 GeV?, 62, = 0.19(4) Ge

[] = best-fit point
" O = Asymptotic DA
m = CZ DA

0 0.1 0.2 0.3 0.4 a9

Even with 20% uncertainty in twist-4
CZ DA excluded at least at 40-level! As DA — at 3o-level.
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NLC SR Results vs Revised CLEO Constraint:

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 20% uncertainty of 6%,

BMS [PLB 578 (2004) 91]: )2 = 0.4 GeV?, 62, = 0.19(4) Ge

0- 1) [] = best-fit point
ol - ] = Asymptotic DA
o ‘ s = CZ DA

0.3 N\ - 0 = BMS model
-0.4; ‘\.

-0.5¢ /'/30.

0% 0.1 0.2 R s

CZ DA excluded at least at 40-level! As DA — at 3o-level.
BMS DA and most of BMS bunch — inside lo-domain.
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NLC SR Results vs Revised CLEO Constraint:

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 20% uncertainty of 6%,

BMS [PLB 578 (2004) 91]: )2 = 0.4 GeV?, 62, = 0.19(4) Ge

o1 T T 1 = best-fit point
‘;4:‘59’123/&\ g " [1 = Asymptotic DA

o '\\ N m = CZ DA

0.3 N\ [1 = BMS model

0.4 \ (1, o and UJ = instantons
-0.5¢ /'/30.

005 0.1 0.2 0.4 s

BMS DA and most of BMS bunch — inside lo-domain.
Instanton-based models — near 3o-boundary
(PR-model is close to 20-boundary).
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NLC SR Results vs Revised CLEO Constraint:

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 20% uncertainty of 6%,

BMS [PLB 578 (2004) 91]: )2 = 0.4 GeV?, 62, = 0.19(4) Ge

o1 T T . [ = best-it point
24:‘%/&\ = " [1 = Asymptotic DA

o, '\\ R ‘ - m =CZ DA

0.3 N N\ - 0 = BMS model

0.4 . v [0, a and [0 = instantons
0.5 ST '35 V¥ = transverse lattice
905 0.1 0.2 o.; : 0.4 s

BMS DA and most of BMS bunch — inside lo-domain.
Transverse lattice model — near 30-boundary.
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New CLEO data constraints for {z~ 1),

BMS [PLB 578 (2004) 91]: evolution to p? =1 GeV?
st O W A2 =04 GeV?,
o . | :1))<:1:_1>SR 1=0.1%0.1

0o oo

as S See also Bijnens&Khodjamirian

02 \ “\ [EPJC (2002)]:
04 o 2z —1=0.24+0.16
0.6 f

0 0.2 0.4 0.6 0.8 1

Again:
Good agreement of a theoretical “tool” of diiferent
origin with CLEO data
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LCSR vs. CELLO (¢) & CLEO (a) data

0.2 curve DA
o.18 T CZ
z' ii mmssssm BMS bunch
0120 AT ] msmamam PR-01

0.1 (W iseeesssss PPRWG-99
0.08" R A Asymp

BMS bunch describes rather well all data for Q% > 1.5
GeV?.
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What can add
E791 data
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E791: Dillractive dijet production

Frankfurt et al. [PLB (1993)]: Rough estimations
Braun et al. [NPB (2002)]: Account for hard GEXs

¢? ~4 GeV”
s ~ 1000 GeV?
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E791: Good agreement with BMS bunch

Following convolution procedure of Braun et al., we found

[PLB 578 (2004) 91]

DA Y?
— Asymp. 12.56
mmm BMS bunch 10.96
_-—= CZ 14.15

(accounting for 18 data points)

0.2 0.4 0.6 0.8 1
X

Our bunch of pion DAs has maximum uncertainty in
the central region, but agrees well with E791 data!
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Pion EM form tactor

JLab data for pion EM FF

and
Analytic NLO pQCD

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 41



Analytic Perturbation Theory

Analyticization means procedure to obtain analyticity of
hadronic observables in whole Q? region via dispersion
relations (Radyushkin, Krasnikov&Pivovarov,

Dokshitzer, Beneke&Braun, Shirkov&Solovtsov):
Analytization combines

#® RG invariance = resummation of UV logs and
correct QCD asymptotics
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Analytic Perturbation Theory

Analyticization means procedure to obtain analyticity of
hadronic observables in whole Q? region via dispersion
relations (Radyushkin, Krasnikov&Pivovarov,

Dokshitzer, Beneke&Braun, Shirkov&Solovtsov):
Analytization combines

#® RG invariance = resummation of UV logs and
correct QCD asymptotics

# Causality = spectral representation
— no Landau singularity
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD observables

over non-power sequences {A (QQ)} in L-loop order
[Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

| oo (1), 4\ " 1 }
«4;9)(@2):%/0 daakag—)ie; p’(fl)(a):<b_;r> %<ln(—0/A2)>
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD observables

over non-power sequences {A (QQ)} in L-loop order
[Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

| oo (1), 4\ " 1 }
«4;9)(@2):%/0 daakag—)ie; p’(fl)(g):<b_;r> %<ln(—0/A2)>

with 1-loop explicit expressions

@ -3 lln@i/m ! A2A—2Q2]

s AM@Y

O
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD observables

over non-power sequences {A (QQ)} in L-loop order
[Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

| oo (1), 4\ " 1 }
«4;9)(@2):%/0 daakag—)ie; p’(ﬂl)(g):<b_;r> %<ln(—0/A2)>

with 1-loop explicit expressions

s AV@)=al@) = lln(Q;/AQ) ' AQA— QQ]

» A = (%) an(le/AQ) * (Asz[Z;)?]

O
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD observables

over non-power sequences {A (QQ)} in L-loop order
[Shirkov, NPB Proc. 64 (1998) 106]. At 1-loop:

| oo (1), 4\ " 1 }
«4;9)(@2):%/0 daakag—)ie; p’(fl)(a):<b_;r> %<ln(—0/A2)>

)
Important: A (Q?) [54(91)(@2)}
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Pion form lactor in analytic NLO pQCD

[AB-Passek-Schroers-Stefanis, PRD 70 (2004) 033014 ]

0.6¢ ‘ ‘

- QPFL(Q?)
0.5 Curves Schemes
0. 4 M%{ —1 GeV2
0.3  mmm-- M%{:QQ
0.2 R BLM scale
0.1 - ay-scheme

1 2 3 4 5 6 7 8

Q? [GeV?]

Practical independence on scheme/scale setting!

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 43



Pion form lactor in analytic NLO pQCD

[AB-Passek-Schroers-Stefanis, PRD 70 (2004) 033014 ]

0.6
0.5
0.4
0.3
0.2

0.1!

Curves Schemes

pg =1 GeV?

----- ur = Q7
........... BLM scale
_______ ay-scheme

soft part

Practical independence on scheme/scale setting!
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Pion FF in analytic NLO pQCD

0.6 T ]

Q°Fr(Q7)

0.5 ]
0. 4 |
1 f
0.2 |
0.1

1 2 3 4 5 6 1 8

Q* [GeV?]

Green strip includes

#® NLC QCD SRs uncertainties (pion DA bunch)
® scale-setting ambiguities at NLO level
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Pion EM form tactor

New Lattice Data
for
pion DA
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Revised CLEQO Constraints and Lattice Data

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 20% uncertainty of 6%,

BMS [PLB 578 (2004) 91]: )2 = 0.4 GeV?, 62, = 0.19(4) Ge

or T T - O = best-fit point
‘;4:‘%/&\ = " [1 = Asymptotic DA

0z S\ \ - m =CZDA

0.3l \ \ - 1 = BMS model

0.4 _ v [, aand [0 = instantons
0.5, ST '35 V¥ = transverse lattice
0% 0.1 0.2 o.:; : 0.4 s

BMS DA and most of BMS bunch — inside lo-domain.
Transverse lattice model — near 3o-boundary.

XLVI Cracow TP School @ Zakopane Lecture 2: QCD Sum Rules for light mesons — p. 46



Revised CLEQO Constraints and Lattice Data

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 20% uncertainty of 6%,

[PRD 73 (2006) 056002]: \2 = 0.4 GeV”, 62, = 0.19(4) Gel

o [] = best-lit point
. [J = Asymptotic DA
a0 @ ‘ y p
-0%1 ““ Q m = CZ DA
-0.2} \‘\\ [1 = BMS model
-0.3 [1, a and [J = instantons

Vv = transverse lattice
oray strip = lattice’04 result

0 0.1 0.2 0.3 0.4

BMS DA and most of BMS bunch — inside lo-domain
and inside 2004 lattice strip [PRD 73 (2006) 056002].
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Revised CLEQO Constraints and Lattice Data

0.1

-0.1
-0.2
-0.3

-0. 4}
0.5/
-0. 6L

NLO Light-Cone SR & Twist-4 &(u? = Q?)

with 20% uncertainty of 6%,

[PRD 73 (2006) 056002]: \2 = 0.4 GeV”, 62, = 0.19(4) Gel

-

L

L /—
S Yo
i \
\\ \
1y \
. \\

AN
\
N \\ ] ‘
I. | \
~ . ]
\\ p

/'30- ]

AN

— . —

0

0.

1

0.3

0.4

a9

[] = best-fit point

[1 = Asymptotic DA

m = CZ DA

[1 = BMS model

[1, Ao and U = instantons

Vv = transverse lattice

oray strip = lattice’05 result

BMS DA and most of BMS bunch — inside lo-domain
and one-half inside 2005 lattice strip [PRD 73 (2006)
056002].
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Revised CLEQO Constraints and Lattice Data

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 10% uncertainty of 6%,

[PRD 73 (2006) 056002]: \2 = 0.4 GeV”, 62, = 0.19(2) Gel
[] = best-fit point

0.1}

SR RO
0.1 ~~d. ’ =
0.2 ‘ \ RN - [ = BMS model
4 .
0.3 \§> v U, a and U = instantons
0.4 “=-._/ ¥ = transverse lattice
B . gray strip = lattice’05 result
%% 0.1 0. 2 0.3 0.4 4,

BMS DA and most of BMS bunch — inside lo-domain
and inside lattice strip. Dashed contour = renormalon
model estimation of CLEO data [PRD 73 (2006) 056002].
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Revised CLEQO Constraints and Lattice Data

NLO Light-Cone SR & Twist-4 &(u? = Q?)
with 10% uncertainty of 6%,

[PRD 73 (2006) 056002]: \2 = 0.4 GeV”, 62, = 0.19(2) Gel

T | U = best-fit point

11085 % . [1 = Asymptotic DA

0.1/ ( 1™ -~ - m =CZ DA

0.2, \ \\\ ' [0 = our new model

0.3 \§> v U, aand 0 = instantons
"0-44 “~~__/ ¥ = transverse lattice

el . gray strip = lattice’05 result
-0-6% 0.1 0.2 0.3 0.4 a5

Most of improved BMS bunch — inside lo-domain
and inside lattice strip. Dashed contour = renormalon
model estimation of CLEO data.
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CONCLUSIONS

# (QCD SR method with NLC for pion DA gives us
admissible sets (bunches) of DAs for each A\, value.
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CONCLUSIONS

# (QCD SR method with NLC for pion DA gives us
admissible sets (bunches) of DAs for each A\, value.

#® NLO LCSR method produces new constraints on pion
DA parameters (as,a4) in conjunction with CLEO data.
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CONCLUSIONS

# (QCD SR method with NLC for pion DA gives us
admissible sets (bunches) of DAs for each A\, value.

#® NLO LCSR method produces new constraints on pion
DA parameters (as,a4) in conjunction with CLEO data.

#® Comparing NLC SRs with new CLEO constraints
allows to fix value of QCD vacuum nonlocality

)\?] — 0.4 GeV>.
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CONCLUSIONS

# (QCD SR method with NLC for pion DA gives us
admissible sets (bunches) of DAs for each A\, value.

#® NLO LCSR method produces new constraints on pion
DA parameters (as,a4) in conjunction with CLEO data.

#® Comparing NLC SRs with new CLEO constraints
allows to fix value of QCD vacuum nonlocality

)\2 — 0.4 GeV>.

#® This bunch of pion DAs agrees well with E791 data on
diffractive dijet production, with JLab F(pi) data on
pion EM form factor and with recent lattice data.
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CONCLUSIONS

# (QCD SR method with NLC for pion DA gives us
admissible sets (bunches) of DAs for each A\, value.

#® NLO LCSR method produces new constraints on pion
DA parameters (as,a4) in conjunction with CLEO data.

#® Comparing NLC SRs with new CLEO constraints
allows to fix value of QCD vacuum nonlocality

)\?] — 0.4 GeV>.

#® This bunch of pion DAs agrees well with E791 data on
diffractive dijet production, with JLab F(pi) data on
pion EM form factor and with recent lattice data.

#» APT with non-power NLO for pion EM form factor
diminishes scale-setting ambiguities already at NLO
level.
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