Lecture 1: QCD Sum Rules in Quantum Mechanics

A. P. Bakulev

Bogolyubov Lab. Theor. Phys., JINR (Dubna, Russia)

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons
- QCD: Quarks - inside, hadrons - outside! How to proceed?

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons
- QCD: Quarks - inside, hadrons - outside! How to proceed?
- QCD SRs: Way to study hadrons in np-QCD.

Contents of Lecture 1

- Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons
- QCD: Quarks - inside, hadrons - outside! How to proceed?
- QCD SRs: Way to study hadrons in np-QCD.
- QCD: Currents, Correlators and Spectral Densities.

Quantum-mechanical toy model:

Two-Dimensional

 Harmonic
Oscillator

Two-Dimensional Oscillator

Simplest system with confinement - oscillator with potential $V(\vec{r})=m \omega^{2} r^{2} / 2$. All formulas greatly simplify if $D=2$.

Two-Dimensional Oscillator

Simplest system with confinement - oscillator with potential $V(\vec{r})=m \omega^{2} r^{2} / 2$. All formulas greatly simplify if $D=2$. Then energy levels are

$$
E_{n}=(2 n+1) \omega,
$$

Two-Dimensional Oscillator

Simplest system with confinement - oscillator with potential $V(\vec{r})=m \omega^{2} r^{2} / 2$. All formulas greatly simplify if $D=2$. Then energy levels are

$$
E_{n}=(2 n+1) \omega,
$$

and wave function values in the origin are

$$
\left|\psi_{n}(0)\right|^{2}=\frac{m \omega}{\pi}
$$

Two-Dimensional Oscillator

Simplest system with confinement - oscillator with potential $V(\vec{r})=m \omega^{2} r^{2} / 2$. All formulas greatly simplify if $D=2$. Then energy levels are

$$
E_{n}=(2 n+1) \omega,
$$

and wave function values in the origin are

$$
\left|\psi_{n}(0)\right|^{2}=\frac{m \omega}{\pi} .
$$

We will consider the regular quasi-perturbative method of Sum Rules to determine energy E_{0} and $\left|\psi_{0}(0)\right|^{2}$ of the ground state.

General scheme

 of
Sum Rule method

The general scheme of Sum Rule method

- We study correlator $M(\mu)$, which has spectral expansion:

$$
M^{\mathrm{spec}}(\mu)=\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}+\text { "higher states" }
$$

The general scheme of Sum Rule method

- We study correlator $M(\mu)$, which has spectral expansion:

$$
M^{\text {spec }}(\mu)=\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}+\text { "higher states" }
$$

- We construct perturbative expansion of this correlator:

$$
M^{\text {pert }}(\mu)=M_{0}(\mu)+\sum_{n \geq 1} C_{2 n} \frac{\omega^{2 n}}{\mu^{2 n}},
$$

where $M_{0}(\mu)$ corresponds to free particle and has dispersion representation:

$$
M_{0}(\mu)=\int_{0}^{\infty} \rho_{0}(E) e^{-E / \mu} d E .
$$

The general scheme of Sum Rule method

- We study correlator $M(\mu)$, which has expansion:

$$
M^{\text {spec }}(\mu)=\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}+\text { "higher states" }
$$

- We construct perturbative expansion of this correlator:

$$
M^{\text {pert }}(\mu)=M_{0}(\mu)+\sum_{n \geq 1} C_{2 n} \frac{\omega^{2 n}}{\mu^{2 n}}
$$

- Sum Rule - it is simply

$$
M^{\mathrm{spec}}(\mu)=M^{\text {pert }}(\mu)
$$

The general scheme of Sum Rule method

- It appears that higher state contributions can be well approximated by
"higher states" = "free states" outside interval $\left(0, s_{0}\right)$

The general scheme of Sum Rule method

- It appears that higher state contributions can be well approximated by
"higher states" = "free states" outside interval $\left(0, s_{0}\right)$
- As a result we have Sum Rule (SR):

$$
\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}=\int_{0}^{S_{0}} \rho_{0}(E) e^{-E / \mu} d E+\text { "power corrections" }
$$

The general scheme of Sum Rule method

- It appears that higher state contributions can be well approximated by
"higher states" = "free states" outside interval $\left(0, s_{0}\right)$
- As a result we have Sum Rule (SR):

$$
\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}=\int_{0}^{S_{0}} \rho_{0}(s) e^{-s / \mu} d s+C_{2} \frac{\omega^{2}}{\mu^{2}}+C_{4} \frac{\omega^{4}}{\mu^{4}}+\ldots
$$

The general scheme of Sum Rule method

- It appears that higher state contributions can be well approximated by
"higher states" = "free states" outside interval $\left(0, s_{0}\right)$
- As a result we have Sum Rule (SR):

$$
\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}=\int_{0}^{S_{0}} \rho_{0}(s) e^{-s / \mu} d s+C_{2} \frac{\omega^{2}}{\mu^{2}}+C_{4} \frac{\omega^{4}}{\mu^{4}}+\ldots
$$

- Our aim: to determine $\left|\psi_{0}(0)\right|^{2}$ and \boldsymbol{E}_{0} from this SR by calculating spectral density $\rho_{0}(\boldsymbol{E})$ and coefficients $C_{2 n}$ and by demanding stability of this SR in variable $\mu \in\left[\mu_{\mathrm{L}}, \mu_{\mathrm{U}}\right]$.

Green functions

and

Correlators

$M(\mu)$ and Green function $G(\vec{x}, t)$

- Consider 2-time Green function

$$
G(0,0 \mid \vec{x}, t)=\sum_{k \geq 0} \psi_{k}^{*}(\vec{x}) \psi_{k}(0) e^{-i E_{k} t} .
$$

$=$ probability amplitude for $(x=0, t=0) \rightarrow(\vec{x}, t)$.

$M(\mu)$ and Green function $G(\vec{x}, t)$

- Consider 2-time Green function

$$
G(0,0 \mid \vec{x}, t)=\sum_{k \geq 0} \psi_{k}^{*}(\vec{x}) \psi_{k}(0) e^{-i E_{k} t} .
$$

$=$ probability amplitude for $(x=0, t=0) \rightarrow(\vec{x}, t)$.

- To get $M(\mu)$ put $x=0, t=1 / i \mu$:

$$
M(\mu)=G(0,0 \mid 0,1 / i \mu)=\sum_{k \geq 0}\left|\psi_{k}(0)\right|^{2} e^{-E_{k} / \mu}=M^{\mathrm{spec}}(\mu) .
$$

$M(\mu)$ and Green function $G(\vec{x}, t)$

- Consider 2-time Green function

$$
G(0,0 \mid \vec{x}, t)=\sum_{k \geq 0} \psi_{k}^{*}(\vec{x}) \psi_{k}(0) e^{-i E_{k} t} .
$$

$=$ probability amplitude for $(x=0, t=0) \rightarrow(\vec{x}, t)$.

- To get $M(\mu)$ put $x=0, t=1 / i \mu$:

$$
M(\mu)=G(0,0 \mid 0,1 / i \mu)=\sum_{k \geq 0}\left|\psi_{k}(0)\right|^{2} e^{-E_{k} / \mu}=M^{\mathrm{spec}}(\mu) .
$$

In our case $\left|\psi_{k}(0)\right|^{2}=m \omega / \pi$, so we have

$$
M(\mu)=\text { ??? }
$$

$M(\mu)$ and Green function $G(\vec{x}, t)$

- Consider 2-time Green function

$$
G(0,0 \mid \vec{x}, t)=\sum_{k \geq 0} \psi_{k}^{*}(\vec{x}) \psi_{k}(0) e^{-i E_{k} t} .
$$

$=$ probability amplitude for $(x=0, t=0) \rightarrow(\vec{x}, t)$.

- To get $M(\mu)$ put $x=0, t=1 / i \mu$:

$$
M(\mu)=G(0,0 \mid 0,1 / i \mu)=\sum_{k \geq 0}\left|\psi_{k}(0)\right|^{2} e^{-E_{k} / \mu}=M^{\mathrm{spec}}(\mu) .
$$

In our case $\left|\psi_{k}(0)\right|^{2}=m \omega / \pi$, so we have

$$
M(\mu)=\frac{m \omega}{2 \pi \sinh (\omega / \mu)} .
$$

Spectral expansion for $M(\mu)$

- Exact correlator:

$$
M(\mu)=\frac{m \omega}{2 \pi \sinh (\omega / \mu)} .
$$

Spectral expansion for $M(\mu)$

- Exact correlator:

$$
M(\mu)=\frac{m \omega}{2 \pi \sinh (\omega / \mu)} .
$$

- Spectral representation $=$ expansion in powers of $e^{-2 \omega / \mu}$

$$
M^{\mathrm{spec}}(\mu)=\frac{m \omega}{\pi}\left(e^{-\omega / \mu}+e^{-3 \omega / \mu}+e^{-5 \omega / \mu}+e^{-7 \omega / \mu}+\ldots\right) .
$$

Spectral expansion for $M(\mu)$

- Exact correlator:

$$
M(\omega)=\frac{m \omega}{2 \pi} \cdot(0.851)
$$

- Spectral representation $=$ expansion in powers of $e^{-2 \omega / \mu}$

$$
M^{\mathrm{spec}}(\mu)=\frac{m \omega}{\pi}\left(e^{-\omega / \mu}+e^{-3 \omega / \mu}+e^{-5 \omega / \mu}+e^{-7 \omega / \mu}+\ldots\right) .
$$

Numerically at $\mu=\omega$:

$$
M^{\text {spec }}(\omega)=\frac{m \omega}{2 \pi}(0.736+0.100+0.013+0.002+\ldots) .
$$

Spectral expansion for $M(\mu)$

- Exact correlator:

$$
M(\omega)=\frac{m \omega}{2 \pi} \cdot(0.851)
$$

- Spectral representation $=$ expansion in powers of $e^{-2 \omega / \mu}$

$$
M^{\mathrm{spec}}(\mu)=\frac{m \omega}{\pi}\left(e^{-\omega / \mu}+e^{-3 \omega / \mu}+e^{-5 \omega / \mu}+e^{-7 \omega / \mu}+\ldots\right) .
$$

Numerically at $\mu=\omega$:

$$
M^{\text {spec }}(\omega)=\frac{m \omega}{2 \pi}(0.736+0.100+0.013+0.002+\ldots) .
$$

Ground state contributes 86%, first excitation - 12%, while the second -1.5%.

Perturbative expansion for $M(\mu)$

- Exact correlator:

$$
M(\mu)=\frac{m \omega}{2 \pi \sinh (\omega / \mu)} .
$$

Perturbative expansion for $M(\mu)$

- Exact correlator:

$$
M(\omega)=\frac{m \omega}{2 \pi} \cdot(0.851) .
$$

- Perturbative expansion in powers $(\omega / \mu)^{n}$

$$
M^{\text {pert }}(\mu)=\frac{m \mu}{2 \pi}\left(1-\frac{\omega^{2}}{6 \mu^{2}}+\frac{7}{360} \frac{\omega^{4}}{\mu^{4}}-\frac{31}{15120} \frac{\omega^{6}}{\mu^{6}}+\ldots\right),
$$

Perturbative expansion for $M(\mu)$

- Exact correlator:

$$
M(\omega)=\frac{m \omega}{2 \pi} \cdot(0.851) .
$$

- Perturbative expansion in powers $(\omega / \mu)^{n}$

$$
M^{\text {pert }}(\mu)=\frac{m \mu}{2 \pi}\left(1-\frac{\omega^{2}}{6 \mu^{2}}+\frac{7}{360} \frac{\omega^{4}}{\mu^{4}}-\frac{31}{15120} \frac{\omega^{6}}{\mu^{6}}+\ldots\right)
$$

Here $m \mu / 2 \pi$ corresponds to Green function of free particle:

$$
M^{\text {free }}(\mu)=\frac{m \mu}{2 \pi},
$$

Perturbative expansion for $M(\mu)$

- Exact correlator:

$$
M(\omega)=\frac{m \omega}{2 \pi} \cdot(0.851)
$$

- Perturbative expansion in powers $(\omega / \mu)^{n}$

$$
M^{\text {pert }}(\mu)=\frac{m \mu}{2 \pi}\left(1-\frac{\omega^{2}}{6 \mu^{2}}+\frac{7}{360} \frac{\omega^{4}}{\mu^{4}}-\frac{31}{15120} \frac{\omega^{6}}{\mu^{6}}+\ldots\right),
$$

Numerically at $\mu=\omega$:

$$
M^{\text {pert }}(\omega)=\frac{m \omega}{2 \pi}(1-0.167+0.019-0.002+\ldots)
$$

First correction specifies free result by 17%, while the second - by 3%

Asymptotic Freedom

for

HO Correlator

Asymptotic Freedom for $M(\mu)$

Perturbative expansion can be rewritten

$$
\frac{M(\mu)-M_{0}(\mu)}{M_{0}(\mu)}=-\frac{\omega^{2}}{6 \mu^{2}}+\frac{7}{360} \frac{\omega^{4}}{\mu^{4}}-\frac{31}{15120} \frac{\omega^{6}}{\mu^{6}}+\ldots
$$

Asymptotic Freedom for $M(\mu)$

Perturbative expansion can be rewritten

$$
\frac{M(\mu)-M_{0}(\mu)}{M_{0}(\mu)}=-\frac{\omega^{2}}{6 \mu^{2}}+\frac{7}{360} \frac{\omega^{4}}{\mu^{4}}-\frac{31}{15120} \frac{\omega^{6}}{\mu^{6}}+\ldots
$$

That means Asymptotic Freedom:
$M(\mu)$ behaves like $M_{0}(\mu)$ at large $\mu \gg \omega$!

Asymptotic Freedom for $M(\mu)$

Perturbative expansion can be rewritten

$$
\frac{M(\mu)-M_{0}(\mu)}{M_{0}(\mu)}=-\frac{\omega^{2}}{6 \mu^{2}}+\frac{7}{360} \frac{\omega^{4}}{\mu^{4}}-\frac{31}{15120} \frac{\omega^{6}}{\mu^{6}}+\ldots
$$

That means Asymptotic Freedom:
$M(\mu)$ behaves like $M_{0}(\mu)$ at large $\mu \gg \omega$!

Asymptotic Freedom in Quantum Mechanics is violated by Power Corrections of the type ω^{2} / μ^{2}

Graphics for $M(\mu)$

Exact $M(\mu)$; Ground state only; $M_{0}(\mu)+O\left(\omega^{2} / \mu^{2}\right)$.

Graphics for $M(\mu)$

Exact $M(\mu) ; 0+1$ states only; $M_{0}(\mu)+O\left(\omega^{4} / \mu^{4}\right)$.

Graphics for $M(\mu)$

For small μ in spectral part survives only ground state $\left|\psi_{0}\right|^{2} e^{-E_{0} / \mu}$. But: PT breaks down.

Graphics for $M(\mu)$

For large $\mu \mathbf{A F}$ works well: $M(\mu) \simeq M_{0}(\mu)$. But: We need more and more resonances to saturate $M(\mu)$.

Global and Local

Dualities

XLVI Cracow TP School @ Zakopane Lecture 1: QCD Sum Rules in Quantum Mechanics - p. 16

Global Duality: Free \Leftrightarrow Confined

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$
M^{\mathrm{spec}}(\mu)=\sum_{k \geq 0} \frac{m \omega}{\pi} e^{-E_{k} / \mu} \equiv \int_{0}^{\infty} \rho^{\text {osc }}(E) e^{-E / \mu} d E
$$

Global Duality: Free \Leftrightarrow Confined

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$
M^{\mathrm{spec}}(\mu)=\sum_{k \geq 0} \frac{m \omega}{\pi} e^{-E_{k} / \mu} \equiv \int_{0}^{\infty} \rho^{\text {osc }}(E) e^{-E / \mu} d E
$$

Here spectral density is just sum of δ-functions:

$$
\rho^{\mathrm{osc}}(E)=\sum_{k \geq 0} \frac{m \omega}{\pi} \delta\left(E-E_{k}\right) .
$$

Global Duality: Free \Leftrightarrow Confined

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$
M^{\mathrm{spec}}(\mu)=\sum_{k \geq 0} \frac{m \omega}{\pi} e^{-E_{k} / \mu} \equiv \int_{0}^{\infty} \rho^{\text {osc }}(E) e^{-E / \mu} d E
$$

Analogously we have integral representation for free correlator:

$$
M_{0}(\mu)=\frac{m \mu}{2 \pi} \equiv \int_{0}^{\infty} \rho_{0}(E) e^{-E / \mu} d E .
$$

Who knows what is $\rho_{0}(E)$?

Global Duality: Free \Leftrightarrow Confined

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$
M^{\mathrm{spec}}(\mu)=\sum_{k \geq 0} \frac{m \omega}{\pi} e^{-E_{k} / \mu} \equiv \int_{0}^{\infty} \rho^{\text {osc }}(E) e^{-E / \mu} d E
$$

Analogously we have integral representation for free correlator:

$$
M_{0}(\mu)=\frac{m \mu}{2 \pi} \equiv \int_{0}^{\infty} \rho_{0}(E) e^{-E / \mu} d E .
$$

Who knows what is $\rho_{0}(E)$? Answer: $\rho_{0}(E)=\frac{m}{2 \pi}$.

Global Duality: Free \Leftrightarrow Confined

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:
$M^{\text {spec }}(\mu)=\int_{0}^{\infty} \rho^{\text {osc }}(E) e^{-E / \mu} d E ; M_{0}(\mu)=\int_{0}^{\infty} \rho_{0}(E) e^{-E / \mu} d E$.
Asymptotic Freedom:

$$
M(\mu \rightarrow \infty)=M_{0}(\mu \rightarrow \infty)
$$

Global Duality: Free \Leftrightarrow Confined

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:
$M^{\text {spec }}(\mu)=\int_{0}^{\infty} \rho^{\text {osc }}(E) e^{-E / \mu} d E ; M_{0}(\mu)=\int_{0}^{\infty} \rho_{0}(E) e^{-E / \mu} d E$.
Asymptotic Freedom:

$$
M(\mu \rightarrow \infty)=M_{0}(\mu \rightarrow \infty)
$$

dictates Global Duality for these two densities

$$
\int_{0}^{\infty} \rho^{\text {osc }}(E) d E=\int_{0}^{\infty} \rho_{0}(E) d E
$$

Graphics of dual spectral densities

At first glance they have completely different behaviour:

Graphics of dual spectral densities

But we have very interesting relations between $2 k \omega$-partial integral moments of this dual densities, namely, $\left\langle E^{N}>_{2 k \omega}\right.$
$=\int_{2 k \omega}^{2 k \omega+2 \omega} E^{N} \rho(E) d E$.
For $N=0$:

$$
\int_{2 k \omega}^{2(k+1) \omega} \rho^{\mathrm{osc}}(E) d E=\frac{m \omega}{\pi}=\int_{2 k \omega}^{2(k+1) \omega} \rho_{0}(E) d E
$$

Graphics of dual spectral densities

But we have very interesting relations between $2 k \omega$-partial integral moments of this dual densities, namely, $\left\langle E^{N}>_{2 k \omega}\right.$
$=\int_{2 k \omega}^{2 k \omega+2 \omega} E^{N} \rho(E) d E$.
For $N=1$:

$$
\int_{2 k \omega}^{2(k+1) \omega} E \rho^{\mathrm{osc}}(E) d E=\frac{m \omega^{2}(2 k+1)}{\pi}=\int_{2 k \omega}^{2(k+1) \omega} E \rho_{0}(E) d E
$$

Graphics of dual spectral densities

But we have very interesting relations between $2 k \omega$-partial integral moments of this dual densities, namely, $\left\langle E^{N}>_{2 k \omega}\right.$ $=\int_{2 k \omega}^{2 k \omega+2 \omega} E^{N} \rho(E) d E$. For $N \geq 2$:

$$
\int_{2 k \omega}^{2(k+1) \omega} E^{N} \rho^{\mathrm{osc}}(E) d E=\int_{2 k \omega}^{2(k+1) \omega} E^{N} \rho_{0}(E) d E\left[1+O\left(\frac{N^{2}}{k^{2}}\right)\right]
$$

Graphics of dual spectral densities

We have duality between each excited resonance in oscillator and free particle in some spectral domain \Rightarrow "Local Duality"

QM Sum Rules

for

Harmonic Oscillator

XLVI Cracow TP School @ Zakopane
Lecture 1: QCD Sum Rules in Quantum Mechanics - p. 19

QM Sum Rules

We can model higher state contributions by
"higher states" $=$ "free states" outside interval $\left(0, S_{0}\right)$

QM Sum Rules

We can model higher state contributions by
"higher states" $=$ "free states" outside interval $\left(0, S_{0}\right)$
or: $\quad \rho^{\bmod }(E)=\left|\psi_{0}(0)\right|^{2} \delta\left(E-E_{0}\right)+\rho_{0}(E) \theta\left(E-S_{0}\right)$

QM Sum Rules

Our model for HSs gives

$$
M^{\bmod }(\mu)=\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}+\int_{S_{0}}^{\infty} \rho_{0}(s) e^{-E / \mu} d E .
$$

QM Sum Rules

Our model for HSs gives

$$
M^{\bmod }(\mu)=\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}+\int_{S_{0}}^{\infty} \rho_{0}(s) e^{-E / \mu} d E
$$

After all we have Sum Rule:

$$
\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}=\int_{0}^{S_{0}} \rho_{0}(E) e^{-E / \mu} d E+\text { power corrections }
$$

QM Sum Rules

Our model for HSs gives

$$
M^{\bmod }(\mu)=\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}+\int_{S_{0}}^{\infty} \rho_{0}(s) e^{-E / \mu} d E .
$$

or equivalent SR (with $\left.\Psi_{0}(0) \equiv \psi_{0}(0) \sqrt{\pi / \omega}\right)$:

$$
\left|\Psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}=\frac{\mu}{2 \omega}\left\{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots\right\}
$$

QM Sum Rules

Our model for HSs gives

$$
M^{\bmod }(\mu)=\left|\psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}+\int_{S_{0}}^{\infty} \rho_{0}(s) e^{-E / \mu} d E
$$

or equivalent $\operatorname{SR}\left(\right.$ with $\left.\Psi_{0}(0) \equiv \psi_{0}(0) \sqrt{\pi / \omega}\right)$:

$$
\left|\Psi_{0}(0)\right|^{2} e^{-E_{0} / \mu}=\frac{\mu}{2 \omega}\left\{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots\right\}
$$

Daughter $S R-$ by $\frac{-\partial \ldots}{\partial \mu^{-1}}$:

$$
\left|\Psi_{0}(0)\right|^{2} \boldsymbol{E}_{0} e^{-E_{0} / \mu}=\frac{\mu^{2}}{2 \omega}\left\{1-\left(1+\frac{S_{0}}{\mu}\right) e^{-S_{0} / \mu}+\frac{\omega^{2}}{6 \mu^{2}}+\ldots\right\}
$$

QM Sum Rules: The Scheme

Main SR:
$\left|\Psi_{0}(0)\right|^{2} \approx \Psi_{0}^{2}\left(\boldsymbol{E}_{0}, S_{0}, \boldsymbol{\mu}\right)=\frac{\mu e^{\boldsymbol{E}_{0} / \mu}}{2 \omega}\left\{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots\right\}$

QM Sum Rules: The Scheme

Main SR:
$\left|\Psi_{0}(0)\right|^{2} \approx \Psi_{0}^{2}\left(\boldsymbol{E}_{0}, S_{0}, \boldsymbol{\mu}\right)=\frac{\mu e^{E_{0} / \mu}}{2 \omega}\left\{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots\right\}$
Daughter SR:

$$
\boldsymbol{E}_{0} \approx \boldsymbol{E}_{0}\left(S_{0}, \boldsymbol{\mu}\right)=\mu \frac{1-\left(1+\frac{S_{0}}{\mu}\right) e^{-S_{0} / \mu}+\frac{\omega^{2}}{6 \mu^{2}}+\ldots}{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots}
$$

QM Sum Rules: The Scheme

Main SR:
$\left|\Psi_{0}(0)\right|^{2} \approx \Psi_{0}^{2}\left(\boldsymbol{E}_{0}, S_{0}, \boldsymbol{\mu}\right)=\frac{\mu e^{E_{0} / \mu}}{2 \omega}\left\{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots\right\}$
Daughter SR:

$$
\boldsymbol{E}_{0} \approx \boldsymbol{E}_{0}\left(S_{0}, \boldsymbol{\mu}\right)=\mu \frac{1-\left(1+\frac{S_{0}}{\mu}\right) e^{-S_{0} / \mu}+\frac{\omega^{2}}{6 \mu^{2}}+\ldots}{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots}
$$

Strategy of processing SRs:

- Determine $\boldsymbol{E}_{0} \approx \boldsymbol{E}_{0}\left(S_{0}, \boldsymbol{\mu}\right)$ by minimal sensitivity to variation of $\boldsymbol{\mu} \in\left[\boldsymbol{\mu}_{\mathbf{L}} ; \boldsymbol{\mu}_{\mathbf{U}}\right]$ at appropriate S_{0};

QM Sum Rules: The Scheme

Main SR:
$\left|\Psi_{0}(0)\right|^{2} \approx \Psi_{0}^{2}\left(\boldsymbol{E}_{0}, S_{0}, \boldsymbol{\mu}\right)=\frac{\mu e^{E_{0} / \mu}}{2 \omega}\left\{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots\right\}$
Daughter SR:

$$
\boldsymbol{E}_{0} \approx \boldsymbol{E}_{0}\left(S_{0}, \boldsymbol{\mu}\right)=\mu \frac{1-\left(1+\frac{S_{0}}{\mu}\right) e^{-S_{0} / \mu}+\frac{\omega^{2}}{6 \mu^{2}}+\ldots}{1-e^{-S_{0} / \mu}-\frac{\omega^{2}}{6 \mu^{2}}+\ldots}
$$

Strategy of processing SRs:

- Determine $\boldsymbol{E}_{0} \approx \boldsymbol{E}_{0}\left(S_{0}, \boldsymbol{\mu}\right)$ by minimal sensitivity to variation of $\boldsymbol{\mu} \in\left[\boldsymbol{\mu}_{\mathbf{L}} ; \boldsymbol{\mu}_{\mathbf{U}}\right]$ at appropriate S_{0};
- Determine $\left|\Psi_{0}(0)\right|^{2} \approx \Psi_{0}^{2}\left(S_{0}, \boldsymbol{E}_{0}, \boldsymbol{\mu}\right)$ by minimal sensitivity to variation of $\boldsymbol{\mu}$ at appropriate S_{0}.

QM Sum Rules: Fidelity Window

- Power corrections are of the type $(\omega / \mu)^{2 n}$ and they are huge at $\mu \ll \omega$. Demand:

$$
\Delta_{\text {pert }}(\mu) \equiv \sum_{n \geq 1} \frac{C_{2 n}(\omega / \mu)^{2 n}}{M_{0}(\mu)} \leq 0.33 \text { for all } \mu \geq \mu_{\mathrm{L}}
$$

QM Sum Rules: Fidelity Window

- Power corrections are of the type $(\omega / \mu)^{2 n}$ and they are huge at $\mu \ll \omega$. Demand:

$$
\Delta_{\text {pert }}(\mu) \equiv \sum_{n \geq 1} \frac{C_{2 n}(\omega / \mu)^{2 n}}{M_{0}(\mu)} \leq 0.33 \text { for all } \mu \geq \mu_{\mathrm{L}}
$$

- Higher states at large $\mu \gg \omega$ are not suppressed by $e^{-E_{k} / \mu} \approx 1$. Demand:

$$
\Delta_{\text {pert }}(\mu) \equiv \int_{S_{0}}^{\infty} \frac{\rho_{0}(E)}{M_{0}(\mu)} e^{-E / \mu} d E \leq 0.33 \text { for all } \mu \leq \mu_{\mathrm{U}}
$$

QM Sum Rules: Fidelity Window

- Power corrections are of the type $(\omega / \mu)^{2 n}$ and they are huge at $\mu \ll \omega$. Demand:

$$
\Delta_{\text {pert }}(\mu) \equiv \sum_{n \geq 1} \frac{C_{2 n}(\omega / \mu)^{2 n}}{M_{0}(\mu)} \leq 0.33 \text { for all } \mu \geq \mu_{\mathrm{L}}
$$

- Higher states at large $\mu \gg \omega$ are not suppressed by $e^{-E_{k} / \mu} \approx 1$. Demand:

$$
\Delta_{\text {pert }}(\mu) \equiv \int_{S_{0}}^{\infty} \frac{\rho_{0}(E)}{M_{0}(\mu)} e^{-E / \mu} d E \leq 0.33 \text { for all } \mu \leq \mu_{\mathrm{U}}
$$

- Fidelity window: $\mu_{\mathrm{L}} \leq \mu \leq \mu_{\mathrm{U}}$. Only for μ inside it is reasonable to demand minimal sensitivity of SRs to variations in μ !

QM SRs: Setup with fixed $E_{0}=1$

We fix energy to the exact value $E_{0}=1$ and obtain fidelity window: $\mu_{\mathrm{L}}=0.73 \omega$ and $\mu_{\mathrm{U}}=1.80 \omega$

QM SRs: Setup with fixed $E_{0}=1$

We fix energy to the exact value $E_{0}=1$ and obtain $\left|\Psi_{0}(0)\right|^{2}=0.99$ with only 2 pow.corrs. (exact $\left|\Psi_{0}(0)\right|^{2}=1$)

QM SRs: Complete Setup

We take into account 3 power corrs. and obtain fidelity window $\left[0.74 \omega ; 1.8 \omega\right.$] and $E_{0}=0.98 \omega$ for $S_{0}=1.88 \omega$:

QM SRs: Complete Setup

We take into account 3 power corrs. and obtain and $\left|\Psi_{0}(0)\right|^{2}=0.92$

QM Sum Rules:

Conclusions

QM SRs: Conclusions

- SRs give E_{0} and $\left|\psi_{0}(0)\right|^{2}$ with accuracy not worser 10%;

QM SRs: Conclusions

- SRs give E_{0} and $\left|\psi_{0}(0)\right|^{2}$ with accuracy not worser 10%;
- Main source of the error - crude model for spectral density of higher states: even taking into account 10 power corrections we obtain $E_{0}=0.95 \omega, S_{0}=1.79 \omega$, and $\left|\psi_{0}(0)\right|^{2}=0.89$;

QM SRs: Conclusions

- SRs give E_{0} and $\left|\psi_{0}(0)\right|^{2}$ with accuracy not worser 10\% ;
- Main source of the error - crude model for spectral density of higher states: even taking into account 10 power corrections we obtain $E_{0}=0.95 \omega, S_{0}=1.79 \omega$, and $\left|\psi_{0}(0)\right|^{2}=0.89$;
- But: If we know $E_{0}=1$ exactly (say, from Particle Data Group), then accuracy can be twice higher: with taking into account 2 power corrections we obtain $S_{0}=2.08 \omega$ and $\left|\psi_{0}(0)\right|^{2}=0.99!$

QM SRs: Conclusions

- SRs give E_{0} and $\left|\psi_{0}(0)\right|^{2}$ with accuracy not worser 10\%;
- Main source of the error - crude model for spectral density of higher states: even taking into account 10 power corrections we obtain $E_{0}=0.95 \omega, S_{0}=1.79 \omega$, and $\left|\psi_{0}(0)\right|^{2}=0.89$;
- But: If we know $E_{0}=1$ exactly (say, from Particle Data Group), then accuracy can be twice higher: with taking into account 2 power corrections we obtain $S_{0}=2.08 \omega$ and $\left|\psi_{0}(0)\right|^{2}=0.99$!
- In QCD spectral density more close to perturbative!

Quarks inside,

Hadrons outside!

How to proceed?

QCD: Lagrangian, quarks and gluons

Gauge-invariant Lagrangian of QCD

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\sum_{q=u, d, s, \ldots} \bar{\psi}_{q}\left(i \hat{D}-m_{q}\right) \psi_{q}
$$

contains only gluon $\left(G_{\mu \nu}^{a}(x)\right)$ and quark $\left(\psi_{q}(x)\right)$ fields.

QCD: Lagrangian, quarks and gluons

Gauge-invariant Lagrangian of QCD

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\sum_{q=u, d, s, \ldots} \bar{\psi}_{q}\left(i \hat{D}-m_{q}\right) \psi_{q}
$$

contains only gluon $\left(G_{\mu \nu}^{a}(x)\right)$ and quark $\left(\psi_{q}(x)\right)$ fields. These fields has color degrees of freedom: 3 for quarks $\psi_{q}^{A}(x)$ $(A=1,2,3)$ and 8 for gluons $G_{\mu \nu}^{a}(x)(a=1, \ldots, 8)$.

QCD: Lagrangian, quarks and gluons

Gauge-invariant Lagrangian of QCD

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\sum_{q=u, d, s, \ldots} \bar{\psi}_{q}\left(i \hat{D}-m_{q}\right) \psi_{q}
$$

contains only gluon $\left(G_{\mu \nu}^{a}(x)\right)$ and quark $\left(\psi_{q}(x)\right.$) fields. These fields has color degrees of freedom: 3 for quarks $\psi_{q}^{A}(x)$ $(A=1,2,3)$ and 8 for gluons $G_{\mu \nu}^{a}(x)(a=1, \ldots, 8)$.
Interaction is hidden in $G_{\mu \nu}^{a}$ and covariant derivative $D_{\mu}^{A B}$:

$$
\begin{aligned}
G_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \\
D_{\mu}^{A B} & =\partial_{\mu}-i g_{s}\left(t^{a}\right)^{A B} A_{\mu}^{a}
\end{aligned}
$$

QCD: Lagrangian, quarks and gluons

Gauge-invariant Lagrangian of QCD

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+\sum_{q=u, d, s, \ldots} \bar{\psi}_{q}\left(i \hat{D}-m_{q}\right) \psi_{q}
$$

contains only gluon $\left(G_{\mu \nu}^{a}(x)\right)$ and quark $\left(\psi_{q}(x)\right.$) fields. These fields has color degrees of freedom: 3 for quarks $\psi_{q}^{A}(x)$ $(A=1,2,3)$ and 8 for gluons $G_{\mu \nu}^{a}(x)(a=1, \ldots, 8)$.
Interaction is hidden in $G_{\mu \nu}^{a}$ and covariant derivative $D_{\mu}^{A B}$:

$$
\begin{aligned}
G_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \\
D_{\mu}^{A B} & =\partial_{\mu}-i g_{s}\left(t^{a}\right)^{A B} A_{\mu}^{a}
\end{aligned}
$$

It is nonlinear due to Non-Abelian character $\left(f^{a b c} \neq 0\right)$.

QCD: Coloured gluons \Rightarrow Confinement

Consider $e \mu$ - and $q q$-scattering (for d - and u-flavors): wavy line denotes photon and curved line - gluon.

Comparison:

Parameter	Photon	Gluon
Mass	0	0
Spin	1	1
Vertex	$e \gamma_{\mu}$	$g_{s} \gamma_{\mu}\left(t^{a}\right)_{i j}$
Charge	0	$\neq 0$

QCD: Coloured gluons \Rightarrow Confinement

Consider $e \mu$ - and $q q$-scattering (for d - and u-flavors): wavy line denotes photon and curved line - gluon.

Comparison:

Parameter	Photon		
Mass	0		
Spin	1		
Vertex	$e \gamma_{\mu}$	g_{s}	
Charge	0		
aracter of QCD \Rightarrow charged gluons.			

Non-Abelian character of $\mathrm{QCD} \Rightarrow$ charged gluons.

QCD: Coloured gluons \Rightarrow Confinement

Consider $e \mu$ - and $q q$-scattering (for d - and u-flavors): wavy line denotes photon and curved line - gluon.

Comparison:

Parameter	Photon
Mass	0
Spin	1
Vertex	$e \gamma_{\mu}$
Charge	0
gluons \Rightarrow confinement!	

Massless QCD: What are Hadrons?

PS- and V-mesons composed of u - and d-quarks

meson type	PS	V
composition	$\pi^{0}[\bar{u} u-\bar{d} d], \pi^{ \pm}[\bar{u} d, \bar{d} u]$	$\rho^{0}(\omega)[\bar{u} u-\bar{d} d], \rho^{ \pm}[\bar{u} d, \bar{d} u]$
mass	140 MeV	$770(780) \mathrm{MeV}$

Massless QCD: What are Hadrons?

PS- and V-mesons composed of u - and d-quarks

meson type	PS	V
composition	$\pi^{0}[\bar{u} u-\bar{d} d], \pi^{ \pm}[\bar{u} d, \bar{d} u]$	$\rho^{0}(\omega)[\bar{u} u-\bar{d} d], \rho^{ \pm}[\bar{u} d, \bar{d} u]$
mass	140 MeV	$770(780) \mathrm{MeV}$

Baryons composed of u - and d-quarks

composition	$p[u u d]$	$n[u d d]$	$\Delta^{++}[u u u], \Delta^{+}[u u d]$, $\Delta^{0}[u d d], \Delta^{-}[d d d]$
mass	938 MeV	939 MeV	1232 MeV

QCD SRs:

Way to Study Hadrons

in Non-Perturbative QCD

XLVI Cracow TP School @ Zakopane
Lecture 1: QCD Sum Rules in Quantum Mechanics - p. 31

QCD SRs: Hadrons in npQCD

- Problem: bound states in QCD?

QCD SRs: Hadrons in npQCD

- Problem: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.

QCD SRs: Hadrons in npQCD

- Problem: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.
- Invented in 1977 by Shifman, Vainshtein \& Zakharov (ITEP) to describe J / ψ-meson $=c \bar{c}$-system, discovered in 1974 in $e^{+} e^{-}$-annihilation at SPEAR (SLAC) and, in parallel, in $p+B e$-collisions at BNL.

QCD SRs: Hadrons in npQCD

- Problem: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.
- Invented in 1977 by Shifman, Vainshtein \& Zakharov (ITEP) to describe J / ψ-meson $=c \bar{c}$-system, discovered in 1974 in $e^{+} e^{-}$-annihilation at SPEAR (SLAC) and, in parallel, in $p+B e$-collisions at BNL.
- In 1979 used to describe light hadrons in massless QCD.

QCD SRs: Hadrons in $n p Q C D$

- Problem: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.
- Invented in 1977 by Shifman, Vainshtein \& Zakharov (ITEP) to describe J / ψ-meson $=c \bar{c}$-system, discovered in 1974 in $e^{+} e^{-}$-annihilation at SPEAR (SLAC) and, in parallel, in $p+B e$-collisions at BNL.
- In 1979 used to describe light hadrons in massless QCD.
- Main idea: to calculate correlators of hadron currents $\langle 0| T\left[J_{1}(x) J_{2}(0)\right]|0\rangle$ by two ways. Sum Rule is the result of matching.

QCD SRs: General scheme

Correlator of hadron currents via dispersion integral
$F_{x \rightarrow q}\left[\langle 0| T\left[J_{1}(x) J_{2}(0)\right]|0\rangle\right]\left(Q^{2}\right) \equiv \Pi\left(Q^{2}\right)=$
$=\int_{0}^{\infty} \frac{\rho_{12}(s) d s}{s+Q^{2}}+$ "subtractions"

QCD SRs: General scheme

Correlator of hadron currents via dispersion integral $F_{x \rightarrow q}\left[\langle 0| T\left[J_{1}(x) J_{2}(0)\right]|0\rangle\right]\left(Q^{2}\right) \equiv \Pi\left(Q^{2}\right)=$

$$
=\int_{0}^{\infty} \frac{\rho_{12}(s) d s}{s+Q^{2}}+\text { "subtractions" }
$$

Apply Borel transform

$$
B_{Q^{2} \rightarrow M^{2}}\left[\Pi\left(Q^{2}\right)\right] \equiv \Phi\left(M^{2}\right)=\int_{0}^{\infty} \rho_{12}(s) e^{-s / M^{2}} \frac{d s}{M^{2}}
$$

to suppress "higher states" and to kill "subtractions" in DR.

QCD SRs: General scheme

1-st way: Operator Product Expansion with account for quark and gluon condensates in QCD vacuum

$$
\Phi\left(Q^{2}\right)=\Phi_{\text {pert }}\left(Q^{2}\right)+c_{G G} \frac{\left\langle\left(\alpha_{s} / \pi\right) G G\right\rangle}{M^{4}}+c_{\bar{q} q} \frac{\alpha_{s}\langle\bar{q} q\rangle^{2}}{M^{6}}
$$

Here $\left\langle\frac{\alpha_{s}}{\pi} G_{\mu \nu}^{a} G^{a \mu \nu}\right\rangle=0.012 \mathrm{GeV}^{4}, \alpha_{s}\langle\bar{q} q\rangle^{2}=0.0018 \mathrm{GeV}^{6}$.

QCD SRs: General scheme

1-st way: Operator Product Expansion with account for quark and gluon condensates in QCD vacuum

$$
\Phi\left(Q^{2}\right)=\Phi_{\text {pert }}\left(Q^{2}\right)+c_{G G} \frac{\left\langle\left(\alpha_{s} / \pi\right) G G\right\rangle}{M^{4}}+c_{\bar{q} q} \frac{\alpha_{s}\langle\bar{q} q\rangle^{2}}{M^{6}}
$$

2-nd way: phenomenological saturation of spectral density by hadronic states

$$
\rho_{\text {had }}(s)=f_{h}^{2} \delta\left(s-m_{h}^{2}\right)+\rho_{\text {pert }}(s) \theta\left(s-s_{0}\right)
$$

Our model is ground state $h+$ continuum, which starts from threshold $s=s_{0}$.

QCD SRs: General scheme

1-st way: Operator Product Expansion with account for quark and gluon condensates in QCD vacuum

$$
\Phi\left(Q^{2}\right)=\Phi_{\mathrm{pert}}\left(Q^{2}\right)+c_{G G} \frac{\left\langle\left(\alpha_{s} / \pi\right) G G\right\rangle}{M^{4}}+c_{\bar{q} q} \frac{\alpha_{s}\langle\bar{q} q\rangle^{2}}{M^{6}}
$$

2-nd way: phenomenological saturation of spectral density by hadronic states

$$
\rho_{\text {had }}(s)=f_{h}^{2} \delta\left(s-m_{h}^{2}\right)+\rho_{\text {pert }}(s) \theta\left(s-s_{0}\right)
$$

Sum Rule:

$$
f_{h}^{2} e^{-m_{h}^{2} / M^{2}}=\int_{0}^{s_{0}} \rho_{\text {pert }}(s) e^{-s / M^{2}} d s+c_{G G} \frac{\left\langle\frac{\alpha_{s}}{\pi} G G\right\rangle}{M^{2}}+c_{\bar{q} q} \frac{\boldsymbol{\alpha}_{s}\langle\bar{q} q\rangle^{2}}{M^{4}}
$$

Borel Transform

Borel transform is defined as

$$
\Phi\left(M^{2}\right)=\hat{B}\left(Q^{2} \rightarrow M^{2}\right) \Pi\left(Q^{2}\right)=\lim _{n \rightarrow \infty} \frac{\left(-Q^{2}\right)^{n}}{\Gamma(n)}\left[\frac{d^{n}}{d Q^{2 n}} \Pi\left(Q^{2}\right)\right]_{Q^{2}=n M^{2}}
$$

Borel Transform

Borel transform is defined as

$$
\Phi\left(M^{2}\right)=\hat{B}\left(Q^{2} \rightarrow M^{2}\right) \Pi\left(Q^{2}\right)=\lim _{n \rightarrow \infty} \frac{\left(-Q^{2}\right)^{n}}{\Gamma(n)}\left[\frac{d^{n}}{d Q^{2 n}} \Pi\left(Q^{2}\right)\right]_{Q^{2}=n M^{2}}
$$

Here we list the most important examples:

$\Pi\left(Q^{2}\right)$	\Rightarrow	$\Phi\left(M^{2}\right)$
$C \log \left(\frac{Q^{2}}{\mu^{2}}\right)$	\Rightarrow	$-C$

Borel Transform

Borel transform is defined as

$$
\Phi\left(M^{2}\right)=\hat{B}\left(Q^{2} \rightarrow M^{2}\right) \Pi\left(Q^{2}\right)=\lim _{n \rightarrow \infty} \frac{\left(-Q^{2}\right)^{n}}{\Gamma(n)}\left[\frac{d^{n}}{d Q^{2 n}} \Pi\left(Q^{2}\right)\right]_{Q^{2}=n M^{2}}
$$

Here we list the most important examples:

$\Pi\left(Q^{2}\right)$	\Rightarrow	$\Phi\left(M^{2}\right)$
$C \log \left(\frac{Q^{2}}{\mu^{2}}\right)$	\Rightarrow	$-C$
$\frac{1}{Q^{2 n}}$	\Rightarrow	$\frac{1}{\Gamma(n) M^{2 n}}$

Borel Transform

Borel transform is defined as

$$
\Phi\left(M^{2}\right)=\hat{B}\left(Q^{2} \rightarrow M^{2}\right) \Pi\left(Q^{2}\right)=\lim _{n \rightarrow \infty} \frac{\left(-Q^{2}\right)^{n}}{\Gamma(n)}\left[\frac{d^{n}}{d Q^{2 n}} \Pi\left(Q^{2}\right)\right]_{Q^{2}=n M^{2}}
$$

Here we list the most important examples:

$\Pi\left(Q^{2}\right)$	\Rightarrow	$\Phi\left(M^{2}\right)$
$C \log \left(\frac{Q^{2}}{\mu^{2}}\right)$	\Rightarrow	$-C$
$\frac{1}{Q^{2 n}}$	\Rightarrow	$\frac{1}{\Gamma(n) M^{2 n}}$
$\frac{1}{s+Q^{2}}$	\Rightarrow	$\frac{1}{M^{2}} e^{-s / M^{2}}$

Quark-Hadron

Duality
in QCD

XLVI Cracow TP School@Zakopane Lecture 1: QCD Sum Rules in Quantum Mechanics - p. 35

Quark-hadron Duality

$$
\int_{s_{1}}^{s_{2}} \rho_{\mathrm{pert}}(s) d s=\int_{s_{1}}^{s_{2}} \rho_{\mathrm{had}}(s) d s
$$

Observations:
 $\mathbf{1}^{\circ}$ Real hadron spectral density is more smooth than in HO case;

Quark-hadron Duality

$$
\int_{s_{1}}^{s_{2}} \rho_{\text {pert }}(s) d s=\int_{s_{1}}^{s_{2}} \rho_{\text {had }}(s) d s
$$

Observations:
$\mathbf{1}^{\circ}$ Real hadron spectral density is more smooth than in HO case; $\mathbf{2}^{\circ}$ Duality is working!

Quark-hadron Duality

$$
\int_{s_{1}}^{s_{2}} \rho_{\mathrm{pert}}(s) d s=\int_{s_{1}}^{s_{2}} \rho_{\text {had }}(s) d s
$$

Observations:

$\mathbf{1}^{\circ}$ Real hadron spectral density is more smooth than in HO case;
$\mathbf{2}^{\circ}$ Duality is working!
3° Asymptotics starts at $s \geq 3 \mathrm{GeV}^{2}$

QCD: Currents, Correlators

and Spectral Densities

of Real Particles

XLVI Cracow TP School @ Zakopane
Lecture 1: QCD Sum Rules in Quantum Mechanics - p. 37

Currents related to π-mesons in $Q C D$

Currents related to $\pi^{ \pm}$meson:

$$
\mathrm{AV}: \quad J_{\mu 5}(x)=\bar{u}(x) \gamma_{\mu} \gamma_{5} d(x) ; \quad J_{\mu 5}^{\dagger}(x)=\bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) .
$$

Currents related to π-mesons in $Q C D$

Currents related to $\pi^{ \pm}$meson:

$$
\mathrm{AV}: \quad J_{\mu 5}(x)=\bar{u}(x) \gamma_{\mu} \gamma_{5} d(x) ; \quad J_{\mu 5}^{\dagger}(x)=\bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) .
$$

$$
\mathrm{PS}: \quad J_{5}(x)=i \bar{u}(x) \gamma_{5} d(x) ; \quad J_{5}^{\dagger}(x)=i \bar{d}(x) \gamma_{5} u(x) .
$$

Currents related to π-mesons in $Q C D$

Currents related to $\pi^{ \pm}$meson:

$$
\begin{array}{rll}
\mathrm{AV}: & J_{\mu 5}(x)=\bar{u}(x) \gamma_{\mu} \gamma_{5} d(x) ; & J_{\mu 5}^{\dagger}(x)=\bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) . \\
\mathrm{PS}: & J_{5}(x)=i \bar{u}(x) \gamma_{5} d(x) ; & J_{5}^{\dagger}(x)=i \bar{d}(x) \gamma_{5} u(x) .
\end{array}
$$

Note that Dirac equation $i \hat{D} q(x)=m_{q} q(x)$ gives relation:

$$
\begin{equation*}
\partial^{\mu} J_{\mu 5}(x)=\left(m_{u}+m_{d}\right) J_{5}(x) . \tag{*}
\end{equation*}
$$

Currents related to π-mesons in $Q C D$

Currents related to $\pi^{ \pm}$meson:

$$
\begin{array}{rll}
\mathrm{AV}: & J_{\mu 5}(x)=\bar{u}(x) \gamma_{\mu} \gamma_{5} d(x) ; & J_{\mu 5}^{\dagger}(x)=\bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) . \\
\mathrm{PS}: & J_{5}(x)=i \bar{u}(x) \gamma_{5} d(x) ; & J_{5}^{\dagger}(x)=i \bar{d}(x) \gamma_{5} u(x) .
\end{array}
$$

Note that Dirac equation $i \hat{D} q(x)=m_{q} q(x)$ gives relation:

$$
\begin{equation*}
\partial^{\mu} J_{\mu 5}(x)=\left(m_{u}+m_{d}\right) J_{5}(x) . \tag{*}
\end{equation*}
$$

Decay constant f_{π} of physical pion $\pi(P)$ is defined via

$$
\langle 0| J_{\mu 5}(0)|\pi(P)\rangle=i f_{\pi} P_{\mu} .
$$

It was measured in decay $\pi \rightarrow \mu \nu_{\mu}$ to be $f_{\pi}=132 \mathrm{MeV}$.

Currents related to π-mesons in $Q C D$

Currents related to $\pi^{ \pm}$meson:

$$
\begin{array}{rll}
\mathrm{AV}: & J_{\mu 5}(x)=\bar{u}(x) \gamma_{\mu} \gamma_{5} d(x) ; & J_{\mu 5}^{\dagger}(x)=\bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) . \\
\mathrm{PS}: & J_{5}(x)=i \bar{u}(x) \gamma_{5} d(x) ; & J_{5}^{\dagger}(x)=i \bar{d}(x) \gamma_{5} u(x) .
\end{array}
$$

Note that Dirac equation $i \hat{D} q(x)=m_{q} q(x)$ gives relation:

$$
\begin{equation*}
\partial^{\mu} J_{\mu 5}(x)=\left(m_{u}+m_{d}\right) J_{5}(x) . \tag{*}
\end{equation*}
$$

Decay constant f_{π} of physical pion $\pi(P)$ is defined via

$$
\langle 0| J_{\mu 5}(0)|\pi(P)\rangle=i f_{\pi} P_{\mu} .
$$

Eq. (*) then gives $\langle 0| J_{5}(0)|\pi(P)\rangle=\frac{f_{\pi} m_{\pi}^{2}}{m_{u}+m_{d}}$.

Currents related to vector mesons in $Q C D$

Currents related to $\rho^{ \pm}$meson:

$$
J_{\mu}(x)=\bar{u}(x) \gamma_{\mu} d(x) ; \quad J^{\dagger}{ }_{\mu}(x)=\bar{d}(x) \gamma_{\mu} u(x) .
$$

Decay constant f_{ρ} of physical $\rho^{ \pm}(P, \varepsilon)$-meson with polarization ε and momentum P, satisfying $(P \varepsilon)=0$ and $(\varepsilon, \varepsilon)=-1$,

$$
\langle 0| J_{\mu}(0)|\rho(P, \varepsilon)\rangle=f_{\rho} m_{\rho} \varepsilon_{\mu} .
$$

Decay $\rho^{0} \rightarrow e^{+} e^{-}$allows to measure $f_{\rho^{0}}=150 \mathrm{MeV}$, that gives $f_{\rho^{ \pm}}=210 \mathrm{MeV}$.

Vector current correlator $\Pi_{\mu \nu}$

Lorentz invariance and vector current conservation dictate

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left[J^{\mu}(x) J_{\nu}(0)\right]|0\rangle=\left[q_{\mu} q_{\nu}-g_{\mu \nu} q^{2}\right] \Pi(q) .
$$

Vector current correlator $\Pi_{\mu \nu}$

Lorentz invariance and vector current conservation dictate Inserting 1 in between currents we obtain

$$
\begin{aligned}
\Pi(q) & =\frac{-i}{3 q^{2}} \sum_{X(p)} \int_{0}^{\infty} d t e^{i q_{0} t} \int d^{3} \vec{x} e^{-i \vec{q} \vec{x}}\langle 0| J^{\mu}(x)|X(p)\rangle\langle X(p)| J_{\mu}^{\dagger}(0)|0\rangle \\
& +\frac{-i}{3 q^{2}} \sum_{X(p)} \int_{-\infty}^{0} d t e^{i q_{0} t} \int d^{3} \vec{x} e^{-i \vec{q} \vec{x}}\langle 0| J_{\mu}^{\dagger}(0)|X(p)\rangle\langle X(p)| J^{\mu}(x)|0\rangle
\end{aligned}
$$

Vector current correlator $\Pi_{\mu \nu}$

Lorentz invariance and vector current conservation dictate Inserting 1 in between currents we obtain

$$
\begin{gathered}
\Pi(q)=\frac{-i}{3 q^{2}} \sum_{X(p)} \int_{0}^{\infty} d t e^{i q_{0} t} \int d^{3} \vec{x} e^{-i \vec{q} \vec{x}}\langle 0| J^{\mu}(x)|X(p)\rangle\langle X(p)| J_{\mu}^{\dagger}(0)|0\rangle \\
+\frac{-i}{3 q^{2}} \sum_{X(p)} \int_{-\infty}^{0} d t e^{i q_{0} t} \int d^{3} \vec{x} e^{-i \vec{q} \vec{x}}\langle 0| J_{\mu}^{\dagger}(0)|X(p)\rangle\langle X(p)| J^{\mu}(x)|0\rangle \\
\left.=\frac{-i(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta(\vec{p}-\vec{q}) \theta\left(p_{0}\right)\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} \\
\quad \times \int_{0}^{\infty} d t\left[e^{i\left(q_{0}-p_{0}\right) t}+e^{-i\left(q_{0}+p_{0}\right) t}\right]
\end{gathered}
$$

Vector current correlator $\Pi_{\mu \nu}$

Then $\left.\Pi\left(q^{2}\right)=\frac{-i(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta(\vec{p}-\vec{q})\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} \times$

$$
\times \int_{0}^{\infty} d t\left[e^{i\left(q_{0}-p_{0}\right) t}+e^{-i\left(q_{0}+p_{0}\right) t}\right]
$$

We have the following identities

$$
\int_{0}^{\infty} d t e^{ \pm i \alpha t}=\pi \delta(\alpha) \pm i \mathcal{P} \frac{1}{\alpha}
$$

Vector current correlator $\Pi_{\mu \nu}$

Then $\left.\Pi\left(q^{2}\right)=\frac{-i(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta(\vec{p}-\vec{q})\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} \times$

$$
\times \int_{0}^{\infty} d t\left[e^{i\left(q_{0}-p_{0}\right) t}+e^{-i\left(q_{0}+p_{0}\right) t}\right]
$$

We have the following identities

$$
\int_{0}^{\infty} d t e^{ \pm i \alpha t}=\pi \delta(\alpha) \pm i \mathcal{P} \frac{1}{\alpha}
$$

After all substitutions:
$\left.\operatorname{Im} \Pi\left(q^{2}\right)=-\pi \frac{(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta(\vec{p}-\vec{q}) \delta\left(p_{0}-\left|q_{0}\right|\right)\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2}$

Vector current correlator $\Pi_{\mu \nu}$

So, we have $\frac{1}{\pi} \mathbf{I m} \Pi\left(q^{2}\right)=\rho\left(q^{2}\right) \theta\left(\left|q_{0}\right|\right)=\rho\left(q^{2}\right)$, with

$$
\left.\rho\left(q^{2}\right) \theta\left(q_{0}\right)=\frac{-(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta^{(4)}(q-p) \theta\left(p_{0}\right)\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} .
$$

Vector current correlator $\Pi_{\mu \nu}$

So, we have \square

$$
\left.\rho\left(q^{2}\right) \theta\left(q_{0}\right)=\frac{-(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta^{(4)}(q-p) \theta\left(p_{0}\right)\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} .
$$

Lorentz invariance dictates

$$
\langle 0| J^{\mu}(x)|X(p)\rangle=\left[A p_{\mu}+B \varepsilon_{\mu}\right] e^{-i p x}
$$

with $p \cdot \varepsilon=0$, and therefore $\varepsilon \cdot \varepsilon=-1$. From current conservation it follows $A=0$, i. e. $\left(B=f_{X} m_{X}\right)$

$$
\langle 0| J^{\mu}(x)|X(p)\rangle\langle X(p)| J_{\mu}^{\dagger}(x)|0\rangle=\left|f_{X}\right|^{2} m_{X}^{2} \varepsilon^{2}=-\left|f_{X}\right|^{2} m_{X}^{2} \leq 0 .
$$

Vector current correlator $\Pi_{\mu \nu}$

So, we have
$\frac{1}{\pi} \mathbf{I m} \Pi\left(q^{2}\right)=\rho\left(q^{2}\right) \theta\left(\left|q_{0}\right|\right)=\rho\left(q^{2}\right)$, with

$$
\left.\rho\left(q^{2}\right) \theta\left(q_{0}\right)=\frac{-(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta^{(4)}(q-p) \theta\left(p_{0}\right)\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} .
$$

Lorentz invariance and current conservation dictate

$$
\langle 0| J^{\mu}(x)|X(p)\rangle\langle X(p)| J^{\mu}(x)|0\rangle=-\left|f_{X}\right|^{2} m_{X}^{2} \leq 0,
$$

that gives us

$$
\left.\rho\left(q^{2}\right)=\frac{-(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta^{(4)}(q-p) \theta\left(p_{0}\right)\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} \geq 0
$$

Vector current correlator $\Pi_{\mu \nu}$

So, we have
$\frac{1}{\pi} \operatorname{Im} \Pi\left(q^{2}\right)=\rho\left(q^{2}\right) \theta\left(\left|q_{0}\right|\right)=\rho\left(q^{2}\right)$, with

$$
\left.\rho\left(q^{2}\right) \theta\left(q_{0}\right)=\frac{-(2 \pi)^{3}}{3 q^{2}} \sum_{X(p)} \delta^{(4)}(q-p) \theta\left(p_{0}\right)\left|\langle 0| J_{\mu}(0)\right| X(p)\right\rangle\left.\right|^{2} .
$$

Lorentz invariance and current conservation dictate

$$
\langle 0| J^{\mu}(x)|X(p)\rangle\langle X(p)| J^{\mu}(x)|0\rangle=-\left|f_{X}\right|^{2} m_{X}^{2} \leq 0,
$$

that gives us

$$
\rho(s)=\sum_{X}\left|f_{X}\right|^{2} \delta\left(s-m_{X}^{2}\right) \geq 0
$$

Spectral density of correlators $\Pi_{\mu \nu}$ and $\Pi_{\mu \nu}^{+}$

So, we have

$$
\frac{1}{\pi} \mathbf{I} \mathbf{m} \Pi\left(q^{2}\right)=\rho\left(q^{2}\right) \theta\left(\left|q_{0}\right|\right)=\rho\left(q^{2}\right)
$$

If we consider correlator
$\Pi_{\mu \nu}^{+}(q)=i \int d^{4} x e^{i q x}\langle 0| J^{\mu}(x) J_{\nu}(0)|0\rangle=\left[q_{\mu} q_{\nu}-g_{\mu \nu} q^{2}\right] \Pi^{+}(q)$.
then

$$
\frac{1}{\pi} \mathbf{I m} \Pi^{+}\left(q^{2}\right)=\rho\left(q^{2}\right) \theta\left(q_{0}\right)
$$

Spectral density of correlators $\Pi_{\mu \nu}$ and $\Pi_{\mu \nu}^{+}$

So, we have

$$
\frac{1}{\pi} \mathbf{I} \mathbf{m} \Pi\left(q^{2}\right)=\rho\left(q^{2}\right) \theta\left(\left|q_{0}\right|\right)=\rho\left(q^{2}\right)
$$

If we consider correlator
$\Pi_{\mu \nu}^{+}(q)=i \int d^{4} x e^{i q x}\langle 0| J^{\mu}(x) J_{\nu}(0)|0\rangle=\left[q_{\mu} q_{\nu}-g_{\mu \nu} q^{2}\right] \Pi^{+}(q)$.
then

$$
\frac{1}{\pi} \mathbf{I} \mathbf{m} \Pi^{+}\left(q^{2}\right)=\rho\left(q^{2}\right) \theta\left(q_{0}\right)
$$

Now we can say why we put T-product in correlators - then spectral densities, defined only by real particles, are Lorentz invariant and depend only on \boldsymbol{q}^{2} !

