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Quantum-mechanical toy model:

Two-Dimensional
Harmonic
Oscillator
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Two-Dimensional Oscillator
Simplest system with confinement – oscillator with potential
V (�r) = mω2r2/2. All formulas greatly simplify if D = 2.
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Two-Dimensional Oscillator
Simplest system with confinement – oscillator with potential
V (�r) = mω2r2/2. All formulas greatly simplify if D = 2.
Then energy levels are

En = (2n+ 1)ω ,

and wave function values in the origin are

|ψn(0)|2 = mω

π
.

We will consider the regular quasi-perturbative method of
Sum Rules to determine energy E0 and |ψ0(0)|2 of the
ground state.
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General scheme
of

Sum Rule method
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The general scheme of Sum Rule method

We study correlator M(µ), which has spectral
expansion:

M spec(µ) = |ψ0(0)|2 e−E0/µ + “higher states”
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The general scheme of Sum Rule method

We study correlator M(µ), which has spectral
expansion:

M spec(µ) = |ψ0(0)|2 e−E0/µ + “higher states”

We construct perturbative expansion of this correlator:

Mpert(µ) = M0(µ) +
∑
n≥1

C2n
ω2n

µ2n
,

where M0(µ) corresponds to free particle and has
dispersion representation:

M0(µ) =

∫ ∞

0
ρ0(E) e

−E/µ dE .
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The general scheme of Sum Rule method

We study correlator M(µ), which has expansion:

M spec(µ) = |ψ0(0)|2 e−E0/µ + “higher states”

We construct perturbative expansion of this correlator:

Mpert(µ) = M0(µ) +
∑
n≥1

C2n
ω2n

µ2n

Sum Rule – it is simply

M spec(µ) = Mpert(µ)
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The general scheme of Sum Rule method

It appears that higher state contributions can be well
approximated by

“higher states” = “free states” outside interval (0, s0)
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The general scheme of Sum Rule method

It appears that higher state contributions can be well
approximated by

“higher states” = “free states” outside interval (0, s0)

As a result we have Sum Rule (SR):

|ψ0(0)|2 e−E0/µ =

∫ S0

0
ρ0(E) e

−E/µ dE + “power corrections”
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The general scheme of Sum Rule method

It appears that higher state contributions can be well
approximated by

“higher states” = “free states” outside interval (0, s0)

As a result we have Sum Rule (SR):

|ψ0(0)|2 e−E0/µ =

∫ S0

0
ρ0(s) e

−s/µ ds+ C2
ω2

µ2
+ C4

ω4

µ4
+ . . .
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The general scheme of Sum Rule method

It appears that higher state contributions can be well
approximated by

“higher states” = “free states” outside interval (0, s0)

As a result we have Sum Rule (SR):

|ψ0(0)|2 e−E0/µ =

∫ S0

0
ρ0(s) e

−s/µ ds+ C2
ω2

µ2
+ C4

ω4

µ4
+ . . .

Our aim: to determine |ψ0(0)|2 and E0 from this SR
by calculating spectral density ρ0(E) and coefficients
C2n and by demanding stability of this SR in variable
µ ∈ [µL, µU].
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Green functions

and
Correlators
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M(µ) and Green function G(�x, t)

Consider 2-time Green function

G(0, 0|�x, t) =
∑
k≥0

ψ∗
k(�x)ψk(0)e

−iEkt .

= probability amplitude for (x = 0, t = 0)→ (�x, t).
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∑
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ψ∗
k(�x)ψk(0)e

−iEkt .

= probability amplitude for (x = 0, t = 0)→ (�x, t).

To get M(µ) put x = 0, t = 1/iµ:
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M(µ) and Green function G(�x, t)

Consider 2-time Green function

G(0, 0|�x, t) =
∑
k≥0

ψ∗
k(�x)ψk(0)e

−iEkt .

= probability amplitude for (x = 0, t = 0)→ (�x, t).

To get M(µ) put x = 0, t = 1/iµ:

M(µ) = G(0, 0|0, 1/iµ) =
∑
k≥0

∣∣ψk(0)∣∣2e−Ek/µ = M spec(µ) .

In our case
∣∣ψk(0)∣∣2 = mω/π, so we have

M(µ) = ???
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M(µ) and Green function G(�x, t)

Consider 2-time Green function

G(0, 0|�x, t) =
∑
k≥0

ψ∗
k(�x)ψk(0)e

−iEkt .

= probability amplitude for (x = 0, t = 0)→ (�x, t).

To get M(µ) put x = 0, t = 1/iµ:

M(µ) = G(0, 0|0, 1/iµ) =
∑
k≥0

∣∣ψk(0)∣∣2e−Ek/µ = M spec(µ) .

In our case
∣∣ψk(0)∣∣2 = mω/π, so we have

M(µ) =
mω

2π sinh (ω/µ)
.
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Spectral expansion for M(µ)

Exact correlator:

M(µ) =
mω

2π sinh (ω/µ)
.
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Spectral expansion for M(µ)

Exact correlator:

M(µ) =
mω

2π sinh (ω/µ)
.

Spectral representation = expansion in powers of e−2ω/µ

M spec(µ) =
mω

π

(
e−ω/µ + e−3ω/µ + e−5ω/µ + e−7ω/µ + . . .

)
.
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Spectral expansion for M(µ)

Exact correlator:

M(ω) =
mω

2π
· (0.851) .

Spectral representation = expansion in powers of e−2ω/µ

M spec(µ) =
mω

π

(
e−ω/µ + e−3ω/µ + e−5ω/µ + e−7ω/µ + . . .

)
.

Numerically at µ = ω:

M spec(ω) =
mω

2π
(0.736 + 0.100 + 0.013 + 0.002 + . . .) .
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Spectral expansion for M(µ)

Exact correlator:

M(ω) =
mω

2π
· (0.851) .

Spectral representation = expansion in powers of e−2ω/µ

M spec(µ) =
mω

π

(
e−ω/µ + e−3ω/µ + e−5ω/µ + e−7ω/µ + . . .

)
.

Numerically at µ = ω:

M spec(ω) =
mω

2π
(0.736 + 0.100 + 0.013 + 0.002 + . . .) .

Ground state contributes 86%, first excitation – 12%,
while the second – 1.5%.
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Perturbative expansion for M(µ)

Exact correlator:

M(µ) =
mω

2π sinh (ω/µ)
.
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Perturbative expansion for M(µ)

Exact correlator:

M(ω) =
mω

2π
· (0.851) .

Perturbative expansion in powers (ω/µ)n

Mpert(µ) =
mµ

2π

(
1− ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . .

)
,
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Perturbative expansion for M(µ)

Exact correlator:

M(ω) =
mω

2π
· (0.851) .

Perturbative expansion in powers (ω/µ)n

Mpert(µ) =
mµ

2π

(
1− ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . .

)
,

Here mµ/2π corresponds to Green function of free
particle:

M free(µ) =
mµ

2π
,
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Perturbative expansion for M(µ)

Exact correlator:

M(ω) =
mω

2π
· (0.851) .

Perturbative expansion in powers (ω/µ)n

Mpert(µ) =
mµ

2π

(
1− ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . .

)
,

Numerically at µ = ω:

Mpert(ω) =
mω

2π
(1− 0.167 + 0.019− 0.002 + . . .)

First correction specifies free result by 17%, while the
second – by 3%
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Asymptotic Freedom

for

HO Correlator
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Asymptotic Freedom for M(µ)

Perturbative expansion can be rewritten

M(µ)−M0(µ)

M0(µ)
= − ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . .
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Asymptotic Freedom for M(µ)

Perturbative expansion can be rewritten

M(µ)−M0(µ)

M0(µ)
= − ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . .

That means Asymptotic Freedom:

M(µ) behaves like M0(µ) at large µ � ω!

Lecture 1: QCD Sum Rules in Quantum Mechanics – p. 14



XLVI Cracow TP School@Zakopane

Asymptotic Freedom for M(µ)

Perturbative expansion can be rewritten

M(µ)−M0(µ)

M0(µ)
= − ω2

6µ2
+

7

360

ω4

µ4
− 31

15120

ω6

µ6
+ . . .

That means Asymptotic Freedom:

M(µ) behaves like M0(µ) at large µ � ω!

Asymptotic Freedom in Quantum Mechanics

is violated by Power Corrections

of the type ω2/µ2
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Graphics for M(µ)

Exact M(µ); Ground state only; M0(µ) +O(ω2/µ2).
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Graphics for M(µ)

Exact M(µ); 0 + 1 states only; M0(µ) +O(ω4/µ4).
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Graphics for M(µ)

For small µ in spectral part survives only ground state
|ψ0|2e−E0/µ. But: PT breaks down.
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Graphics for M(µ)

For large µ AF works well: M(µ) � M0(µ). But: We need
more and more resonances to saturate M(µ).
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Global and Local

Dualities
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Global Duality: Free ⇔ Confined

We need to model higher resonances in spectral repr. of our
correlator M(µ):

M spec(µ) =
∑
k≥0

mω

π
e−Ek/µ ≡

∫ ∞

0
ρosc(E) e−E/µ dE
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Global Duality: Free ⇔ Confined

We need to model higher resonances in spectral repr. of our
correlator M(µ):

M spec(µ) =
∑
k≥0

mω

π
e−Ek/µ ≡

∫ ∞

0
ρosc(E) e−E/µ dE

Here spectral density is just sum of δ-functions:

ρosc(E) =
∑
k≥0

mω

π
δ(E − Ek) .
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Global Duality: Free ⇔ Confined

We need to model higher resonances in spectral repr. of our
correlator M(µ):

M spec(µ) =
∑
k≥0

mω

π
e−Ek/µ ≡

∫ ∞

0
ρosc(E) e−E/µ dE

Analogously we have integral representation for free
correlator:

M0(µ) =
mµ

2π
≡

∫ ∞

0
ρ0(E) e

−E/µ dE .

Who knows what is ρ0(E) ?
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Global Duality: Free ⇔ Confined

We need to model higher resonances in spectral repr. of our
correlator M(µ):

M spec(µ) =
∑
k≥0

mω

π
e−Ek/µ ≡

∫ ∞

0
ρosc(E) e−E/µ dE

Analogously we have integral representation for free
correlator:

M0(µ) =
mµ

2π
≡

∫ ∞

0
ρ0(E) e

−E/µ dE .

Who knows what is ρ0(E) ? Answer: ρ0(E) =
m

2π
.
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Global Duality: Free ⇔ Confined

We need to model higher resonances in spectral repr. of our
correlator M(µ):

M spec(µ) =

∫ ∞

0
ρosc(E) e−E/µ dE ; M0(µ) =

∫ ∞

0
ρ0(E) e

−E/µ dE .

Asymptotic Freedom:

M(µ → ∞) = M0(µ → ∞)
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Global Duality: Free ⇔ Confined

We need to model higher resonances in spectral repr. of our
correlator M(µ):

M spec(µ) =

∫ ∞

0
ρosc(E) e−E/µ dE ; M0(µ) =

∫ ∞

0
ρ0(E) e

−E/µ dE .

Asymptotic Freedom:

M(µ → ∞) = M0(µ → ∞)

dictates Global Duality for these two densities

∫ ∞

0
ρosc(E) dE =

∫ ∞

0
ρ0(E) dE
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Graphics of dual spectral densities

At first glance they have completely different behaviour:
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Graphics of dual spectral densities

But we have very
interesting relations
between 2kω-partial
integral moments of
this dual densities,
namely, < EN >2kω

=
∫ 2kω+2ω
2kω ENρ(E)dE.

For N = 0:

∫ 2(k+1)ω

2kω
ρosc(E) dE =

mω

π
=

∫ 2(k+1)ω

2kω
ρ0(E) dE
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Graphics of dual spectral densities

But we have very
interesting relations
between 2kω-partial
integral moments of
this dual densities,
namely, < EN >2kω

=
∫ 2kω+2ω
2kω ENρ(E)dE.

For N = 1:

∫ 2(k+1)ω

2kω
E ρosc(E) dE =

mω2(2k + 1)

π
=

∫ 2(k+1)ω

2kω
E ρ0(E) dE
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Graphics of dual spectral densities

But we have very
interesting relations
between 2kω-partial
integral moments of
this dual densities,
namely, < EN >2kω

=
∫ 2kω+2ω
2kω ENρ(E)dE.

For N ≥ 2:

∫ 2(k+1)ω

2kω
ENρosc(E) dE =

∫ 2(k+1)ω

2kω
ENρ0(E) dE

[
1 +O

(
N2

k2

)]
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Graphics of dual spectral densities

We have duality between each excited reso-
nance in oscillator and free particle in some
spectral domain ⇒ “Local Duality”
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QM Sum Rules

for

Harmonic Oscillator
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QM Sum Rules

We can model higher state contributions by

“higher states” = “free states” outside interval (0, S0)
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QM Sum Rules

We can model higher state contributions by

“higher states” = “free states” outside interval (0, S0)

or: ρmod(E) = |ψ0(0)|2 δ (E − E0) + ρ0(E) θ (E − S0)

EE0 S0

δ(E −E0)ρ(E)

ρ0(E)
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QM Sum Rules

Our model for HSs gives

Mmod(µ) = |ψ0(0)|2 e−E0/µ +

∫ ∞

S0

ρ0(s) e
−E/µ dE .
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QM Sum Rules

Our model for HSs gives

Mmod(µ) = |ψ0(0)|2 e−E0/µ +

∫ ∞

S0

ρ0(s) e
−E/µ dE .

After all we have Sum Rule:

|ψ0(0)|2e−E0/µ =

∫ S0

0
ρ0(E) e

−E/µ dE + power corrections
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QM Sum Rules

Our model for HSs gives

Mmod(µ) = |ψ0(0)|2 e−E0/µ +

∫ ∞

S0

ρ0(s) e
−E/µ dE .

or equivalent SR (with Ψ0(0) ≡ ψ0(0)
√

π/ω):

|Ψ0(0)|2e−E0/µ =
µ

2ω

{
1− e−S0/µ − ω2

6µ2
+ . . .

}

Lecture 1: QCD Sum Rules in Quantum Mechanics – p. 20



XLVI Cracow TP School@Zakopane

QM Sum Rules

Our model for HSs gives

Mmod(µ) = |ψ0(0)|2 e−E0/µ +

∫ ∞

S0

ρ0(s) e
−E/µ dE .

or equivalent SR (with Ψ0(0) ≡ ψ0(0)
√

π/ω):

|Ψ0(0)|2e−E0/µ =
µ

2ω

{
1− e−S0/µ − ω2

6µ2
+ . . .

}

Daughter SR — by
−∂ . . .

∂µ−1
:

|Ψ0(0)|2E0 e−E0/µ =
µ2

2ω

{
1−

(
1 +

S0

µ

)
e−S0/µ +

ω2

6µ2
+ . . .

}
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QM Sum Rules: The Scheme

Main SR:

|Ψ0(0)|2 ≈ Ψ2
0(E0,S0, µ) =

µ eE0/µ

2ω

{
1− e−S0/µ − ω2

6µ2
+ . . .

}
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QM Sum Rules: The Scheme

Main SR:

|Ψ0(0)|2 ≈ Ψ2
0(E0,S0, µ) =

µ eE0/µ

2ω

{
1− e−S0/µ − ω2

6µ2
+ . . .

}

Daughter SR:

E0 ≈ E0(S0, µ) = µ
1−

(
1 + S0

µ

)
e−S0/µ + ω2

6µ2 + . . .

1− e−S0/µ − ω2

6µ2 + . . .
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QM Sum Rules: The Scheme

Main SR:

|Ψ0(0)|2 ≈ Ψ2
0(E0,S0, µ) =

µ eE0/µ

2ω

{
1− e−S0/µ − ω2

6µ2
+ . . .

}

Daughter SR:

E0 ≈ E0(S0, µ) = µ
1−

(
1 + S0

µ

)
e−S0/µ + ω2

6µ2 + . . .

1− e−S0/µ − ω2

6µ2 + . . .

Strategy of processing SRs:

Determine E0 ≈ E0(S0, µ) by minimal sensitivity to
variation of µ ∈ [µL;µU] at appropriate S0;
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QM Sum Rules: The Scheme

Main SR:

|Ψ0(0)|2 ≈ Ψ2
0(E0,S0, µ) =

µ eE0/µ

2ω

{
1− e−S0/µ − ω2

6µ2
+ . . .

}

Daughter SR:

E0 ≈ E0(S0, µ) = µ
1−

(
1 + S0

µ

)
e−S0/µ + ω2

6µ2 + . . .

1− e−S0/µ − ω2

6µ2 + . . .

Strategy of processing SRs:

Determine E0 ≈ E0(S0, µ) by minimal sensitivity to
variation of µ ∈ [µL;µU] at appropriate S0;

Determine |Ψ0(0)|2 ≈ Ψ2
0(S0,E0, µ) by minimal

sensitivity to variation of µ at appropriate S0.
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QM Sum Rules: Fidelity Window

Power corrections are of the type (ω/µ)2n and they are
huge at µ � ω. Demand:

∆pert(µ) ≡
∑
n≥1

C2n(ω/µ)
2n

M0(µ)
≤ 0.33 for all µ ≥ µL
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QM Sum Rules: Fidelity Window

Power corrections are of the type (ω/µ)2n and they are
huge at µ � ω. Demand:

∆pert(µ) ≡
∑
n≥1

C2n(ω/µ)
2n

M0(µ)
≤ 0.33 for all µ ≥ µL

Higher states at large µ � ω are not suppressed by
e−Ek/µ ≈ 1. Demand:

∆pert(µ) ≡
∫ ∞

S0

ρ0(E)

M0(µ)
e−E/µdE ≤ 0.33 for all µ ≤ µU
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QM Sum Rules: Fidelity Window

Power corrections are of the type (ω/µ)2n and they are
huge at µ � ω. Demand:

∆pert(µ) ≡
∑
n≥1

C2n(ω/µ)
2n

M0(µ)
≤ 0.33 for all µ ≥ µL

Higher states at large µ � ω are not suppressed by
e−Ek/µ ≈ 1. Demand:

∆pert(µ) ≡
∫ ∞

S0

ρ0(E)

M0(µ)
e−E/µdE ≤ 0.33 for all µ ≤ µU

Fidelity window: µL ≤ µ ≤ µU. Only for µ inside it is
reasonable to demand minimal sensitivity of SRs to
variations in µ!
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QM SRs: Setup with fixed E0 = 1

We fix energy to the exact value E0 = 1 and obtain fidelity
window: µL = 0.73ω and µU = 1.80ω

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

µ

µUµL

∆H.S.(µ)∆pert(µ)
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QM SRs: Setup with fixed E0 = 1

We fix energy to the exact value E0 = 1 and obtain
|Ψ0(0)|2 = 0.99 with only 2 pow.corrs. (exact |Ψ0(0)|2 = 1)

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.8

0.9

1

1.1

1.2

1.3

µ

µUµL

S0 = 2.08ω|Ψ0(0)|2(µ)
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QM SRs: Complete Setup

We take into account 3 power corrs. and obtain fidelity
window [0.74ω; 1.8ω] and E0 = 0.98ω for S0 = 1.88ω :

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.85

0.9

0.95

1

1.05

1.1

µ

µUµL

S0 = 1.88ωE0(S0, µ)
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QM SRs: Complete Setup

We take into account 3 power corrs. and obtain and
|Ψ0(0)|2 = 0.92

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.7

0.8

0.9

1

1.1

µ

µUµL

S0 = 1.88ω|Ψ0(0)|2(µ)
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QM Sum Rules:

Conclusions
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QM SRs: Conclusions

SRs give E0 and |ψ0(0)|2 with accuracy not worser
10% ;
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QM SRs: Conclusions

SRs give E0 and |ψ0(0)|2 with accuracy not worser
10% ;

Main source of the error – crude model for spectral
density of higher states: even taking into account 10
power corrections we obtain E0 = 0.95ω, S0 = 1.79ω,
and |ψ0(0)|2 = 0.89 ;
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QM SRs: Conclusions

SRs give E0 and |ψ0(0)|2 with accuracy not worser
10% ;

Main source of the error – crude model for spectral
density of higher states: even taking into account 10
power corrections we obtain E0 = 0.95ω, S0 = 1.79ω,
and |ψ0(0)|2 = 0.89 ;

But: If we know E0 = 1 exactly (say, from Particle
Data Group), then accuracy can be twice higher: with
taking into account 2 power corrections we obtain
S0 = 2.08ω and |ψ0(0)|2 = 0.99 !
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QM SRs: Conclusions

SRs give E0 and |ψ0(0)|2 with accuracy not worser
10% ;

Main source of the error – crude model for spectral
density of higher states: even taking into account 10
power corrections we obtain E0 = 0.95ω, S0 = 1.79ω,
and |ψ0(0)|2 = 0.89 ;

But: If we know E0 = 1 exactly (say, from Particle
Data Group), then accuracy can be twice higher: with
taking into account 2 power corrections we obtain
S0 = 2.08ω and |ψ0(0)|2 = 0.99 !

In QCD spectral density more close to perturbative!
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Quarks inside,

Hadrons outside!
How to proceed?
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QCD: Lagrangian, quarks and gluons
Gauge-invariant Lagrangian of QCD

LQCD = −1
4
Ga
µνG

aµν +
∑

q=u,d,s,...

ψ̄q(iD̂ −mq)ψq

contains only gluon (Ga
µν(x)) and quark (ψq(x)) fields.
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QCD: Lagrangian, quarks and gluons
Gauge-invariant Lagrangian of QCD

LQCD = −1
4
Ga
µνG

aµν +
∑

q=u,d,s,...

ψ̄q(iD̂ −mq)ψq

contains only gluon (Ga
µν(x)) and quark (ψq(x)) fields. These

fields has color degrees of freedom: 3 for quarks ψA
q (x)

(A = 1,2,3) and 8 for gluons Ga
µν(x) (a = 1, . . .,8).
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QCD: Lagrangian, quarks and gluons
Gauge-invariant Lagrangian of QCD

LQCD = −1
4
Ga
µνG

aµν +
∑

q=u,d,s,...

ψ̄q(iD̂ −mq)ψq

contains only gluon (Ga
µν(x)) and quark (ψq(x)) fields. These

fields has color degrees of freedom: 3 for quarks ψA
q (x)

(A = 1,2,3) and 8 for gluons Ga
µν(x) (a = 1, . . .,8).

Interaction is hidden in Ga
µν and covariant derivative DAB

µ :

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν

DAB
µ = ∂µ − igs (t

a)AB Aa
µ
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QCD: Lagrangian, quarks and gluons
Gauge-invariant Lagrangian of QCD

LQCD = −1
4
Ga
µνG

aµν +
∑

q=u,d,s,...

ψ̄q(iD̂ −mq)ψq

contains only gluon (Ga
µν(x)) and quark (ψq(x)) fields. These

fields has color degrees of freedom: 3 for quarks ψA
q (x)

(A = 1,2,3) and 8 for gluons Ga
µν(x) (a = 1, . . .,8).

Interaction is hidden in Ga
µν and covariant derivative DAB

µ :

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν

DAB
µ = ∂µ − igs (t

a)AB Aa
µ

It is nonlinear due to Non-Abelian character (fabc �= 0).
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QCD: Coloured gluons ⇒ Confinement

Consider eµ- and qq-scattering
(for d- and u-flavors):
wavy line denotes photon and
curved line – gluon.

γ

µ µ

e e

u u

d d

ga

Comparison:

Parameter Photon Gluon
Mass 0 0
Spin 1 1
Vertex eγµ gsγµ(t

a)ij

Charge 0 �= 0
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QCD: Coloured gluons ⇒ Confinement

Consider eµ- and qq-scattering
(for d- and u-flavors):
wavy line denotes photon and
curved line – gluon.

γ

µ µ

e e

u u

d d

ga

Comparison:

Parameter Photon Gluon
Mass 0 0
Spin 1 1
Vertex eγµ gsγµ(t

a)ij

Charge 0 �= 0

Non-Abelian character of QCD ⇒ charged gluons.
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QCD: Coloured gluons ⇒ Confinement

Consider eµ- and qq-scattering
(for d- and u-flavors):
wavy line denotes photon and
curved line – gluon.

γ

µ µ

e e

u u

d d

ga

Comparison:

Parameter Photon Gluon
Mass 0 0
Spin 1 1
Vertex eγµ gsγµ(t

a)ij

Charge 0 �= 0

Coloured gluons ⇒ confinement!
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Massless QCD: What are Hadrons?

PS- and V-mesons composed of u- and d-quarks
meson type PS V
composition π0[ūu− d̄d], π±[ūd, d̄u] ρ0(ω)[ūu− d̄d], ρ±[ūd, d̄u]

mass 140 MeV 770(780) MeV
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Massless QCD: What are Hadrons?

PS- and V-mesons composed of u- and d-quarks
meson type PS V
composition π0[ūu− d̄d], π±[ūd, d̄u] ρ0(ω)[ūu− d̄d], ρ±[ūd, d̄u]

mass 140 MeV 770(780) MeV

Baryons composed of u- and d-quarks
composition p[uud] n[udd] ∆++[uuu], ∆+[uud],

∆0[udd], ∆−[ddd]
mass 938 MeV 939 MeV 1232 MeV
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QCD SRs:

Way to Study Hadrons

in Non-Perturbative QCD
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QCD SRs: Hadrons in npQCD

Problem: bound states in QCD?
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QCD SRs: Hadrons in npQCD

Problem: bound states in QCD?

QCD SR method: calculate properties of hadrons
(masses, decay constants, magnetic moments)
without considering hadronization or confinement.
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QCD SRs: Hadrons in npQCD

Problem: bound states in QCD?

QCD SR method: calculate properties of hadrons
(masses, decay constants, magnetic moments)
without considering hadronization or confinement.

Invented in 1977 by Shifman, Vainshtein & Zakharov
(ITEP) to describe J/ψ-meson = cc̄-system, discovered
in 1974 in e+e−-annihilation at SPEAR (SLAC) and, in
parallel, in p+ Be-collisions at BNL.
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QCD SRs: Hadrons in npQCD

Problem: bound states in QCD?

QCD SR method: calculate properties of hadrons
(masses, decay constants, magnetic moments)
without considering hadronization or confinement.

Invented in 1977 by Shifman, Vainshtein & Zakharov
(ITEP) to describe J/ψ-meson = cc̄-system, discovered
in 1974 in e+e−-annihilation at SPEAR (SLAC) and, in
parallel, in p+ Be-collisions at BNL.

In 1979 used to describe light hadrons in massless
QCD.
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QCD SRs: Hadrons in npQCD

Problem: bound states in QCD?

QCD SR method: calculate properties of hadrons
(masses, decay constants, magnetic moments)
without considering hadronization or confinement.

Invented in 1977 by Shifman, Vainshtein & Zakharov
(ITEP) to describe J/ψ-meson = cc̄-system, discovered
in 1974 in e+e−-annihilation at SPEAR (SLAC) and, in
parallel, in p+ Be-collisions at BNL.

In 1979 used to describe light hadrons in massless
QCD.

Main idea: to calculate correlators of hadron currents
〈0|T [J1(x)J2(0)] |0〉 by two ways. Sum Rule is the result
of matching.
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QCD SRs: General scheme
Correlator of hadron currents via dispersion integral

Fx→q [〈0|T [J1(x)J2(0)] |0〉]
(
Q2

) ≡ Π(Q2) =

=

∞∫
0

ρ12 (s) ds

s+Q2
+ “subtractions”
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QCD SRs: General scheme
Correlator of hadron currents via dispersion integral

Fx→q [〈0|T [J1(x)J2(0)] |0〉]
(
Q2

) ≡ Π(Q2) =

=

∞∫
0

ρ12 (s) ds

s+Q2
+ “subtractions”

Apply Borel transform

BQ2→M2

[
Π(Q2)

] ≡ Φ
(
M2

)
=

∞∫
0

ρ12 (s) e
−s/M2 ds

M2

to suppress “higher states” and to kill “subtractions” in DR.
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QCD SRs: General scheme
1-st way: Operator Product Expansion with account for
quark and gluon condensates in QCD vacuum

Φ
(
Q2

)
= Φpert

(
Q2

)
+ cGG

〈(αs/π)GG〉
M4

+ cq̄q
αs〈q̄q〉2

M6

Here 〈αs

π
GaµνG

aµν〉 = 0.012 GeV4, αs〈q̄q〉2 = 0.0018 GeV6.
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QCD SRs: General scheme
1-st way: Operator Product Expansion with account for
quark and gluon condensates in QCD vacuum

Φ
(
Q2

)
= Φpert

(
Q2

)
+ cGG

〈(αs/π)GG〉
M4

+ cq̄q
αs〈q̄q〉2

M6

2-nd way: phenomenological saturation of spectral density
by hadronic states

ρhad (s) = f2
hδ

(
s−m2

h

)
+ ρpert (s)θ (s− s0)

Our model is ground state h + continuum, which starts
from threshold s = s0.
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QCD SRs: General scheme
1-st way: Operator Product Expansion with account for
quark and gluon condensates in QCD vacuum

Φ
(
Q2

)
= Φpert

(
Q2

)
+ cGG

〈(αs/π)GG〉
M4

+ cq̄q
αs〈q̄q〉2

M6

2-nd way: phenomenological saturation of spectral density
by hadronic states

ρhad (s) = f2
hδ

(
s−m2

h

)
+ ρpert (s)θ (s− s0)

Sum Rule:

f2
h e−m

2
h/M

2

=

s0∫
0

ρpert(s) e
−s/M2

ds+ cGG
〈αs

π GG〉
M2

+ cq̄q
αs〈q̄q〉2

M4
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Borel Transform

Borel transform is defined as

Φ(M2) = B̂(Q2 → M2)Π(Q2) = lim
n→∞

(−Q2)n

Γ(n)

[
dn

dQ2n
Π(Q2)

]
Q2=nM2
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Borel Transform

Borel transform is defined as

Φ(M2) = B̂(Q2 → M2)Π(Q2) = lim
n→∞

(−Q2)n

Γ(n)

[
dn

dQ2n
Π(Q2)

]
Q2=nM2

Here we list the most important examples:

Π(Q2) ⇒ Φ(M2)

C log

(
Q2

µ2

)
⇒ −C
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Borel Transform

Borel transform is defined as

Φ(M2) = B̂(Q2 → M2)Π(Q2) = lim
n→∞

(−Q2)n

Γ(n)

[
dn

dQ2n
Π(Q2)

]
Q2=nM2

Here we list the most important examples:

Π(Q2) ⇒ Φ(M2)

C log

(
Q2

µ2

)
⇒ −C

1

Q2n
⇒ 1

Γ(n)M2n
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Borel Transform

Borel transform is defined as

Φ(M2) = B̂(Q2 → M2)Π(Q2) = lim
n→∞

(−Q2)n

Γ(n)

[
dn

dQ2n
Π(Q2)

]
Q2=nM2

Here we list the most important examples:

Π(Q2) ⇒ Φ(M2)

C log

(
Q2

µ2

)
⇒ −C

1

Q2n
⇒ 1

Γ(n)M2n

1

s+Q2
⇒ 1

M2
e−s/M

2
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Quark–Hadron

Duality

in QCD
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Quark-hadron Duality

s2∫
s1

ρpert(s)ds =

s2∫
s1

ρhad(s)ds

s

ρ(s)

ALEPH dataρpert(s)↘

Observations:
1◦ Real hadron spectral
density is more smooth
than in HO case;
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Quark-hadron Duality

s2∫
s1

ρpert(s)ds =

s2∫
s1

ρhad(s)ds

s

ρ(s)

ALEPH dataρpert(s)↘

Observations:
1◦ Real hadron spectral
density is more smooth
than in HO case;
2◦ Duality is working!
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Quark-hadron Duality

s2∫
s1

ρpert(s)ds =

s2∫
s1

ρhad(s)ds

s

ρexp(s)

ρpert(s)
↓

Observations:
1◦ Real hadron spectral
density is more smooth
than in HO case;
2◦ Duality is working!
3◦ Asymptotics starts
at s ≥ 3 GeV2
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QCD: Currents, Correlators

and Spectral Densities

of Real Particles
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Currents related to π-mesons in QCD
Currents related to π± meson:

AV: Jµ5(x) = ū(x)γµγ5d(x) ; J†
µ5(x) = d̄(x)γµγ5u(x) .
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Currents related to π-mesons in QCD
Currents related to π± meson:

AV: Jµ5(x) = ū(x)γµγ5d(x) ; J†
µ5(x) = d̄(x)γµγ5u(x) .

PS: J5(x) = i ū(x)γ5d(x) ; J†
5(x) = i d̄(x)γ5u(x) .
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Currents related to π-mesons in QCD
Currents related to π± meson:

AV: Jµ5(x) = ū(x)γµγ5d(x) ; J†
µ5(x) = d̄(x)γµγ5u(x) .

PS: J5(x) = i ū(x)γ5d(x) ; J†
5(x) = i d̄(x)γ5u(x) .

Note that Dirac equation i D̂ q(x) = mq q(x) gives relation:

∂µJµ5(x) = (mu +md) J5(x) . (∗)

Lecture 1: QCD Sum Rules in Quantum Mechanics – p. 38



XLVI Cracow TP School@Zakopane

Currents related to π-mesons in QCD
Currents related to π± meson:

AV: Jµ5(x) = ū(x)γµγ5d(x) ; J†
µ5(x) = d̄(x)γµγ5u(x) .

PS: J5(x) = i ū(x)γ5d(x) ; J†
5(x) = i d̄(x)γ5u(x) .

Note that Dirac equation i D̂ q(x) = mq q(x) gives relation:

∂µJµ5(x) = (mu +md) J5(x) . (∗)

Decay constant fπ of physical pion π(P ) is defined via

〈0∣∣Jµ5(0)
∣∣π(P )〉 = i fπ Pµ .

It was measured in decay π → µνµ to be fπ = 132 MeV.
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Currents related to π-mesons in QCD
Currents related to π± meson:

AV: Jµ5(x) = ū(x)γµγ5d(x) ; J†
µ5(x) = d̄(x)γµγ5u(x) .

PS: J5(x) = i ū(x)γ5d(x) ; J†
5(x) = i d̄(x)γ5u(x) .

Note that Dirac equation i D̂ q(x) = mq q(x) gives relation:

∂µJµ5(x) = (mu +md) J5(x) . (∗)

Decay constant fπ of physical pion π(P ) is defined via

〈0∣∣Jµ5(0)
∣∣π(P )〉 = i fπ Pµ .

Eq. (*) then gives 〈0∣∣J5(0)
∣∣π(P )〉 = fπ m

2
π

mu +md
.
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Currents related to vector mesons in QCD

Currents related to ρ± meson:

Jµ(x) = ū(x)γµd(x) ; J†
µ(x) = d̄(x)γµu(x) .

Decay constant fρ of physical ρ±(P, ε)-meson with
polarization ε and momentum P , satisfying (P ε) = 0 and
(ε, ε) = −1,

〈0∣∣Jµ(0)∣∣ρ(P, ε)〉 = fρmρ εµ .

Decay ρ0 → e+e− allows to measure fρ0 = 150 MeV, that
gives fρ± = 210 MeV.
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Vector current correlator Πµν

Lorentz invariance and vector current conservation dictate

Πµν(q) = i

∫
d4x eiqx〈0∣∣T [Jµ(x)Jν(0)] ∣∣0〉 = [

qµ qν − gµν q
2
]
Π(q) .
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Vector current correlator Πµν

Lorentz invariance and vector current conservation dictate

Inserting 1̂ in between currents we obtain

Π(q) =
−i

3q2

∑
X(p)

∫ ∞

0
dt eiq0t

∫
d3�x e−i$q$x〈0∣∣Jµ(x)∣∣X(p)〉〈X(p)

∣∣J†
µ(0)

∣∣0〉

+
−i

3q2

∑
X(p)

∫ 0

−∞
dt eiq0t

∫
d3�x e−i$q$x〈0∣∣J†

µ(0)
∣∣X(p)〉〈X(p)

∣∣Jµ(x)∣∣0〉
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Vector current correlator Πµν

Lorentz invariance and vector current conservation dictate

Inserting 1̂ in between currents we obtain

Π(q) =
−i

3q2

∑
X(p)

∫ ∞

0
dt eiq0t

∫
d3�x e−i$q$x〈0∣∣Jµ(x)∣∣X(p)〉〈X(p)

∣∣J†
µ(0)

∣∣0〉

+
−i

3q2

∑
X(p)

∫ 0

−∞
dt eiq0t

∫
d3�x e−i$q$x〈0∣∣J†

µ(0)
∣∣X(p)〉〈X(p)

∣∣Jµ(x)∣∣0〉

=
−i (2π)3

3q2

∑
X(p)

δ(�p− �q) θ(p0)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2

×
∫ ∞

0
dt

[
ei(q0−p0)t + e−i(q0+p0)t

]
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Vector current correlator Πµν

Then Π(q2) =
−i (2π)3

3q2

∑
X(p)

δ(�p− �q)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2×

×
∫ ∞

0
dt

[
ei(q0−p0)t + e−i(q0+p0)t

]
.

We have the following identities

∫ ∞

0
dt e±iαt = π δ(α)± iP 1

α
.
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Vector current correlator Πµν

Then Π(q2) =
−i (2π)3

3q2

∑
X(p)

δ(�p− �q)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2×

×
∫ ∞

0
dt

[
ei(q0−p0)t + e−i(q0+p0)t

]
.

We have the following identities

∫ ∞

0
dt e±iαt = π δ(α)± iP 1

α
.

After all substitutions:

ImΠ(q2) = −π
(2π)3

3q2

∑
X(p)

δ(�p− �q) δ(p0 − |q0|)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2
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Vector current correlator Πµν

So, we have
1

π
ImΠ(q2) = ρ(q2)θ(|q0|) = ρ(q2) , with

ρ(q2) θ(q0) =
−(2π)3
3q2

∑
X(p)

δ(4)(q − p) θ(p0)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2 .
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Vector current correlator Πµν

So, we have
1

π
ImΠ(q2) = ρ(q2)θ(|q0|) = ρ(q2) , with

ρ(q2) θ(q0) =
−(2π)3
3q2

∑
X(p)

δ(4)(q − p) θ(p0)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2 .

Lorentz invariance dictates

〈0∣∣Jµ(x)∣∣X(p)〉 = [Apµ + B εµ] e
−ipx

with p · ε = 0, and therefore ε · ε = −1. From current
conservation it follows A = 0, i. e. (B = fX mX)

〈0∣∣Jµ(x)∣∣X(p)〉〈X(p)
∣∣J†
µ(x)

∣∣0〉 = ∣∣fX∣∣2 m2
Xε2 = −∣∣fX∣∣2 m2

X ≤ 0 .

Lecture 1: QCD Sum Rules in Quantum Mechanics – p. 40



XLVI Cracow TP School@Zakopane

Vector current correlator Πµν

So, we have
1

π
ImΠ(q2) = ρ(q2)θ(|q0|) = ρ(q2) , with

ρ(q2) θ(q0) =
−(2π)3
3q2

∑
X(p)

δ(4)(q − p) θ(p0)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2 .

Lorentz invariance and current conservation dictate

〈0∣∣Jµ(x)∣∣X(p)〉〈X(p)
∣∣Jµ(x)∣∣0〉 = −∣∣fX∣∣2 m2

X ≤ 0 ,

that gives us

ρ(q2) =
−(2π)3
3q2

∑
X(p)

δ(4)(q − p) θ(p0)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2 ≥ 0
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Vector current correlator Πµν

So, we have
1

π
ImΠ(q2) = ρ(q2)θ(|q0|) = ρ(q2) , with

ρ(q2) θ(q0) =
−(2π)3
3q2

∑
X(p)

δ(4)(q − p) θ(p0)
∣∣∣〈0∣∣Jµ(0)∣∣X(p)〉

∣∣∣2 .

Lorentz invariance and current conservation dictate

〈0∣∣Jµ(x)∣∣X(p)〉〈X(p)
∣∣Jµ(x)∣∣0〉 = −∣∣fX∣∣2 m2

X ≤ 0 ,

that gives us

ρ(s) =
∑
X

∣∣∣fX
∣∣∣2 δ(s−m2

X) ≥ 0
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Spectral density of correlators Πµν and Π+
µν

So, we have
1

π
ImΠ(q2) = ρ(q2)θ(|q0|) = ρ(q2)

If we consider correlator

Π+
µν(q) = i

∫
d4x eiqx〈0∣∣Jµ(x)Jν(0)∣∣0〉 = [

qµ qν − gµν q
2
]
Π+(q) .

then
1

π
ImΠ+(q2) = ρ(q2)θ(q0)
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Spectral density of correlators Πµν and Π+
µν

So, we have
1

π
ImΠ(q2) = ρ(q2)θ(|q0|) = ρ(q2)

If we consider correlator

Π+
µν(q) = i

∫
d4x eiqx〈0∣∣Jµ(x)Jν(0)∣∣0〉 = [

qµ qν − gµν q
2
]
Π+(q) .

then
1

π
ImΠ+(q2) = ρ(q2)θ(q0)

Now we can say why we put T -product in correlators
– then spectral densities, defined only by real particles,
are Lorentz invariant and depend only on q2 !
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