Lecture 1: QCD Sum Rules in Quantum Mechanics

A. P. Bakulev

Bogolyubov Lab. Theor. Phys., JINR (Dubna, Russia)

• Toy model: 2D Quantum Harmonic Oscillator

- **•** Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator

- **D** Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO

- **D** Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states

- **D** Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons

- **•** Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons
- QCD: Quarks inside, hadrons outside! How to proceed?

- **•** Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons
- QCD: Quarks inside, hadrons outside! How to proceed?
- QCD SRs: Way to study hadrons in np-QCD.

- **•** Toy model: 2D Quantum Harmonic Oscillator
- Sum Rules: General Scheme, Green Function and Correlator
- Asymptotic Freedom for 2D QHO
- Duality conception: method to describe excited states
- Numerical results and lessons
- QCD: Quarks inside, hadrons outside! How to proceed?
- QCD SRs: Way to study hadrons in np-QCD.
- QCD: Currents, Correlators and Spectral Densities.

Quantum-mechanical toy model:

Two-Dimensional Harmonic Oscillator

Simplest system with confinement – oscillator with potential $V(\vec{r}) = m\omega^2 r^2/2$. All formulas greatly simplify if D = 2.

Simplest system with confinement – oscillator with potential $V(\vec{r}) = m\omega^2 r^2/2$. All formulas greatly simplify if D = 2. Then energy levels are

 $E_n = (2n+1)\omega \,,$

Simplest system with confinement – oscillator with potential $V(\vec{r}) = m\omega^2 r^2/2$. All formulas greatly simplify if D = 2. Then energy levels are

$$E_n = (2n+1)\omega \,,$$

and wave function values in the origin are

$$|\psi_n(0)|^2 = \frac{m\omega}{\pi} \,.$$

Simplest system with confinement – oscillator with potential $V(\vec{r}) = m\omega^2 r^2/2$. All formulas greatly simplify if D = 2. Then energy levels are

$$E_n = (2n+1)\omega \,,$$

and wave function values in the origin are

$$|\psi_n(0)|^2 = \frac{m\omega}{\pi} \,.$$

We will consider the regular quasi-perturbative method of Sum Rules to determine energy E_0 and $|\psi_0(0)|^2$ of the ground state.

General scheme of Sum Rule method

• We study correlator $M(\mu)$, which has spectral expansion:

 $M^{\text{spec}}(\mu) = |\psi_0(0)|^2 e^{-E_0/\mu} + \text{``higher states''}$

• We study correlator $M(\mu)$, which has spectral expansion:

$$M^{\text{spec}}(\mu) = |\psi_0(0)|^2 e^{-E_0/\mu} + \text{``higher states''}$$

• We construct perturbative expansion of this correlator:

$$M^{\text{pert}}(\mu) = M_0(\mu) + \sum_{n \ge 1} C_{2n} \frac{\omega^{-n}}{\mu^{2n}},$$

where $M_0(\mu)$ corresponds to free particle and has dispersion representation:

$$M_0(\mu) = \int_0^\infty \rho_0(E) \, e^{-E/\mu} \, dE \, .$$

• We study correlator $M(\mu)$, which has expansion:

$$M^{\text{spec}}(\mu) = |\psi_0(0)|^2 e^{-E_0/\mu} + \text{``higher states''}$$

We construct perturbative expansion of this correlator:

$$M^{\text{pert}}(\mu) = M_0(\mu) + \sum_{n \ge 1} C_{2n} \frac{\omega^{2n}}{\mu^{2n}}$$

Sum Rule – it is simply

$$M^{\rm spec}(\mu) = M^{\rm pert}(\mu)$$

It appears that higher state contributions can be well approximated by

"higher states" = "free states" outside interval $(0, s_0)$

It appears that higher state contributions can be well approximated by

"higher states" = "free states" outside interval $(0, s_0)$

As a result we have Sum Rule (SR):

$$|\psi_0(0)|^2 e^{-E_0/\mu} = \int_0^{S_0} \rho_0(E) e^{-E/\mu} dE +$$
 "power corrections"

It appears that higher state contributions can be well approximated by

"higher states" = "free states" outside interval $(0, s_0)$

● As a result we have Sum Rule (SR):

$$|\psi_0(0)|^2 e^{-E_0/\mu} = \int_0^{S_0} \rho_0(s) e^{-s/\mu} ds + C_2 \frac{\omega^2}{\mu^2} + C_4 \frac{\omega^4}{\mu^4} + \dots$$

It appears that higher state contributions can be well approximated by

"higher states" = "free states" outside interval $(0, s_0)$

● As a result we have Sum Rule (SR):

$$|\psi_0(0)|^2 e^{-E_0/\mu} = \int_0^{S_0} \rho_0(s) e^{-s/\mu} ds + C_2 \frac{\omega^2}{\mu^2} + C_4 \frac{\omega^4}{\mu^4} + \dots$$

• Our aim: to determine $|\psi_0(0)|^2$ and E_0 from this SR by calculating spectral density $\rho_0(E)$ and coefficients C_{2n} and by demanding stability of this SR in variable $\mu \in [\mu_L, \mu_U]$.

Green functions and Correlators

Consider 2-time Green function

$$G(0,0|\vec{x},t) = \sum_{k\geq 0} \psi_k^*(\vec{x})\psi_k(0)e^{-iE_kt}.$$

= probability amplitude for $(x = 0, t = 0) \rightarrow (\vec{x}, t)$.

Consider 2-time Green function

$$G(0,0|\vec{x},t) = \sum_{k\geq 0} \psi_k^*(\vec{x})\psi_k(0)e^{-iE_kt}.$$

= probability amplitude for $(x = 0, t = 0) \rightarrow (\vec{x}, t)$.

• To get $M(\mu)$ put $x = 0, t = 1/i\mu$:

$$M(\mu) = G(0,0|0,1/i\mu) = \sum_{k\geq 0} |\psi_k(0)|^2 e^{-E_k/\mu} = M^{\text{spec}}(\mu).$$

Consider 2-time Green function

$$G(0,0|\vec{x},t) = \sum_{k\geq 0} \psi_k^*(\vec{x})\psi_k(0)e^{-iE_kt}.$$

= probability amplitude for $(x = 0, t = 0) \rightarrow (\vec{x}, t)$.

• To get $M(\mu)$ put $x = 0, t = 1/i\mu$:

$$M(\mu) = G(0,0|0,1/i\mu) = \sum_{k\geq 0} |\psi_k(0)|^2 e^{-E_k/\mu} = M^{\text{spec}}(\mu).$$

In our case $|\psi_k(0)|^2 = m\omega/\pi$, so we have

$$M(\mu) = ???$$

Consider 2-time Green function

$$G(0,0|\vec{x},t) = \sum_{k\geq 0} \psi_k^*(\vec{x})\psi_k(0)e^{-iE_kt}.$$

= probability amplitude for $(x = 0, t = 0) \rightarrow (\vec{x}, t)$.

• To get $M(\mu)$ put $x = 0, t = 1/i\mu$:

$$M(\mu) = G(0,0|0,1/i\mu) = \sum_{k\geq 0} |\psi_k(0)|^2 e^{-E_k/\mu} = M^{\text{spec}}(\mu).$$

In our case $|\psi_k(0)|^2 = m\omega/\pi$, so we have

$$M(\mu) = \frac{m\omega}{2\pi \sinh\left(\omega/\mu\right)}.$$

Exact correlator:

$$M(\mu) = \frac{m\omega}{2\pi \sinh(\omega/\mu)}.$$

Exact correlator:

$$M(\mu) = \frac{m\omega}{2\pi \sinh(\omega/\mu)}.$$

• Spectral representation = expansion in powers of $e^{-2\omega/\mu}$

$$M^{\text{spec}}(\mu) = \frac{m\omega}{\pi} \left(e^{-\omega/\mu} + e^{-3\omega/\mu} + e^{-5\omega/\mu} + e^{-7\omega/\mu} + \dots \right)$$

Exact correlator:

$$M(\omega) = \frac{m\omega}{2\pi} \cdot (0.851) \; .$$

• Spectral representation = expansion in powers of $e^{-2\omega/\mu}$

$$M^{\rm spec}(\mu) = \frac{m\omega}{\pi} \left(e^{-\omega/\mu} + e^{-3\omega/\mu} + e^{-5\omega/\mu} + e^{-7\omega/\mu} + \dots \right)$$

Numerically at $\mu = \omega$:

$$M^{\rm spec}(\omega) = \frac{m\omega}{2\pi} \left(0.736 + 0.100 + 0.013 + 0.002 + \ldots \right) \,.$$

Exact correlator:

$$M(\omega) = \frac{m\omega}{2\pi} \cdot (0.851) \; .$$

• Spectral representation = expansion in powers of $e^{-2\omega/\mu}$

$$M^{\rm spec}(\mu) = \frac{m\omega}{\pi} \left(e^{-\omega/\mu} + e^{-3\omega/\mu} + e^{-5\omega/\mu} + e^{-7\omega/\mu} + \dots \right)$$

Numerically at $\mu = \omega$:

$$M^{\rm spec}(\omega) = \frac{m\omega}{2\pi} \, \left(0.736 + 0.100 + 0.013 + 0.002 + \ldots \right) \, .$$

Ground state contributes 86%, first excitation – 12%, while the second – 1.5%.

Exact correlator:

$$M(\mu) = \frac{m\omega}{2\pi \sinh(\omega/\mu)}.$$

Exact correlator:

$$M(\omega) = \frac{m\omega}{2\pi} \cdot (0.851) \; .$$

Perturbative expansion in powers $(\omega/\mu)^n$

$$M^{\text{pert}}(\mu) = \frac{m\mu}{2\pi} \left(1 - \frac{\omega^2}{6\mu^2} + \frac{7}{360} \frac{\omega^4}{\mu^4} - \frac{31}{15120} \frac{\omega^6}{\mu^6} + \dots \right) \,,$$

Exact correlator:

$$M(\omega) = \frac{m\omega}{2\pi} \cdot (0.851) \; .$$

Perturbative expansion in powers $(\omega/\mu)^n$

$$M^{\text{pert}}(\mu) = \frac{m\mu}{2\pi} \left(1 - \frac{\omega^2}{6\mu^2} + \frac{7}{360} \frac{\omega^4}{\mu^4} - \frac{31}{15120} \frac{\omega^6}{\mu^6} + \dots \right) \,,$$

Here $m\mu/2\pi$ corresponds to Green function of free particle:

$$M^{\rm free}(\mu) = \frac{m\mu}{2\pi} \,,$$

Exact correlator:

$$M(\omega) = \frac{m\omega}{2\pi} \cdot (0.851) \; .$$

Perturbative expansion in powers $(\omega/\mu)^n$

$$M^{\text{pert}}(\mu) = \frac{m\mu}{2\pi} \left(1 - \frac{\omega^2}{6\mu^2} + \frac{7}{360} \frac{\omega^4}{\mu^4} - \frac{31}{15120} \frac{\omega^6}{\mu^6} + \dots \right) \,,$$

Numerically at $\mu = \omega$:

$$M^{\text{pert}}(\omega) = \frac{m\omega}{2\pi} \ (1 - 0.167 + 0.019 - 0.002 + \ldots)$$

First correction specifies free result by 17%, while the second – by 3%

Asymptotic Freedom for HO Correlator
Asymptotic Freedom for $M(\mu)$

Perturbative expansion can be rewritten

$$\frac{M(\mu) - M_0(\mu)}{M_0(\mu)} = -\frac{\omega^2}{6\mu^2} + \frac{7}{360}\frac{\omega^4}{\mu^4} - \frac{31}{15120}\frac{\omega^6}{\mu^6} + \dots$$

Asymptotic Freedom for $M(\mu)$

Perturbative expansion can be rewritten

$$\frac{M(\mu) - M_0(\mu)}{M_0(\mu)} = -\frac{\omega^2}{6\mu^2} + \frac{7}{360}\frac{\omega^4}{\mu^4} - \frac{31}{15120}\frac{\omega^6}{\mu^6} + \dots$$

That means **Asymptotic Freedom**:

 $M(\mu)$ behaves like $M_0(\mu)$ at large $\mu \gg \omega!$

Asymptotic Freedom for $M(\mu)$

Perturbative expansion can be rewritten

$$\frac{M(\mu) - M_0(\mu)}{M_0(\mu)} = -\frac{\omega^2}{6\mu^2} + \frac{7}{360}\frac{\omega^4}{\mu^4} - \frac{31}{15120}\frac{\omega^6}{\mu^6} + \dots$$

That means **Asymptotic Freedom**:

 $M(\mu)$ behaves like $M_0(\mu)$ at large $\mu \gg \omega!$

Asymptotic Freedom in Quantum Mechanics is violated by Power Corrections of the type ω^2/μ^2

Exact $M(\mu)$; Ground state only; $M_0(\mu) + O(\omega^2/\mu^2)$.

Exact $M(\mu)$; 0 + 1 states only; $M_0(\mu) + O(\omega^4/\mu^4)$.

For small μ in spectral part survives only ground state $|\psi_0|^2 e^{-E_0/\mu}$. **But**: PT breaks down.

For large μ **AF** works well: $M(\mu) \simeq M_0(\mu)$. **But**: We need more and more resonances to saturate $M(\mu)$.

Global and Local

Dualities

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$M^{\text{spec}}(\mu) = \sum_{k \ge 0} \frac{m\omega}{\pi} e^{-E_k/\mu} \equiv \int_0^\infty \rho^{\text{osc}}(E) e^{-E/\mu} dE$$

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$M^{\text{spec}}(\mu) = \sum_{k \ge 0} \frac{m\omega}{\pi} e^{-E_k/\mu} \equiv \int_0^\infty \rho^{\text{osc}}(E) e^{-E/\mu} dE$$

Here spectral density is just sum of δ -functions:

$$\rho^{\rm osc}(E) = \sum_{k\geq 0} \frac{m\omega}{\pi} \,\delta(E - E_k) \,.$$

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$M^{\text{spec}}(\mu) = \sum_{k \ge 0} \frac{m\omega}{\pi} e^{-E_k/\mu} \equiv \int_0^\infty \rho^{\text{osc}}(E) e^{-E/\mu} dE$$

Analogously we have integral representation for free correlator:

$$M_0(\mu) = \frac{m\mu}{2\pi} \equiv \int_0^\infty \rho_0(E) \, e^{-E/\mu} \, dE \, .$$

Who knows what is $\rho_0(E)$?

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$M^{\operatorname{spec}}(\mu) = \sum_{k \ge 0} \frac{m\omega}{\pi} e^{-E_k/\mu} \equiv \int_0^\infty \rho^{\operatorname{osc}}(E) e^{-E/\mu} dE$$

Analogously we have integral representation for free correlator:

$$M_0(\mu) = \frac{m\mu}{2\pi} \equiv \int_0^\infty \rho_0(E) \, e^{-E/\mu} \, dE \, .$$

Who knows what is $\rho_0(E)$? Answer: $\rho_0(E) = \frac{m}{2\pi}$.

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$M^{\rm spec}(\mu) = \int_0^\infty \rho^{\rm osc}(E) \, e^{-E/\mu} \, dE \, ; \ M_0(\mu) = \int_0^\infty \rho_0(E) \, e^{-E/\mu} \, dE \, .$$

Asymptotic Freedom:

$$M(\mu \to \infty) = M_0(\mu \to \infty)$$

We need to model higher resonances in spectral repr. of our correlator $M(\mu)$:

$$M^{\rm spec}(\mu) = \int_0^\infty \rho^{\rm osc}(E) \, e^{-E/\mu} \, dE \, ; \ M_0(\mu) = \int_0^\infty \rho_0(E) \, e^{-E/\mu} \, dE \, .$$

Asymptotic Freedom:

$$M(\mu \to \infty) = M_0(\mu \to \infty)$$

dictates **Global Duality** for these two densities

$$\int_0^\infty \rho^{\rm osc}(E) \, dE = \int_0^\infty \rho_0(E) \, dE$$

At first glance they have completely different behaviour:

But we have very interesting relations between $2k\omega$ -partial integral moments of this dual densities, namely, $\langle E^N \rangle_{2k\omega}$ $= \int_{2k\omega}^{2k\omega+2\omega} E^N \rho(E) dE$. For N = 0:

$$\int_{2k\omega}^{2(k+1)\omega} \rho^{\text{osc}}(E) \, dE = \frac{m\omega}{\pi} = \int_{2k\omega}^{2(k+1)\omega} \rho_0(E) \, dE$$

But we have very interesting relations between $2k\omega$ -partial integral moments of this dual densities, namely, $\langle E^N \rangle_{2k\omega}$ $= \int_{2k\omega}^{2k\omega+2\omega} E^N \rho(E) dE$. For N = 1:

$$\int_{2k\omega}^{2(k+1)\omega} E \,\rho^{\text{osc}}(E) \,dE \,=\, \frac{m\omega^2(2k+1)}{\pi} = \,\int_{2k\omega}^{2(k+1)\omega} E \,\rho_0(E) \,dE$$

But we have very interesting relations between $2k\omega$ -partial integral moments of this dual densities, namely, $\langle E^N \rangle_{2k\omega}$ $= \int_{2k\omega}^{2k\omega+2\omega} E^N \rho(E) dE$. For $N \ge 2$:

$$\int_{2k\omega}^{2(k+1)\omega} E^{N} \rho^{\text{osc}}(E) \, dE = \int_{2k\omega}^{2(k+1)\omega} E^{N} \rho_{0}(E) \, dE \left[1 + O\left(\frac{N^{2}}{k^{2}}\right) \right]$$

We have duality between each excited resonance in oscillator and free particle in some spectral domain \Rightarrow "Local Duality"

QM Sum Rules for

Harmonic Oscillator

We can model higher state contributions by

"higher states" = "free states" outside interval $(0, S_0)$

We can model higher state contributions by "higher states" = "free states" outside interval $(0, S_0)$ or: $\rho^{\text{mod}}(E) = |\psi_0(0)|^2 \,\delta \,(E - E_0) + \rho_0(E) \,\theta \,(E - S_0)$ $\rho(E) \qquad \delta(E - E_0)$

Our model for HSs gives

$$M^{\text{mod}}(\mu) = |\psi_0(0)|^2 e^{-E_0/\mu} + \int_{S_0}^{\infty} \rho_0(s) e^{-E/\mu} dE.$$

Our model for HSs gives

$$M^{\text{mod}}(\mu) = |\psi_0(0)|^2 e^{-E_0/\mu} + \int_{S_0}^{\infty} \rho_0(s) e^{-E/\mu} dE.$$

After all we have Sum Rule:

$$|\boldsymbol{\psi}_{\mathbf{0}}(\mathbf{0})|^{2}e^{-\boldsymbol{E}_{\mathbf{0}}/\mu} = \int_{0}^{S_{0}} \rho_{0}(E) e^{-E/\mu} dE + \mathbf{power corrections}$$

Our model for HSs gives

$$M^{\text{mod}}(\mu) = |\psi_0(0)|^2 e^{-E_0/\mu} + \int_{S_0}^{\infty} \rho_0(s) e^{-E/\mu} dE.$$

or equivalent SR (with $\Psi_0(0) \equiv \psi_0(0) \sqrt{\pi/\omega}$):

$$|\Psi_{0}(0)|^{2}e^{-E_{0}/\mu} = \frac{\mu}{2\omega} \left\{ 1 - e^{-S_{0}/\mu} - \frac{\omega^{2}}{6\mu^{2}} + \dots \right\}$$

Our model for HSs gives

$$M^{\text{mod}}(\mu) = |\psi_0(0)|^2 e^{-E_0/\mu} + \int_{S_0}^{\infty} \rho_0(s) e^{-E/\mu} dE.$$

or equivalent SR (with $\Psi_0(0) \equiv \psi_0(0) \sqrt{\pi/\omega}$):

$$|\Psi_{0}(0)|^{2}e^{-E_{0}/\mu} = \frac{\mu}{2\omega} \left\{ 1 - e^{-S_{0}/\mu} - \frac{\omega^{2}}{6\mu^{2}} + \dots \right\}$$

Daughter SR – by
$$\frac{-\partial \dots}{\partial \mu^{-1}}$$

$$|\Psi_{0}(0)|^{2} E_{0} e^{-E_{0}/\mu} = \frac{\mu^{2}}{2\omega} \left\{ 1 - \left(1 + \frac{S_{0}}{\mu}\right) e^{-S_{0}/\mu} + \frac{\omega^{2}}{6\mu^{2}} + \dots \right\}$$

Main SR:

$$|\Psi_0(0)|^2 \approx \Psi_0^2(E_0, S_0, \mu) = \frac{\mu e^{E_0/\mu}}{2\omega} \left\{ 1 - e^{-S_0/\mu} - \frac{\omega^2}{6\mu^2} + \dots \right\}$$

Main SR:

$$|\Psi_0(0)|^2 \approx \Psi_0^2(E_0, S_0, \mu) = \frac{\mu e^{E_0/\mu}}{2\omega} \left\{ 1 - e^{-S_0/\mu} - \frac{\omega^2}{6\mu^2} + \dots \right\}$$

Daughter SR:

$$E_0 \approx E_0(S_0, \mu) = \mu \frac{1 - \left(1 + \frac{S_0}{\mu}\right) e^{-S_0/\mu} + \frac{\omega^2}{6\mu^2} + \dots}{1 - e^{-S_0/\mu} - \frac{\omega^2}{6\mu^2} + \dots}$$

Main SR:

$$|\Psi_{0}(0)|^{2} \approx \Psi_{0}^{2}(E_{0}, S_{0}, \mu) = \frac{\mu e^{E_{0}/\mu}}{2\omega} \left\{ 1 - e^{-S_{0}/\mu} - \frac{\omega^{2}}{6\mu^{2}} + \dots \right\}$$

Daughter SR:

$$E_0 \approx E_0(S_0, \mu) = \mu \frac{1 - \left(1 + \frac{S_0}{\mu}\right) e^{-S_0/\mu} + \frac{\omega^2}{6\mu^2} + \dots}{1 - e^{-S_0/\mu} - \frac{\omega^2}{6\mu^2} + \dots}$$

Strategy of processing SRs:

• Determine $E_0 \approx E_0(S_0, \mu)$ by minimal sensitivity to variation of $\mu \in [\mu_L; \mu_U]$ at appropriate S_0 ;

Main SR:

$$|\Psi_{0}(0)|^{2} \approx \Psi_{0}^{2}(E_{0}, S_{0}, \mu) = \frac{\mu e^{E_{0}/\mu}}{2\omega} \left\{ 1 - e^{-S_{0}/\mu} - \frac{\omega^{2}}{6\mu^{2}} + \dots \right\}$$

Daughter SR:

$$E_0 \approx E_0(S_0, \mu) = \mu \frac{1 - \left(1 + \frac{S_0}{\mu}\right) e^{-S_0/\mu} + \frac{\omega^2}{6\mu^2} + \dots}{1 - e^{-S_0/\mu} - \frac{\omega^2}{6\mu^2} + \dots}$$

Strategy of processing SRs:

- Determine $E_0 \approx E_0(S_0, \mu)$ by minimal sensitivity to variation of $\mu \in [\mu_L; \mu_U]$ at appropriate S_0 ;
- Determine $|\Psi_0(0)|^2 \approx \Psi_0^2(S_0, E_0, \mu)$ by minimal sensitivity to variation of μ at appropriate S_0 .

QM Sum Rules: Fidelity Window

Power corrections are of the type $(\omega/\mu)^{2n}$ and they are huge at $\mu \ll \omega$. Demand:

$$\Delta_{\text{pert}}(\mu) \equiv \sum_{n \ge 1} \frac{C_{2n}(\omega/\mu)^{2n}}{M_0(\mu)} \le 0.33 \text{ for all } \mu \ge \mu_{\text{L}}$$

QM Sum Rules: Fidelity Window

Power corrections are of the type $(\omega/\mu)^{2n}$ and they are huge at $\mu \ll \omega$. Demand:

$$\Delta_{\text{pert}}(\mu) \equiv \sum_{n \ge 1} \frac{C_{2n}(\omega/\mu)^{2n}}{M_0(\mu)} \le 0.33 \text{ for all } \mu \ge \mu_{\text{L}}$$

■ Higher states at large $\mu \gg \omega$ are not suppressed by $e^{-E_k/\mu} \approx 1$. Demand:

 $\Delta_{\text{pert}}(\mu) \equiv \int_{S_0}^{\infty} \frac{\rho_0(E)}{M_0(\mu)} e^{-E/\mu} dE \le 0.33 \text{ for all } \mu \le \mu_{\text{U}}$

QM Sum Rules: Fidelity Window

Power corrections are of the type $(\omega/\mu)^{2n}$ and they are huge at $\mu \ll \omega$. Demand:

$$\Delta_{\text{pert}}(\mu) \equiv \sum_{n \ge 1} \frac{C_{2n}(\omega/\mu)^{2n}}{M_0(\mu)} \le 0.33 \text{ for all } \mu \ge \mu_{\text{L}}$$

■ Higher states at large $\mu \gg \omega$ are not suppressed by $e^{-E_k/\mu} \approx 1$. Demand:

 $\Delta_{\text{pert}}(\mu) \equiv \int_{S_0}^{\infty} \frac{\rho_0(E)}{M_0(\mu)} e^{-E/\mu} dE \le 0.33 \text{ for all } \mu \le \mu_{\text{U}}$

• Fidelity window: $\mu_{L} \leq \mu \leq \mu_{U}$. Only for μ inside it is reasonable to demand **minimal sensitivity** of SRs to variations in μ !

QM SRs: Setup with fixed $E_0 = 1$

We fix energy to the exact value $E_0 = 1$ and obtain fidelity window: $\mu_L = 0.73 \omega$ and $\mu_U = 1.80 \omega$

QM SRs: Setup with fixed $E_0 = 1$

We fix energy to the exact value $E_0 = 1$ and obtain $|\Psi_0(0)|^2 = 0.99$ with only 2 pow.corrs. (exact $|\Psi_0(0)|^2 = 1$)

QM SRs: Complete Setup

We take into account 3 power corrs. and obtain fidelity window $[0.74 \,\omega; 1.8 \,\omega]$ and $E_0 = 0.98 \,\omega$ for $S_0 = 1.88 \,\omega$:

QM SRs: Complete Setup

We take into account 3 power corrs. and obtain and $|\Psi_0(0)|^2 = 0.92$

QM Sum Rules:

Conclusions

• SRs give E_0 and $|\psi_0(0)|^2$ with accuracy **not worser** 10%;

- SRs give E_0 and $|\psi_0(0)|^2$ with accuracy **not worser** 10%;
- Main source of the error **crude model** for spectral density of higher states: even taking into account 10 power corrections we obtain $E_0 = 0.95 \omega$, $S_0 = 1.79 \omega$, and $|\psi_0(0)|^2 = 0.89$;

- SRs give E_0 and $|\psi_0(0)|^2$ with accuracy **not worser** 10%;
- Main source of the error **crude model** for spectral density of higher states: even taking into account 10 power corrections we obtain $E_0 = 0.95 \omega$, $S_0 = 1.79 \omega$, and $|\psi_0(0)|^2 = 0.89$;
- **But**: If we know $E_0 = 1$ exactly (say, from Particle Data Group), then accuracy can be twice higher: with taking into account 2 power corrections we obtain $S_0 = 2.08 \omega$ and $|\psi_0(0)|^2 = 0.99!$

- SRs give E_0 and $|\psi_0(0)|^2$ with accuracy **not worser** 10%;
- Main source of the error **crude model** for spectral density of higher states: even taking into account 10 power corrections we obtain $E_0 = 0.95 \omega$, $S_0 = 1.79 \omega$, and $|\psi_0(0)|^2 = 0.89$;
- **But**: If we know $E_0 = 1$ exactly (say, from Particle Data Group), then accuracy can be twice higher: with taking into account 2 power corrections we obtain $S_0 = 2.08 \omega$ and $|\psi_0(0)|^2 = 0.99!$
- In QCD spectral density more close to perturbative!

Quarks inside, Hadrons outside! How to proceed?

Gauge-invariant Lagrangian of QCD

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,\dots} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$

contains only gluon $(G^a_{\mu\nu}(x))$ and quark $(\psi_q(x))$ fields.

Gauge-invariant Lagrangian of QCD

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,\dots} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$

contains only gluon $(G^a_{\mu\nu}(x))$ and quark $(\psi_q(x))$ fields. These fields has color degrees of freedom: 3 for quarks $\psi^A_q(x)$ (A = 1, 2, 3) and 8 for gluons $G^a_{\mu\nu}(x)$ (a = 1, ..., 8).

Gauge-invariant Lagrangian of QCD

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,\dots} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$

contains only gluon $(G^a_{\mu\nu}(x))$ and quark $(\psi_q(x))$ fields. These fields has color degrees of freedom: 3 for quarks $\psi^A_q(x)$ (A = 1, 2, 3) and 8 for gluons $G^a_{\mu\nu}(x)$ (a = 1, ..., 8). Interaction is hidden in $G^a_{\mu\nu}$ and covariant derivative D^{AB}_{μ} :

$$G^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + g_{s}f^{abc}A^{b}_{\mu}A^{c}_{\nu}$$
$$D^{AB}_{\mu} = \partial_{\mu} - ig_{s}(t^{a})^{AB}A^{a}_{\mu}$$

Gauge-invariant Lagrangian of QCD

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,\dots} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$

contains only gluon $(G^a_{\mu\nu}(x))$ and quark $(\psi_q(x))$ fields. These fields has color degrees of freedom: 3 for quarks $\psi^A_q(x)$ (A = 1, 2, 3) and 8 for gluons $G^a_{\mu\nu}(x)$ (a = 1, ..., 8). Interaction is hidden in $G^a_{\mu\nu}$ and covariant derivative D^{AB}_{μ} :

$$G^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + g_{s}f^{abc}A^{b}_{\mu}A^{a}_{\mu}$$
$$D^{AB}_{\mu} = \partial_{\mu} - ig_{s}(t^{a})^{AB}A^{a}_{\mu}$$

It is nonlinear due to **Non-Abelian** character $(f^{abc} \neq 0)$.

Non-Abelian character of QCD \Rightarrow charged gluons.

Coloured **gluons** \Rightarrow **confinement!**

Massless QCD: What are Hadrons?

PS- and V-mesons composed of u - and d -quarks				
meson type PS		V		
composition $\pi^0[\bar{u}u - \bar{d}d], \pi^{\pm}[\bar{u}d, \bar{d}u]$		$ ho^0(\omega)[\bar{u}u-\bar{d}d],\ ho^{\pm}[\bar{u}d,\bar{d}u]$		
mass 140 MeV		770(780) MeV		

Massless QCD: What are Hadrons?

PS- and V-mesons composed of u - and d -quarks				
meson type	PS	V		
composition $\pi^0[\bar{u}u - \bar{d}d], \pi^{\pm}[\bar{u}d, \bar{d}u]$		$ ho^0(\omega)[ar{u}u-ar{d}d],\ ho^\pm[ar{u}d,ar{d}u]$		
mass 140 MeV		770(780) MeV		

Baryons composed of u - and d -quarks				
composition	p[uud]	n[udd]	$\Delta^{++}[uuu], \Delta^{+}[uud],$	
			$\Delta^0[udd], \ \Delta^-[ddd]$	
mass	938 MeV	939 MeV	1232 MeV	

QCD SRs: Way to Study Hadrons in Non-Perturbative QCD

Problem: bound states in QCD?

- **Problem**: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.

- **Problem**: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.
- Invented in 1977 by Shifman, Vainshtein & Zakharov (ITEP) to describe J/ψ -meson = $c\bar{c}$ -system, discovered in 1974 in e^+e^- -annihilation at SPEAR (SLAC) and, in parallel, in p + Be-collisions at BNL.

- **Problem**: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.
- Invented in 1977 by Shifman, Vainshtein & Zakharov (ITEP) to describe J/ψ -meson = $c\bar{c}$ -system, discovered in 1974 in e^+e^- -annihilation at SPEAR (SLAC) and, in parallel, in p + Be-collisions at BNL.
- In 1979 used to describe light hadrons in massless QCD.

- **Problem**: bound states in QCD?
- QCD SR method: calculate properties of hadrons (masses, decay constants, magnetic moments) without considering hadronization or confinement.
- Invented in 1977 by Shifman, Vainshtein & Zakharov (ITEP) to describe J/ψ -meson = $c\bar{c}$ -system, discovered in 1974 in e^+e^- -annihilation at SPEAR (SLAC) and, in parallel, in p + Be-collisions at BNL.
- In 1979 used to describe light hadrons in massless QCD.
- **Main idea**: to calculate correlators of hadron currents $\langle 0|T[J_1(x)J_2(0)]|0 \rangle$ by two ways. Sum Rule is the result of matching.

Correlator of hadron currents via dispersion integral $F_{x \to q} \left[\langle 0 | T \left[J_1(x) J_2(0) \right] | 0 \rangle \right] \left(Q^2 \right) \equiv \Pi(Q^2) =$

$$= \int_{0}^{\infty} \frac{\rho_{12}(s) \, ds}{s+Q^2} + \text{``subtractions''}$$

Correlator of hadron currents via dispersion integral $F_{x \to q} \left[\langle 0 | T \left[J_1(x) J_2(0) \right] | 0 \rangle \right] \left(Q^2 \right) \equiv \Pi(Q^2) =$

$$= \int_{0}^{\infty} \frac{\rho_{12}(s) \, ds}{s+Q^2} + \text{``subtractions''}$$

Apply Borel transform

$$B_{Q^2 \to M^2} \left[\Pi(Q^2) \right] \equiv \Phi\left(M^2\right) = \int_{0}^{\infty} \rho_{12}\left(s\right) \, e^{-s/M^2} \frac{ds}{M^2}$$

to suppress "higher states" and to kill "subtractions" in DR.

1-st way: Operator Product Expansion with account for **quark and gluon condensates** in QCD vacuum

$$\Phi\left(Q^{2}\right) = \Phi_{\text{pert}}\left(Q^{2}\right) + c_{GG}\frac{\langle (\alpha_{s}/\pi)GG \rangle}{M^{4}} + c_{\bar{q}q}\frac{\alpha_{s}\langle \bar{q}q \rangle^{2}}{M^{6}}$$

Here $\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{a\mu\nu} \rangle = 0.012 \text{ GeV}^4$, $\alpha_s \langle \bar{q}q \rangle^2 = 0.0018 \text{ GeV}^6$.

1-st way: Operator Product Expansion with account for **quark and gluon condensates** in QCD vacuum

$$\Phi\left(Q^{2}\right) = \Phi_{\text{pert}}\left(Q^{2}\right) + c_{GG}\frac{\langle (\alpha_{s}/\pi)GG \rangle}{M^{4}} + c_{\bar{q}q}\frac{\alpha_{s}\langle \bar{q}q \rangle^{2}}{M^{6}}$$

2-nd way: phenomenological saturation of spectral density by hadronic states

$$ho_{ ext{had}}\left(s
ight)=f_{h}^{2}\delta\left(s-m_{h}^{2}
ight)+
ho_{ ext{pert}}\left(s
ight) heta\left(s-s_{0}
ight)$$

Our model is ground state h + continuum, which starts from threshold $s = s_0$.

1-st way: Operator Product Expansion with account for **quark and gluon condensates** in QCD vacuum

$$\Phi\left(Q^{2}\right) = \Phi_{\text{pert}}\left(Q^{2}\right) + c_{GG}\frac{\langle (\alpha_{s}/\pi)GG \rangle}{M^{4}} + c_{\bar{q}q}\frac{\alpha_{s}\langle \bar{q}q \rangle^{2}}{M^{6}}$$

2-nd way: phenomenological saturation of spectral density by hadronic states

$$ho_{\mathrm{had}}\left(s
ight) = f_{h}^{2}\delta\left(s - m_{h}^{2}
ight) +
ho_{\mathrm{pert}}\left(s
ight)\theta\left(s - s_{0}
ight)$$

Sum Rule:

$$f_h^2 e^{-m_h^2/M^2} = \int_0^{s_0} \rho_{\text{pert}}(s) e^{-s/M^2} ds + c_{GG} \frac{\langle \frac{\alpha_s}{\pi} GG \rangle}{M^2} + c_{\bar{q}q} \frac{\alpha_s \langle \bar{q}q \rangle^2}{M^4}$$

Borel transform is defined as

$$\Phi(M^2) = \hat{B}(Q^2 \to M^2) \Pi(Q^2) = \lim_{n \to \infty} \frac{(-Q^2)^n}{\Gamma(n)} \left[\frac{d^n}{dQ^{2n}} \Pi(Q^2) \right]_{Q^2 = nM^2}$$

Borel transform is defined as

$$\Phi(M^2) = \hat{B}(Q^2 \to M^2) \Pi(Q^2) = \lim_{n \to \infty} \frac{(-Q^2)^n}{\Gamma(n)} \left[\frac{d^n}{dQ^{2n}} \Pi(Q^2) \right]_{Q^2 = nM^2}$$

Here we list the most important examples:

$$\frac{\Pi(Q^2) \implies \Phi(M^2)}{C \log\left(\frac{Q^2}{\mu^2}\right) \implies -C}$$

Borel transform is defined as

$$\Phi(M^2) = \hat{B}(Q^2 \to M^2) \Pi(Q^2) = \lim_{n \to \infty} \frac{(-Q^2)^n}{\Gamma(n)} \left[\frac{d^n}{dQ^{2n}} \Pi(Q^2) \right]_{Q^2 = nM^2}$$

Here we list the most important examples:

Borel transform is defined as

$$\Phi(M^2) = \hat{B}(Q^2 \to M^2) \Pi(Q^2) = \lim_{n \to \infty} \frac{(-Q^2)^n}{\Gamma(n)} \left[\frac{d^n}{dQ^{2n}} \Pi(Q^2) \right]_{Q^2 = nM^2}$$

Here we list the most important examples:

Quark-Hadron Duality in QCD

Quark-hadron Duality

Observations:

1° Real hadron spectral density is more smooth than in HO case;

Quark-hadron Duality

 $\int \rho_{\rm pert}(s)ds = \int \rho_{\rm had}(s)ds$

Observations:

1° Real hadron spectral density is more smooth than in HO case;
2° Duality is working!

XLVI Cracow TP School @ Zakopane Lecture 1: QCD Sum Rules in Quantum Mechanics – p. 36

Quark-hadron Duality

 $\int \rho_{\rm pert}(s) ds = \int \rho_{\rm had}(s) ds$

Observations:

1° Real hadron spectral density is more smooth than in HO case; 2° Duality is working! 3° Asymptotics starts at $s \ge 3 \text{ GeV}^2$

QCD: Currents, Correlators and Spectral Densities of Real Particles
Currents related to π^{\pm} meson:

AV: $J_{\mu5}(x) = \bar{u}(x)\gamma_{\mu}\gamma_{5}d(x); \quad J_{\mu5}^{\dagger}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x).$

Currents related to π^{\pm} meson:

AV: $J_{\mu5}(x) = \bar{u}(x)\gamma_{\mu}\gamma_{5}d(x); \quad J_{\mu5}^{\dagger}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x).$

PS: $J_5(x) = i \, \bar{u}(x) \gamma_5 d(x); \quad J_5^{\dagger}(x) = i \, \bar{d}(x) \gamma_5 u(x).$

Currents related to π^{\pm} meson:

AV: $J_{\mu5}(x) = \bar{u}(x)\gamma_{\mu}\gamma_{5}d(x); \quad J_{\mu5}^{\dagger}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x).$

PS: $J_5(x) = i \, \bar{u}(x) \gamma_5 d(x); \quad J_5^{\dagger}(x) = i \, \bar{d}(x) \gamma_5 u(x).$

Note that Dirac equation $i \hat{D} q(x) = m_q q(x)$ gives relation:

$$\partial^{\mu} J_{\mu 5}(x) = (m_u + m_d) J_5(x).$$
 (*)

Currents related to π^{\pm} meson:

AV: $J_{\mu5}(x) = \bar{u}(x)\gamma_{\mu}\gamma_{5}d(x); \quad J_{\mu5}^{\dagger}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x).$

PS: $J_5(x) = i \, \bar{u}(x) \gamma_5 d(x); \quad J_5^{\dagger}(x) = i \, \bar{d}(x) \gamma_5 u(x).$

Note that Dirac equation $i \hat{D} q(x) = m_q q(x)$ gives relation:

$$\partial^{\mu} J_{\mu 5}(x) = (m_u + m_d) J_5(x).$$
 (*)

Decay constant f_{π} of physical pion $\pi(P)$ is defined via

 $\langle 0 | J_{\mu 5}(0) | \pi(P) \rangle = i f_{\pi} P_{\mu}.$

It was measured in decay $\pi \rightarrow \mu \nu_{\mu}$ to be $f_{\pi} = 132$ MeV.

Currents related to π^{\pm} meson:

AV: $J_{\mu5}(x) = \bar{u}(x)\gamma_{\mu}\gamma_{5}d(x); \quad J_{\mu5}^{\dagger}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x).$

PS: $J_5(x) = i \, \bar{u}(x) \gamma_5 d(x); \quad J_5^{\dagger}(x) = i \, \bar{d}(x) \gamma_5 u(x).$

Note that Dirac equation $i \hat{D} q(x) = m_q q(x)$ gives relation:

$$\partial^{\mu} J_{\mu 5}(x) = (m_u + m_d) J_5(x).$$
 (*)

Decay constant f_{π} of physical pion $\pi(P)$ is defined via

$$\langle 0 | J_{\mu 5}(0) | \pi(P) \rangle = i f_{\pi} P_{\mu}$$

Eq. (*) then gives $\langle 0 | J_5(0) | \pi(P) \rangle = \frac{f_{\pi} m_{\pi}^2}{m_u + m_d}$.

Currents related to vector mesons in QCD

Currents related to ρ^{\pm} meson:

$$J_{\mu}(x) = \bar{u}(x)\gamma_{\mu}d(x); \quad J^{\dagger}{}_{\mu}(x) = \bar{d}(x)\gamma_{\mu}u(x)$$

Decay constant f_{ρ} of physical $\rho^{\pm}(P, \varepsilon)$ -meson with polarization ε and momentum P, satisfying $(P \varepsilon) = 0$ and $(\varepsilon, \varepsilon) = -1$,

$$\langle 0 | J_{\mu}(0) | \rho(P, \varepsilon) \rangle = f_{\rho} m_{\rho} \varepsilon_{\mu}.$$

Decay $\rho^0 \rightarrow e^+e^-$ allows to measure $f_{\rho^0} = 150$ MeV, that gives $f_{\rho^{\pm}} = 210$ MeV.

Lorentz invariance and vector current conservation dictate

$$\Pi_{\mu\nu}(q) = i \int d^4x \, e^{iqx} \langle 0 | T \left[J^{\mu}(x) J_{\nu}(0) \right] | 0 \rangle = \left[q_{\mu} \, q_{\nu} - g_{\mu\nu} \, q^2 \right] \, \Pi(q)$$

Lorentz invariance and vector current conservation dictate Inserting $\hat{1}$ in between currents we obtain

$$\Pi(q) = \frac{-i}{3q^2} \sum_{X(p)} \int_0^\infty dt \, e^{iq_0 t} \int d^3 \vec{x} \, e^{-i\vec{q}\vec{x}} \langle 0 \big| J^{\mu}(x) \big| X(p) \rangle \langle X(p) \big| J^{\dagger}_{\mu}(0) \big| 0 \rangle$$

$$+\frac{-i}{3q^2}\sum_{X(p)}\int_{-\infty}^{0} dt \, e^{iq_0t} \int d^3\vec{x} \, e^{-i\vec{q}\vec{x}} \langle 0 \big| J^{\dagger}_{\mu}(0) \big| X(p) \rangle \langle X(p) \big| J^{\mu}(x) \big| 0 \rangle$$

Lorentz invariance and vector current conservation dictate Inserting $\hat{1}$ in between currents we obtain

$$\Pi(q) = \frac{-i}{3q^2} \sum_{X(p)} \int_0^\infty dt \, e^{iq_0 t} \int d^3 \vec{x} \, e^{-i\vec{q}\vec{x}} \langle 0 \big| J^{\mu}(x) \big| X(p) \rangle \langle X(p) \big| J^{\dagger}_{\mu}(0) \big| 0 \rangle$$

$$+\frac{-i}{3q^2}\sum_{X(p)}\int_{-\infty}^{0} dt \, e^{iq_0t} \int d^3\vec{x} \, e^{-i\vec{q}\vec{x}} \langle 0 \big| J^{\dagger}_{\mu}(0) \big| X(p) \rangle \langle X(p) \big| J^{\mu}(x) \big| 0 \rangle$$

$$= \frac{-i(2\pi)^3}{3q^2} \sum_{X(p)} \delta(\vec{p} - \vec{q}) \,\theta(p_0) \left| \langle 0 | J_{\mu}(0) | X(p) \rangle \right|^2$$

$$\times \int_0^\infty dt \, \left[e^{i(q_0 - p_0)t} + e^{-i(q_0 + p_0)t} \right]$$

Then
$$\Pi(q^2) = \frac{-i(2\pi)^3}{3q^2} \sum_{X(p)} \delta(\vec{p} - \vec{q}) \left| \langle 0 | J_{\mu}(0) | X(p) \rangle \right|^2 \times \int_0^\infty dt \left[e^{i(q_0 - p_0)t} + e^{-i(q_0 + p_0)t} \right].$$

We have the following identities

$$\int_0^\infty dt \, e^{\pm i\alpha t} = \pi \, \delta(\alpha) \pm i \, \mathcal{P} \frac{1}{\alpha}$$

Then
$$\Pi(q^2) = \frac{-i(2\pi)^3}{3q^2} \sum_{X(p)} \delta(\vec{p} - \vec{q}) \left| \langle 0 | J_{\mu}(0) | X(p) \rangle \right|^2 \times \int_0^\infty dt \left[e^{i(q_0 - p_0)t} + e^{-i(q_0 + p_0)t} \right].$$

We have the following identities

$$\int_0^\infty dt \, e^{\pm i\alpha t} = \pi \, \delta(\alpha) \pm i \, \mathcal{P} \frac{1}{\alpha}$$

After all substitutions:

$$\mathbf{Im}\,\Pi(q^2) = -\pi\,\frac{(2\pi)^3}{3q^2}\,\sum_{X(p)}\delta(\vec{p}-\vec{q})\,\delta(p_0-|q_0|)\,\Big|\langle 0\big|J_{\mu}(0)\big|X(p)\rangle\Big|^2$$

So, we have
$$\frac{1}{\pi} \operatorname{Im} \Pi(q^2) = \rho(q^2)\theta(|q_0|) = \rho(q^2)$$
, with
$$\rho(q^2) \theta(q_0) = \frac{-(2\pi)^3}{3q^2} \sum_{X(p)} \delta^{(4)}(q-p) \theta(p_0) \Big| \langle 0 \big| J_{\mu}(0) \big| X(p) \Big| \langle 0 | J_{\mu}(0) \big| X(p) \big| X(p) \big| \langle 0 | J_{\mu}(0) \big| X(p) \big| X(p$$

So, we have
$$\frac{1}{\pi} \operatorname{Im} \Pi(q^2) = \rho(q^2) \theta(|q_0|) = \rho(q^2)$$
, with

$$\rho(q^2)\,\theta(q_0) = \frac{-(2\pi)^3}{3q^2} \sum_{X(p)} \delta^{(4)}(q-p)\,\theta(p_0) \Big| \langle 0 \big| J_{\mu}(0) \big| X(p) \rangle \Big|^2$$

Lorentz invariance dictates

$$\langle 0 | J^{\mu}(x) | X(p) \rangle = [A p_{\mu} + B \varepsilon_{\mu}] e^{-ipx}$$

with $p \cdot \varepsilon = 0$, and therefore $\varepsilon \cdot \varepsilon = -1$. From current conservation it follows A = 0, i. e. $(B = f_X m_X)$

$$\langle 0 \left| J^{\mu}(x) \right| X(p) \rangle \langle X(p) \left| J^{\dagger}_{\mu}(x) \right| 0 \rangle = \left| f_X \right|^2 m_X^2 \varepsilon^2 = - \left| f_X \right|^2 m_X^2 \le 0.$$

So, we have
$$\frac{1}{\pi} \operatorname{Im} \Pi(q^2) = \rho(q^2)\theta(|q_0|) = \rho(q^2)$$
, with

$$\rho(q^2)\,\theta(q_0) = \frac{-(2\pi)^3}{3q^2} \sum_{X(p)} \delta^{(4)}(q-p)\,\theta(p_0) \Big| \langle 0 \big| J_{\mu}(0) \big| X(p) \rangle \Big|^2$$

Lorentz invariance and current conservation dictate

$$\langle 0 | J^{\mu}(x) | X(p) \rangle \langle X(p) | J^{\mu}(x) | 0 \rangle = - | f_X |^2 m_X^2 \le 0,$$

that gives us

$$\rho(q^2) = \frac{-(2\pi)^3}{3q^2} \sum_{X(p)} \delta^{(4)}(q-p) \,\theta(p_0) \Big| \langle 0 \big| J_{\mu}(0) \big| X(p) \rangle \Big|^2 \ge 0$$

So, we have
$$\frac{1}{\pi} \operatorname{Im} \Pi(q^2) = \rho(q^2)\theta(|q_0|) = \rho(q^2)$$
, with

$$\rho(q^2)\,\theta(q_0) = \frac{-(2\pi)^3}{3q^2} \sum_{X(p)} \delta^{(4)}(q-p)\,\theta(p_0) \Big| \langle 0 \big| J_{\mu}(0) \big| X(p) \rangle \Big|^2$$

Lorentz invariance and current conservation dictate

$$\langle 0 | J^{\mu}(x) | X(p) \rangle \langle X(p) | J^{\mu}(x) | 0 \rangle = - | f_X |^2 m_X^2 \le 0,$$

that gives us

$$\rho(s) = \sum_{X} \left| f_X \right|^2 \delta(s - m_X^2) \ge 0$$

Spectral density of correlators $\Pi_{\mu\nu}$ and $\Pi^+_{\mu\nu}$

So, we have

$$\frac{1}{\pi} \operatorname{Im} \Pi(q^2) = \rho(q^2) \theta(|q_0|) = \rho(q^2)$$

If we consider correlator

$$\Pi^{+}_{\mu\nu}(q) = i \int d^4x \, e^{iqx} \langle 0 | J^{\mu}(x) J_{\nu}(0) | 0 \rangle = \left[q_{\mu} \, q_{\nu} - g_{\mu\nu} \, q^2 \right] \, \Pi^{+}(q) \, .$$

then

$$\frac{1}{\pi}\operatorname{Im}\Pi^+(q^2) = \rho(q^2)\theta(q_0)$$

Spectral density of correlators $\Pi_{\mu\nu}$ and $\Pi^+_{\mu\nu}$

So, we have

$$\frac{1}{\pi} \operatorname{Im} \Pi(q^2) = \rho(q^2) \theta(|q_0|) = \rho(q^2)$$

If we consider correlator

$$\Pi^{+}_{\mu\nu}(q) = i \int d^4x \, e^{iqx} \langle 0 | J^{\mu}(x) J_{\nu}(0) | 0 \rangle = \left[q_{\mu} \, q_{\nu} - g_{\mu\nu} \, q^2 \right] \, \Pi^{+}(q) \, .$$

then

$$\frac{1}{\pi}\operatorname{Im}\Pi^+(q^2) = \rho(q^2)\theta(q_0)$$

Now we can say why we put *T*-product in correlators – then spectral densities, defined only by **real particles**, are **Lorentz invariant** and **depend only on** q^2 !