

Multi-particle production in QCD at high energies

Raju Venugopalan
Brookhaven National Laboratory

Outline of Lectures

- Lecture I: EFT approach to high energy QCD-The Color Glass Condensate;
 multi-particle production in the CGC
- Lecture II: Hadronic scattering in the CGC-multiple scattering & quantum evolution effects in limiting fragmentation & quark pair production
- Lecture III: Plasma instabilities & thermalization in the CGC; computing particle production in Heavy Ion collisions to next-to-leading order (NLO)

Lectures based on:

- Plasma Instabilities: P. Romatschke & RV,
 PRL 96: 062302 (2006); hep-ph/0605045
- * Multiparticle production to NLO: F. Gelis & RV, hep-ph/0601209; hep-ph/0605246
- * Limiting Fragmentation: F. Gelis, A. Stasto & RV, hep-ph/0605087
- * Quark Pair Production: H. Fujii, F. Gelis & RV, PRL 95: 162002 (2005); hep-ph/0603099

Traditional view of hadronic collisions

❖ An alternative perspective...

Weak coupling techniques may be applicable...

Novel regime of QCD at high energies

$$Y_{\rm RHIC-central} = 0 \; (x = 10^{-2}, Q_s = 1.4 \, {\rm GeV})$$
 $Y_{\rm RHIC} = 3, Y_{\rm LHC-central} = 0 \; (x = 5 \cdot 10^{-4}, Q_s = 2.2 \, {\rm GeV})$
 $Y_{\rm RHIC} = 3, (x = 3 \cdot 10^{-5}, Q_s = 3.4 \, {\rm GeV})$

$$Y_{\rm LHC} = 3 \ (x = 3 \cdot 10^{-5}, Q_s = 3.4 \, {\rm GeV})$$

THE HADRON AT HIGH ENERGIES

McLerran, RV; Kovchegov; Jalilian-Marian, Kovner, McLerran, Weigert

Born-Oppenheimer: separation of large x and small x modes

Q.F.T on the light cone

Weinberg, 1966 Susskind, 1968 Leutwyler-Stern, 1976

isomorphism

Two dimensional quantum mechanics

Light cone dispersion relation:

Light cone pert. theory = Rayleigh-Schrodinger pert. theory

Large x = Large masses > Effective field theory

HIGH ENERGY EFFECTIVE ACTION

Generating functional:

Scale separating sources and fields

$$\mathcal{Z}[j] = \int [d\rho] \, W_{\Lambda^+}[\rho] \left\{ \frac{\int^{\Lambda^+} [dA] \, \delta(A^+) \, e^{iS[A,\rho] - \int j \cdot A}}{\int^{\Lambda^+} [dA] \, \delta(A^+) \, e^{iS[A,\rho]}} \right\}$$

Gauge invariant weight functional describing distribution of the sources

$$S[A,\rho] = \frac{-1}{4} \int d^4x F_{\mu\nu}^2 + \frac{i}{N_c} \int d^2x_{\perp} dx^- \delta(x^-) \operatorname{Tr}\left(\rho(x_{\perp}) \ln\left(U_{-\infty,\infty}[A^-]\right)\right)$$

Dynamical wee fields

Coupling of wee fields to classical sources

where
$$U_{-\infty,\infty}[A^-] = \mathcal{P} \exp\left(ig\int dx^+A^{-,a}T^a\right)$$

Fukushima; Jalilian-Marian, Jeon, RV

Quantum evolution of classical theory: Wilsonian RG

Integrate out

Small fluctuations => Increase color charge of sources

JIMWLK

(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner)

Hadron at high energies is a Color Glass Condensate

$$k_{\perp} \frac{dN}{k_{\perp} dk_{\perp}}$$

$$\Lambda_{\rm QCD} \quad Q_s(x) \quad Q_s(x') \qquad k_{\perp}$$

- ✓ Gluons are colored
- ✓ Random sources evolving on time scales much larger than natural time scales-very similar to spin glasses
- ✓ Bosons with large occupation ~ $\frac{1}{\alpha_S}$ form a condensate
 - ullet Typical momentum of gluons is $\,Q_s\,$

Hadron & Nuclear S cattering at high energies

$$M \approx \sqrt{s} >> \Lambda_{\rm QCD}$$

$$x_1G(x_1, M^2)$$

$$x_2G(x_2, M^2)$$

$$\Lambda_{
m QCD} << M << \sqrt{s}$$
 $\phi_A(x_1, k_{\perp 1})$

 $|\phi_B(x_2,k_{\perp 2})|$

Are these "un-integrated gluon distributions" universal?

In CGC, "Dipoles"- with evolution a la JIMWLK / BK

RG equations

Catani, Ciafaloni, Hautmann

Collins, Ellis

HADRONIC COLLISIONS IN THE CGC FRAMEWORK

$$W_{x_1}[
ho_{p1}]$$

$$A_{\mu}[\rho_{p1},\rho_{p2}]$$

$$W_{x_2}[
ho_{p2}]$$

Solve Yang-Mills equations for two light cone sources: $ho_{p1} \, \& \,
ho_{p2}$

$$\rho_{p1}\,\&\,\rho_{p2}$$

For observables $O\left(A_{\mu}(
ho_{p1},
ho_{p2})
ight)$ average over

$$W_{x1}[\rho_{p1}] \& W_{x2}[\rho_{p2}]$$

Inclusive gluon production in pp & p-A:

- K_t factorization seen "trivially" in p-p
- Also holds for inclusive gluon production lowest order in $\rho_p/k_{1\perp}^2$ out all orders in $\rho_A/k_{1\perp}^2$ (Kovchegov, Mueller)

Quark production to all orders in pA

Neither quark pair production nor single quark production is kt-factorizable

Result can however still be "factorized" into novel multi-parton distributions

$$\frac{d\sigma^{pA\to q\bar{q}X}}{dy_p dy_A d^2 p_\perp d^2 q_\perp} \propto \phi_p \times [A \phi_{g,g} + (B \phi_{g;q\bar{q}} + h.c) + C \phi_{q\bar{q};q\bar{q}}]$$

These multi-parton distributions can be computed in closed form in the Gaussian (MV) approximation

Quantum evolution of these distributions can be computed By solving the JIMWLK or BK renorm. group equations

Interpretation:

$$\phi_A^{qar{q},g}(ec{k}_{2\perp}) \propto k_{2\perp} k_{2\perp} k_{2\perp}$$

Wilson line correlators - the last appears in pair production only

Simplify greatly in large N_c limit x-evolution can be computed with Balitsky-Kovchegov eqn.

Nucleus-Nucleus Collisions...leading order graphs

Inclusive multiplicity even to leading order requires 2 -> n Feynman amplitudes

- completely non-perturbative problem!

F. Gelis, RV hep-ph/0601209

Solve Dirac equation in background field of two nuclei...

Gelis, Kajantie, Lappi PRL 2005

Yang-Mills Equations for two nuclei

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_1^a(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_2^a(x_{\perp})\delta(x^{+})$$

Kovner, McLerran, Weigert

Initial conditions from matching eqns. of motion on light cone

$$\tau = \sqrt{2x^+x^-}; \, \eta = \frac{1}{2} \ln \left(\frac{x^+}{x^-} \right)$$

Random Electric & Magnetic fields in the plane of the fast moving nucleus

Longitudinal E and B fields created right after the collision - non-zero Chern-Simons charge generated

$$\frac{d\nu}{d\tau} = \frac{g^2}{8\pi^2} \text{Tr}(\vec{E} \cdot \vec{B})$$

Kharzeev, Krasnitz, RV; Lappi, McLerran

 \Box Hamiltonian in $A^{\tau}=0$ gauge; per unit rapidity,

$$H = \frac{\tau}{2} \int d^2 r_{\perp} \left[p^{\eta} p^{\eta} + \frac{1}{\tau^2} E_r E_r + \frac{1}{\tau^2} (D_r \Phi) (D_r \Phi) + F_{xy} F_{xy} \right]$$

For "perfect" pancake nuclei, boost invariant configurations

$$A_r(\tau, \eta, r_\perp) = A_r(\tau, r_\perp) \; ; \; A_\eta(\tau, \eta, r_\perp) = \Phi(\tau, r_\perp)$$

□ Solve 2+1- D Hamilton's equations in real time for space-time evolution of glue in Heavy Ion collisions

Krasnitz, Nara, RV Lappi

Transverse Energy

$$\frac{1}{\pi R^2} \frac{dE_{\perp}}{d\eta} |_{\eta=0} = \frac{f_E(\Lambda_s R)}{g^2} \Lambda_s^3$$

Proper time dependence

$$\varepsilon \tau = \alpha + \beta e^{-\gamma \tau}$$

"Formation time"

$$\tau_F = 1/\gamma/\Lambda_s$$

~0.3 fm (RHIC) & 0.1 fm (LHC)

Energy Density

$$arepsilon = rac{0.08}{g^2} \, \Lambda_s^4$$

Gluon Multiplicity

$$\frac{1}{\pi R^2} \frac{dN}{d\eta} \Big|_{\eta=0} = \frac{1}{g^2} \frac{n(k_\perp)}{(N_c^2 - 1)}$$

with

$$n(k_{\perp}) = a_1 \frac{1}{\exp\left(\sqrt{k_{\perp}^2 + m^2}/T_{\text{eff}}\right) - 1}$$

$$(k_\perp/\Lambda_s \leq 1.5)$$
 ; $T_{\rm eff} = 0.47\,\Lambda_s$; $m = 0.03\,\Lambda_s$

$$n(k_{\perp}) = a_2 \frac{\Lambda_s^4}{k_{\perp}^4} \ln(4\pi k_{\perp}/\Lambda_s)$$
$$(k_{\perp}/\Lambda_s > 1.5)$$

dists. are infrared finite

PRL 87, 192302 (2001)

Dispersion relation:

$$m^2 \propto n(\tau) \sim \frac{1}{\tau}$$

Just as for a Debye screening mass

Classical Fields with occupation # f= $\frac{1}{\alpha_S}$

Initial energy & multiplicity of <u>produced</u> gluons depends on Q_s

$$\frac{1}{\pi R^2} \, \frac{dE}{d\eta} = \frac{0.25}{g^2} \, Q_s^3 \qquad \frac{1}{\pi R^2} \, \frac{dN}{d\eta} = \frac{0.3}{g^2} \, Q_s^2$$

Straight forward extrapolation from fits of saturation models to HERA data

$$(Q_s^2)^{\text{RHIC}} = A^{1/3} \left(\frac{x_0}{x_{\text{RHIC}}}\right)^{0.3} \text{GeV}^2$$

RHIC: $Q_s \approx 1.4 \; {\rm GeV}$ LHC: $Q_s \approx 2.2 \; {\rm GeV}$

Predictions for Au+Au multiplicity at RHIC

Eskola, QM 2001

Successful KLN phenomenology for multiplicities at RHIC

Kharzeev,Levin, Nardi

Elliptic flow of colored glass

$$v_2 N = \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{dt}{\sqrt{t}} \left(T^{xx}(t) - T^{yy}(t) \right)$$

where

$$T_{xx} - T_{yy} = \int d^2x_{\perp} \left[E_y^2 - E_x^2 + (D_x\Phi)^2 - (D_y\Phi)^2 \right]$$

Can compute with cooling (above) method and in Coulomb gauge-both methods converge at late times

Krasnitz, Nara, RV PLB (2003)

Also...

$$(E_{\perp}/N)^{\text{CGC}} \approx Q_s$$

$$(E_{\perp}/N)^{\mathrm{RHIC}} \approx Q_s/3$$

OK, if system does P dV work - hydrodynamics...

Melting CGC to QGP

L. McLerran, T. Ludlam, Physics Today

Glasma...

Classical field

Classical field / Particle

Particle

Mueller, Son; Gelis, Jeon, RV, in preparation