Self-consistent gaussian model of nonperturbative QCD vacuum

A. P. Bakulev, A. V. Pimikov

Bogolyubov Lab. Theor. Phys., JINR (Dubna, Russia)

Cracow School of Theoretical Physics

Nonperturbative QCD vacuum

- Nonperturbative QCD vacuum
- Taking into account nonlocality of vacuum condensates, Gaussian model

- Nonperturbative QCD vacuum
- Taking into account nonlocality of vacuum condensates, Gaussian model
- Bilocal quark condensates

- Nonperturbative QCD vacuum
- Taking into account nonlocality of vacuum condensates, Gaussian model
- Bilocal quark condensates
- Quark-gluon-quark condensate

- Nonperturbative QCD vacuum
- Taking into account nonlocality of vacuum condensates, Gaussian model
- Bilocal quark condensates
- Quark-gluon-quark condensate
- Minimal Gaussian model

- Nonperturbative QCD vacuum
- Taking into account nonlocality of vacuum condensates, Gaussian model
- Bilocal quark condensates
- Quark-gluon-quark condensate
- Minimal Gaussian model
- Improved Gaussian model

- Nonperturbative QCD vacuum
- Taking into account nonlocality of vacuum condensates, Gaussian model
- Bilocal quark condensates
- Quark-gluon-quark condensate
- Minimal Gaussian model
- Improved Gaussian model
- Comparison between models

- Nonperturbative QCD vacuum
- Taking into account nonlocality of vacuum condensates, Gaussian model
- Bilocal quark condensates
- Quark-gluon-quark condensate
- Minimal Gaussian model
- Improved Gaussian model
- Comparison between models
- Pion DA

$$T(\bar{\psi}\psi) = \overline{\bar{\psi}\psi} + :\bar{\psi}\psi : (\text{Wick theorem})$$
$$\langle T(\bar{\psi}\psi)\rangle = i^{-1}\hat{S}_0(x) + ?$$

$$T(\bar{\psi}\psi) = \overline{\bar{\psi}\psi} + :\bar{\psi}\psi : (\text{Wick theorem})$$
$$\langle T(\bar{\psi}\psi)\rangle = i^{-1}\hat{S}_0(x) + ?$$

$$T(\bar{\psi}\psi) = \bar{\psi}\psi + :\bar{\psi}\psi : (\text{Wick theorem})$$
$$\langle T(\bar{\psi}\psi)\rangle = i^{-1}\hat{S}_0(x) + ?$$

QCD PT $\langle:\bar{\psi}\psi:\rangle \stackrel{\text{def}}{=} 0$

$$T(\bar{\psi}\psi) = \overline{\bar{\psi}\psi} + :\bar{\psi}\psi : (\text{Wick theorem})$$
$$\langle T(\bar{\psi}\psi)\rangle = i^{-1}\hat{S}_0(x) + ?$$

QCD PT $\langle:\bar{\psi}\psi:\rangle \stackrel{\text{def}}{=} 0$ QCD SR $\langle: \bar{\psi}(0)\psi(0):\rangle$ CONST $\neq 0$

$$T(\bar{\psi}\psi) = \bar{\psi}\psi + :\bar{\psi}\psi : (\text{Wick theorem})$$
$$\langle T(\bar{\psi}\psi)\rangle = i^{-1}\hat{S}_0(x) + ?$$

QCD PT $\langle:\bar{\psi}\psi:\rangle \stackrel{\text{def}}{=} 0$ QCD SR $\langle: \bar{\psi}(0)\psi(0):\rangle$ CONST $\neq 0$ [SVZ'79] Condensat

 $\begin{array}{l} \mathbf{QCD} \ \mathbf{PT} \\ \langle : \bar{\psi}\psi : \rangle \stackrel{\mathrm{def}}{=} 0 \end{array}$

QCD SR $\langle : \overline{\psi}(0)\psi(0) : \rangle$ CONST $\neq 0$ [SVZ'79] Condensat Masses, decay constants of hadrons

QCD PT $\langle:\bar{\psi}\psi:\rangle \stackrel{\text{def}}{=} 0$

 $\begin{array}{c} \textbf{QCD SRNC} \\ \langle : \bar{\psi}(0)\psi(z) : \rangle \\ F_S(z^2) + \hat{z}F_V(z^2) \end{array}$

Self-consistent gaussian model of nonperturbative QCD vacuum – p. 3

QCD PT $\langle:\bar{\psi}\psi:\rangle \stackrel{\text{def}}{=} 0$

QCD SRNC $\langle : \bar{\psi}(0)\psi(z): \rangle$ $F_S(z^2) + \hat{z}F_V(z^2)$ Baier, Pinelis, Gromes in 80-s Nonlocal condensat

Quarks run through vacuum with nonzero momentum $k \neq 0$: $\langle k^2 \rangle = \frac{\langle \bar{\psi} D^2 \psi \rangle}{\langle \bar{\psi} \psi \rangle} = \lambda_q^2 = 0.4 - 0.55 \,\text{GeV}^2$

Parameterization for scalar condensate was suggested in works of Bakulev, Mikhailov and Radyushkin:

$$\langle : \bar{\psi}(0)\psi(x): \rangle = \langle \bar{\psi}\psi \rangle \int_{0}^{\infty} f_{S}(\alpha) e^{\alpha x^{2}/4} d\alpha$$
, where $x^{2} < 0$.

Parameterization for scalar condensate was suggested in works of Bakulev, Mikhailov and Radyushkin:

$$\langle : \bar{\psi}(0)\psi(x): \rangle = \langle \bar{\psi}\psi \rangle \int_{0}^{\infty} f_{S}(\alpha) e^{\alpha x^{2}/4} d\alpha$$
, where $x^{2} < 0$.

Then, first approximation which take finite width of quark distribution in vacuum into account:

$$f_S(\alpha) = \delta\left(\alpha - \frac{\lambda_q^2}{2}\right), \qquad \lambda_q^2 = \frac{\langle \bar{\psi}D^2\psi \rangle}{\langle \bar{\psi}\psi \rangle}.$$

Parameterization for scalar condensate was suggested in works of Bakulev, Mikhailov and Radyushkin:

$$\langle : \bar{\psi}(0)\psi(x): \rangle = \langle \bar{\psi}\psi \rangle \int_{0}^{\infty} f_{S}(\alpha) e^{\alpha x^{2}/4} d\alpha$$
, where $x^{2} < 0$.

Then, first approximation which take finite width of quark distribution in vacuum into account:

$$f_S(\alpha) = \delta\left(\alpha - \frac{\lambda_q^2}{2}\right), \qquad \lambda_q^2 = \frac{\langle \bar{\psi} D^2 \psi \rangle}{\langle \bar{\psi} \psi \rangle}.$$

Such presentation correspond to Gaussian form $\sim \exp(\lambda_q^2 x^2/8)$ of NLC in coordinate representation.

Parameterization for scalar condensate was suggested in works of Bakulev, Mikhailov and Radyushkin:

$$\langle : \bar{\psi}(0)\psi(x): \rangle = \langle \bar{\psi}\psi \rangle \int_{0}^{\infty} f_{S}(\alpha) e^{\alpha x^{2}/4} d\alpha$$
, where $x^{2} < 0$.

Then, first approximation which take finite width of quark distribution in vacuum into account:

$$f_S(\alpha) = \delta\left(\alpha - \frac{\lambda_q^2}{2}\right), \qquad \lambda_q^2 = \frac{\langle \bar{\psi} D^2 \psi \rangle}{\langle \bar{\psi} \psi \rangle}.$$

Such presentation correspond to Gaussian form

 $\sim \exp\left(\lambda_q^2 x^2/8\right)$ of NLC in coordinate representation.

Self-consistent gaussian model of nonperturbative QCD vacuum - p. 5

Gaussian Model

Lattice data of Pisa group

Nonlocality of quark condensates from lattice data of Pisa group in comparison with local limit.

Even at $|z| \simeq 0.5$ Fm nonlocality is quite important!

Bilocal quark condensates

Parameterization for scalar and vector condensates:

$$\langle \bar{\psi}(0)\psi(x)\rangle = \langle \bar{\psi}\psi\rangle \int_{0}^{\infty} \underline{f_{S}(\alpha)} e^{\alpha x^{2}/4} d\alpha ,$$
$$\langle \bar{\psi}(0)\gamma_{\mu}\psi(x)\rangle = -ix_{\mu}A_{0} \int_{0}^{\infty} \underline{f_{V}(\alpha)} e^{\alpha x^{2}/4} d\alpha ,$$

where $A_0 = 2\alpha_s \pi \langle \bar{\psi}\psi \rangle^2/81$.

Bilocal quark condensates

Parameterization for scalar and vector condensates:

$$\langle \bar{\psi}(0)\psi(x)\rangle = \langle \bar{\psi}\psi\rangle \int_{0}^{\infty} f_{S}(\alpha) e^{\alpha x^{2}/4} d\alpha,$$

$$\langle \bar{\psi}(0)\gamma_{\mu}\psi(x)\rangle = -ix_{\mu}A_0 \int_{0}^{\infty} f_V(\alpha) e^{\alpha x^2/4} d\alpha,$$

where $A_0 = 2\alpha_s \pi \langle \bar{\psi}\psi \rangle^2/81$.

Gaussian approximations for these condensates:

$$f_S(\alpha) = \delta\left(\alpha - \frac{\lambda_q^2}{2}\right), \qquad f_V(\alpha) = \delta'\left(\alpha - \frac{\lambda_V^2}{2}\right).$$

Bilocal quark condensates

Parameterization for scalar and vector condensates:

$$\langle \bar{\psi}(0)\psi(x)\rangle = \langle \bar{\psi}\psi\rangle \int_{0}^{\infty} f_{S}(\alpha) e^{\alpha x^{2}/4} d\alpha,$$

$$\langle \bar{\psi}(0)\gamma_{\mu}\psi(x)\rangle = -ix_{\mu}A_0 \int_{0}^{\infty} f_V(\alpha) e^{\alpha x^2/4} d\alpha,$$

where $A_0 = 2\alpha_s \pi \langle \bar{\psi}\psi \rangle^2/81$.

Gaussian approximations for these condensates:

$$f_S(\alpha) = \delta\left(\alpha - \frac{\lambda_q^2}{2}\right), \qquad f_V(\alpha) = \delta'\left(\alpha - \frac{\lambda_V^2}{2}\right).$$

Very easy to obtain local limits:

$$f_S(\alpha) = \delta(\alpha)$$
, $f_V(\alpha) = \delta'(\alpha)$.

Quark-Gluon-Quark condensate

Convenient to term the 3-local condensate in fixed-point gauge by introducing three scalar functions: $\langle \bar{\psi}(0)\gamma_{\mu}(-g\hat{A}_{\nu}(x))\psi(y)\rangle = (x_{\mu}y_{\nu} - g_{\mu\nu}(xy))\overline{M}_{1}(y^{2}, x^{2}, (x-y)^{2}) \\ + (x_{\mu}x_{\nu} - g_{\mu\nu}x^{2})\overline{M}_{2}(y^{2}, x^{2}, (x-y)^{2}) , \\ \langle \bar{\psi}(0)\gamma_{5}\gamma_{\mu}(-g\hat{A}_{\nu}(x))\psi(y)\rangle = i\varepsilon_{\mu\nu xy}\overline{M}_{3}(y^{2}, x^{2}, (x-y)^{2}) ,$

Quark-Gluon-Quark condensate

Convenient to term the 3-local condensate in fixed-point gauge by introducing three scalar functions: $\langle \bar{\psi}(0)\gamma_{\mu}(-g\widehat{A}_{\nu}(x))\psi(y)\rangle = (x_{\mu}y_{\nu} - g_{\mu\nu}(xy))\overline{M}_{1}(y^{2}, x^{2}, (x-y)^{2})$ + $(x_{\mu}x_{\nu} - g_{\mu\nu}x^2)\overline{M}_2(y^2, x^2, (x-y)^2)$, $\langle \bar{\psi}(0)\gamma_5\gamma_{\mu}(-g\hat{A}_{\nu}(x))\psi(y)\rangle = i\varepsilon_{\mu\nu xy}\overline{M}_3(y^2,x^2,(x-y)^2)\,,$ where $\overline{M}_{i}(y^{2}, x^{2}, (x-y)^{2}) =$ $A_i \iiint d\alpha_1 d\alpha_2 d\alpha_3 f_i(\alpha_1, \alpha_2, \alpha_3) e^{(\alpha_1 y^2 + \alpha_2 x^2 + \alpha_3 (x-y)^2)/4}.$

Coefficients are $A_i = \{-\frac{3}{2}, 2, \frac{3}{2}\}A_0$, (Mikhailov, Radyushkin).

Quark-Gluon-Quark condensate

Convenient to term the 3-local condensate in fixed-point gauge by introducing three scalar functions: $\langle \bar{\psi}(0)\gamma_{\mu}(-g\hat{A}_{\nu}(x))\psi(y)\rangle = (x_{\mu}y_{\nu} - g_{\mu\nu}(xy))\overline{M}_{1}(y^{2}, x^{2}, (x-y)^{2}) + (x_{\mu}x_{\nu} - g_{\mu\nu}x^{2})\overline{M}_{2}(y^{2}, x^{2}, (x-y)^{2}),$ $\langle \bar{\psi}(0)\gamma_{5}\gamma_{\mu}(-g\hat{A}_{\nu}(x))\psi(y)\rangle = i\varepsilon_{\mu\nu xy}\overline{M}_{3}(y^{2}, x^{2}, (x-y)^{2}),$ where

$$\overline{M}_{i}(y^{2}, x^{2}, (x - y)^{2}) = A_{i} \iiint_{0}^{\infty} d\alpha_{1} d\alpha_{2} d\alpha_{3} f_{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}) e^{(\alpha_{1}y^{2} + \alpha_{2}x^{2} + \alpha_{3}(x - y)^{2})/4}.$$

Coefficients are $A_i = \{-\frac{3}{2}, 2, \frac{3}{2}\}A_0$, (Mikhailov, Radyushkin). Easy transition to local case:

$$f_i(\alpha_1, \alpha_2, \alpha_3) = \delta(\alpha_1) \ \delta(\alpha_2) \ \delta(\alpha_3) \ .$$

Bakulev, Mikhailov, Radyushkin, and Stefanis use the minimal Gaussian ansatz:

 $f_S(\alpha) = \delta (\alpha - \Lambda_S)$, $f_V(\alpha) = \delta'(\alpha - \Lambda_V)$, $\Lambda_V = \Lambda_S = \lambda_q^2/2$,

 $f_{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = \delta(\alpha_{1} - \Lambda_{V}) \delta(\alpha_{2} - \Lambda_{V}) \delta(\alpha_{3} - \Lambda_{V})$

Bakulev, Mikhailov, Radyushkin, and Stefanis use the minimal Gaussian ansatz:

 $f_S(\alpha) = \delta (\alpha - \Lambda_S)$, $f_V(\alpha) = \delta'(\alpha - \Lambda_V)$, $\Lambda_V = \Lambda_S = \lambda_q^2/2$,

 $f_i(\alpha_1, \alpha_2, \alpha_3) = \delta(\alpha_1 - \Lambda_V) \ \delta(\alpha_2 - \Lambda_V) \ \delta(\alpha_3 - \Lambda_V)$

There is one parameter which was estimated in sum rules and has value $\lambda_q^2 = 0.4 - 0.55 \,\text{GeV}^2$.

Bakulev, Mikhailov, Radyushkin, and Stefanis use the minimal Gaussian ansatz:

 $f_S(\alpha) = \delta (\alpha - \Lambda_S)$, $f_V(\alpha) = \delta'(\alpha - \Lambda_V)$, $\Lambda_V = \Lambda_S = \lambda_q^2/2$,

$$f_{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = \delta(\alpha_{1} - \Lambda_{V}) \delta(\alpha_{2} - \Lambda_{V}) \delta(\alpha_{3} - \Lambda_{V})$$

There is one parameter which was estimated in sum rules and has value $\lambda_q^2 = 0.4 - 0.55 \,\text{GeV}^2$. **Problems:**

QCD equations of motion are violated

Bakulev, Mikhailov, Radyushkin, and Stefanis use the minimal Gaussian ansatz:

 $f_S(\alpha) = \delta (\alpha - \Lambda_S)$, $f_V(\alpha) = \delta'(\alpha - \Lambda_V)$, $\Lambda_V = \Lambda_S = \lambda_q^2/2$,

 $f_{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = \delta(\alpha_{1} - \Lambda_{V}) \delta(\alpha_{2} - \Lambda_{V}) \delta(\alpha_{3} - \Lambda_{V})$

There is one parameter which was estimated in sum rules and has value $\lambda_q^2 = 0.4 - 0.55 \,\text{GeV}^2$. **Problems:**

- **QCD** equations of motion are violated
- Vector current correlator is not transverse
 ⇒ gauge invariance is broken

The aim of our investigations to cure these deficiencies.

QCD equation of motion for condensates

QCD equation of motion for splitted vector quark current

 $j_{\mu}(x) = \bar{\psi}(0)\gamma_{\mu}\psi(x)$

in massless QCD in fix-point gauge:

$$(\partial_{\mu} - ig\hat{A}_{\mu}(x))j_{\mu}(x) = 0.$$

QCD equation of motion for condensates

QCD equation of motion for splitted vector quark current

 $j_{\mu}(x) = \bar{\psi}(0)\gamma_{\mu}\psi(x)$

in massless QCD in fix-point gauge:

$$(\partial_{\mu} - ig\hat{A}_{\mu}(x))j_{\mu}(x) = 0.$$

If we average it over physical QCD vacuum, then we obtain the remarkable equation for condensates:

 $\partial_{\mu} \langle \bar{\psi}(0) \gamma^{\mu} \psi(x) \rangle = i \langle \bar{\psi}(0) g \hat{A}_{\mu}(x) \gamma^{\mu} \psi(x) \rangle \,.$

Minimal Gaussian ansatz does not satisfy this equation.

We modify functions f_i by introducing new parameters:

$$f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) = (1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z)$$

$$\delta(\alpha_1 - x \Lambda_V) \delta(\alpha_2 - y \Lambda_V) \delta(\alpha_3 - z \Lambda_V) .$$

We modify functions f_i by introducing new parameters:

$$f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) = (1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z)$$

$$\delta(\alpha_1 - x \Lambda_V) \delta(\alpha_2 - y \Lambda_V) \delta(\alpha_3 - z \Lambda_V) .$$

What does it give?:

We modify functions f_i by introducing new parameters:

$$f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) = (1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z) \\ \delta(\alpha_1 - x \Lambda_V) \delta(\alpha_2 - y \Lambda_V) \delta(\alpha_3 - z \Lambda_V) .$$

What does it give?:

If these conditions are fulfilled

12 $(X_2 + Y_2) - 9 (X_1 + Y_1) = 1, x + y = 1,$

than QCD equations of motion are satisfied;

We modify functions f_i by introducing new parameters:

$$f_i^{\text{imp}}(\alpha_1, \alpha_2, \alpha_3) = (1 + X_i \partial_x + Y_i \partial_y + Z_i \partial_z) \\ \delta(\alpha_1 - x \Lambda_V) \delta(\alpha_2 - y \Lambda_V) \delta(\alpha_3 - z \Lambda_V) .$$

What does it give?:

If these conditions are fulfilled

12 $(X_2 + Y_2) - 9 (X_1 + Y_1) = 1, x + y = 1,$

than QCD equations of motion are satisfied;

We minimize nontransversity of polarization operator by special choice of model parameters.

We study correlator

$$\Pi^{N}_{\mu\nu} = i \, \int d^4x \, e^{iqx} \langle 0 | T \left[J^{N}_{\mu}(0) J^{+}_{\nu}(x) \right] | 0 \rangle \,,$$

We study correlator

$$\Pi^{N}_{\mu\nu} = i \int d^4x \, e^{iqx} \langle 0 | T \left[J^{N}_{\mu}(0) J^{+}_{\nu}(x) \right] | 0 \rangle \,,$$

of two vector currents

 $J_{\nu}^{+}(x) = \bar{u}(x)\gamma_{\nu}d(x); \qquad J_{\mu}(0) = \bar{d}(0)\gamma_{\mu}u(0),$

which correspond to charged ρ -meson.

We study correlator

$$\Pi_{\mu\nu}^{N} = i \int d^{4}x \, e^{iqx} \langle 0 | T \left[J_{\mu}^{N}(0) J_{\nu}^{+}(x) \right] | 0 \rangle \,,$$

of two vector currents, with generalized first current:

 $J^{N}_{\mu}(0) = \bar{d}(0)\gamma_{\mu} \left(-in\nabla_{y}\right)^{N} u(y)\Big|_{y=0}$, where $n^{2} = 0, nq \neq 0$.

We study correlator

 $\begin{aligned} \Pi_{\mu\nu}^{N} &= i \int d^{4}x \, e^{iqx} \langle 0 \big| T \left[J_{\mu}^{N}(0) J_{\nu}^{+}(x) \right] \big| 0 \rangle \,, \\ \text{of two vector currents, with generalized first current:} \\ J_{\mu}^{N}(0) &= \left. \bar{d}(0) \gamma_{\mu} \left(-in \nabla_{y} \right)^{N} u(y) \right|_{y=0} \,, \text{where } n^{2} = 0, \, nq \neq 0. \\ \text{Our correlator consists of perturbative and nonperturbative} \\ \text{parts:} \, \Pi_{\mu\nu}^{N} &= \Pi_{\mu\nu}^{\text{pert}} + \Pi_{\mu\nu}^{\text{nonpert}}. \end{aligned}$

We study correlator

 $\begin{aligned} \Pi_{\mu\nu}^{N} &= i \int d^{4}x \, e^{iqx} \langle 0 \big| T \left[J_{\mu}^{N}(0) J_{\nu}^{+}(x) \right] \big| 0 \rangle \,, \\ \text{of two vector currents, with generalized first current:} \\ J_{\mu}^{N}(0) &= \left. \bar{d}(0) \gamma_{\mu} \left(-in \nabla_{y} \right)^{N} u(y) \right|_{y=0} \,, \text{where } n^{2} = 0, \, nq \neq 0. \\ \text{Our correlator consists of perturbative and nonperturbative} \\ \text{parts:} \, \Pi_{\mu\nu}^{N} &= \Pi_{\mu\nu}^{\text{pert}} + \Pi_{\mu\nu}^{\text{nonpert}}. \end{aligned}$

$$\Pi^{\text{nonpert}}_{\mu\nu} \frac{n_{\mu}q_{\nu}}{nq}$$

We study correlator

$$\begin{aligned} \Pi_{\mu\nu}^{N} &= i \int d^{4}x \, e^{iqx} \langle 0 | T \left[J_{\mu}^{N}(0) J_{\nu}^{+}(x) \right] \left| 0 \rangle \,, \end{aligned}$$
 of two vector currents, with generalized first current:
$$J_{\mu}^{N}(0) &= \left. \bar{d}(0) \gamma_{\mu} \left(-in \nabla_{y} \right)^{N} u(y) \right|_{y=0} \,, \end{aligned}$$
 where $n^{2} = 0, \, nq \neq 0.$
Our correlator consists of perturbative and nonperturbative parts:
$$\Pi_{\mu\nu}^{N} = \Pi_{\mu\nu}^{\text{pert}} + \Pi_{\mu\nu}^{\text{nonpert}}. \end{aligned}$$

$$\widehat{B}_{-q^2 \to M^2} \left[\Pi^{\text{nonpert}}_{\mu\nu} \frac{n_{\mu}q_{\nu}}{nq} \right]$$

where \widehat{B} is Borel operator.

We study correlator

 $\Pi^{N}_{\mu\nu} = i \int d^{4}x \, e^{iqx} \langle 0 | T \left[J^{N}_{\mu}(0) J^{+}_{\nu}(x) \right] | 0 \rangle \,,$ of two vector currents, with generalized first current: $J^{N}_{\mu}(0) = \bar{d}(0)\gamma_{\mu} \left(-in\nabla_{y}\right)^{N} u(y)\Big|_{y=0}$, where $n^{2} = 0, nq \neq 0$. Our correlator consists of perturbative and nonperturbative parts: $\Pi_{\mu\nu}^{N} = \Pi_{\mu\nu}^{\text{pert}} + \Pi_{\mu\nu}^{\text{nonpert}}$ Condition of the correlator transversity is $\Delta \Pi_L^N \equiv \frac{M^4}{2A_0} \widehat{B}_{-q^2 \to M^2} \left[\begin{array}{c} \Pi_{\mu\nu}^{\rm nonpert} \frac{n_\mu q_\nu}{nq} \end{array} \right] = \int x^N \varphi(x) \, dx = 0 \,,$

where \widehat{B} is Borel operator.

Realization of this requirement is laborious, because we choose the Gaussian behavior by hand.

Minimization of nontransversity terms

Our prime interest are the linear combinations of $\Delta \Pi_L^N$ for N = 0, 1, 2, ..., which correspond to conformal moments

$$\left\langle \xi^{2N} \right\rangle_L \equiv \int_0^1 (2x-1)^{2N} \varphi(x) \, dx = \sum_{k=0}^{2N} (-2)^{2N-k} \binom{2N}{k} \Delta \Pi_L^{2N-k} \, .$$

These moments are just analyzed in QCD sum rules for meson distribution amplitude.

Minimization of nontransversity terms

Our prime interest are the linear combinations of $\Delta \Pi_L^N$ for N = 0, 1, 2, ..., which correspond to conformal moments

$$\left\langle \xi^{2N} \right\rangle_L \equiv \int_0^1 (2x-1)^{2N} \varphi(x) \, dx = \sum_{k=0}^{2N} (-2)^{2N-k} \binom{2N}{k} \Delta \Pi_L^{2N-k} \, .$$

These moments are just analyzed in QCD sum rules for meson distribution amplitude.

Minimization of $|\langle \xi^{2N} \rangle_L|$ for N = 0, 1, ..., 5 gives us the set of parameters:

$$X_1 = -0.082; Y_1 = Z_1 = -2.243; x = 0.788;$$

 $X_2 = -1.298; Y_2 = Z_2 = -0.239; y = z = 1 - x = 0.212;$

 $X_3 = +1.775; Y_3 = Z_3 = -3.166; X_v = \Lambda_V / \Lambda_S = 1.00.$

Comparison between models

Confrontation between improved model (solid line) and minimal model (dotted line) $|\langle \xi^{2N} \rangle_L|$ functions.

The improved Gaussian model makes violation of polarization operator transversity 100 times smaller as compared with the minimal model.

Comparison between models

Confrontation between improved model (solid line) and minimal model (dotted line) $|\langle \xi^{2N} \rangle_L|$ functions.

The improved Gaussian model makes violation of polarization operator transversity 100 times smaller as compared with the minimal model.

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

The pion DA parameterizes this matrix element:

 $\left. \left\langle 0 \left| \, \bar{d}(z) \gamma_{\nu} \gamma_{5} \boldsymbol{E}(\boldsymbol{z}, \boldsymbol{0}) \boldsymbol{u}(0) \, \right| \, \pi(P) \right\rangle \right|_{z^{2} = 0} = i f_{\pi} P_{\nu} \int_{0}^{1} dx \, e^{i x(zP)} \, \varphi_{\pi}(x, \mu^{2})$

Fock-Schwinger string to ensure the gauge-independence: $E(z,0) = \mathcal{P} exp \left[ig \int_{0}^{z} A_{\mu}(\tau) d\tau^{\mu} \right]$

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

The pion DA parameterizes this matrix element:

 $\left. \left\langle 0 \left| \, \bar{d}(z) \gamma_{\nu} \gamma_{5} \boldsymbol{E}(\boldsymbol{z}, \boldsymbol{0}) \boldsymbol{u}(0) \, \right| \, \pi(P) \right\rangle \right|_{z^{2} = 0} = i f_{\pi} P_{\nu} \int_{0}^{1} dx \, e^{i x(zP)} \, \varphi_{\pi}(x, \mu^{2})$

Fock–Schwinger string to ensure the gauge-independence: $E(z,0) = \mathcal{P} exp \left[ig \int_{0}^{z} A_{\mu}(\tau) d\tau^{\mu} \right]$

Pion DA describes the transition of a physical pion into two valence quarks, separated at light cone.

Representation for DA

Pion DA in a form of Gegenbauer expansion:

 $\varphi_{\pi}(x;\mu^2) = 6x\bar{x}\left[1 + a_2C_2^{3/2}(2x-1) + a_4C_4^{3/2}(2x-1) + \dots\right]$

Representation for DA

Pion DA in a form of Gegenbauer expansion: $\varphi_{\pi}(x;\mu^2) = 6x\bar{x} \left[1 + a_2 C_2^{3/2} (2x-1) + a_4 C_4^{3/2} (2x-1) + \dots \right]$

QCD SRs tells us that $a_2, a_4 \gg a_i$ where $i = 6, 8 \dots$

Representation for DA

Pion DA in a form of Gegenbauer expansion: $\varphi_{\pi}(x;\mu^2) = 6x\bar{x}\left[1 + a_2C_2^{3/2}(2x-1) + a_4C_4^{3/2}(2x-1) + \dots\right]$ QCD SRs tells us that $a_2, a_4 \gg a_i$ where $i = 6, 8 \dots$

Region for (a_2, a_4) Gegenbauer coefficients of the pion DA for improved model (solid line) in comparison with minimal result: BMS model (o) and bunch (dashed line).

We have improved the model of nonlocal QCD vacuum.

- We have improved the model of nonlocal QCD vacuum.
- The pion DA has changed, but in a weak way.

- We have improved the model of nonlocal QCD vacuum.
- The pion DA has changed, but in a weak way.
- The BMS model, obtained in the minimal Gaussian approach, is a very good model for pion DA.

- We have improved the model of nonlocal QCD vacuum.
- The pion DA has changed, but in a weak way.
- The BMS model, obtained in the minimal Gaussian approach, is a very good model for pion DA.
- The region of allowed by QCD SR pion DAs shifted to larger values for a_2 and a_4 .