Lattice Study of Gluon Viscosities -- A Step towards RHIC Physics --

Cracow School of Theoretical Physics May 27 – June 5, 2006, Zakopane, Poland

Atsushi NAKAMURA RIISE, Hiroshima University

Many Thanks to the Organizers !

 I am very happy to be able to come here again after 20 years !

Part I. Monte Carlo calculation of lattice QCD : primer

Part II. Behavior of quarks and gluons at high temperature and density

* Presented at XCIV Cracow School of Theoretica Physics. Zakopane, Poland, June 6-19, 1984.

Acta Physica B16 (1985) 635

(635)

And Thanks again (after 20 years) to Andrzej and Larry !

 Based on the 2nd part, I worte a paper "Behavior of Quarks and Gluons at Finite Temperature and Density in SU(2) QCD" during my stay in Crakow.

[18] with the lattice distance and the constant part

atial for fixed temperature. The dashed line gives the

Acknowledgement

I am grateful to ... participants of Zakopane school ..., and especially A. Bialas and L.McLerran for valuable discussions and critical reading of the manuscript.

Contents

- Introduction
- Brief (and biased) Overview of Lattice QCD Study at Finite Temperature and Density
- Viscosity by Lattice QCD
- Summary

Confinement

Confinement (2)

Confinement Potential is "screened" at finite temperature.

Deconfinement

Observation of a Phase Transition at Finite Temperature on the Lattice

1981, McLerran and Svetitsky, Kuti, Polonyi and Szlachanyi, Engels et al.

$$Z = e^{-\beta F} = \operatorname{Tr} e^{-\beta (H - \mu N)} = \int_{\phi}^{\phi} \left\langle \phi \left| e^{-\beta (H - \mu N)} \right| \phi \right\rangle$$
$$e^{-\beta \Delta F} = \frac{Z(\operatorname{Gluons} + \operatorname{A Static Quark})}{Z(\operatorname{Gluons})} = \left\langle L(\vec{x}) \right\rangle$$

Excess Energy when a quark exists.

$$e^{-\beta\Delta F} = \frac{Z(\text{Gluons+Static Quark+Anti-Quark})}{Z(\text{Gluons})}$$
$$= \left\langle L(\vec{x})L^{\dagger}(\vec{y}) \right\rangle$$

Excess Energy when a quark and an anti-quark exist.

Heavy Quark Potential

McLerran and Svetitsky, PRD24, DDDDD

Heavy Quark Potential with Dynamical Quarks

Bielefeld

$$T = 1/N_t a_t$$
$$a_t \to 0 \text{ (continuum limit)} \quad N_t \to A$$

MILC Collaboration, Nf=2+1

hep-lat/0509053

Red Nt=4 Black Nt=6

Y.Aoki et al., hep-lat/0510084

Progress of Lattice Technology (1) - Gauge Fixing and Calculation of Color Dependent Objects -

Color Dependent Potentials

$3 \times 3^* = 1 + 8$

In early days, we measured the "Color-Averaged" Potential, although the color-singlet formulation was given by McLerran and Svetitsky

> Now we can measure "Color-Singlet" Potential.

Color-dependent Potentials (Landau Gauge)

T.Saito and A.Nakamura.

Deconfinement (Disappearing of the confinement potential)

No Bound State

- QED is a Deconfinement theory, but there are Positroniums.
- Mass and Width may change.

Progress of Lattice Technology (2) - Hadrons at finite Temperature -

QCD-Taro Collaboration, Phys.Rev. D63 (2001) 054501, hep-lat/0008005

Spectral Functions at finite T

- Asakawa-Hatsuda
 - ⁻ Phys.Rev.Lett. 92 (2004) 012001
- Umeda et al.
 - Nucl.Phys. A721 (2003) 922
- Datta et al.

- Phys.Rev. D69 (2004) 094507

Progress of Lattice Technology (3) - QCD Simulations at Finite Density -165 quark-gluon plasma 200Fodor & Katz 164 crossover T (MeV) RHIC 150 163 T(MeV)z endpoint hadronic phase 162 order transition 1 st 50 400 100 200 300 0 $m_N/3$ $\mu_{\rm B}$ (MeV) nuclear matter 00 180200 400 600 deForcrand-Philipsen μ (Mev) 175 T/MeV 165 160100 200 400500 $\mu_{\rm B}/{\rm MeV}$

Transport Coefficients

A. Nakamura S.Sakai R.Gupta

- A Step towards Gluon Dynamical Behavior.
- They can be (in principle) calculated by a well established formula (Linear Response Theory).
- They are important to understand QGP which is realized in RHIC (and CERN-SPS) and LHC.

Another Personal Motivation

- Long time ago, when I was young, I was studying in a Lab as a graduate student of Profs.
- Namiko and Ohba. (Prof. Bialas once kindly
- visited and stayed with us.)
- My Supervisor, Prof. Namiki, had studied Landau Hydro-dynamical Model from Field Theory point of view.
- It was the only place at that time in Japan, where the hydro was daily discussed.
- From the Lab came Muroya, Nonaka, Hirano, Morita ... who now actively study the hydrodynamical model.

RHIC-data Big Surprise !

Hydro-dynamical Model describes RHIC data well !

At SPS, the Hydro describes well one-particle distributions,

HBT etc., but fails for the elliptic flow.

Hydro describes well v2

Hydrodynamical calculations are based on Ideal Fluid, i.e., zero shear viscosity.

Or not so surprise ...

- E. Fermi, Prog. Theor. Phys. 5 (1950) 570
 Statistical Model
- S.Z.Belen'skji and L.D.Landau, Nuovo.Cimento Suppl. 3 (1956) 15
 - Criticism of Fermi Model

"Owing to high density of the particles and to strong interaction between them, one cannot really speak of their number."

Hagedorn, Suppl. Nuovo Cim. 3 (1956) 147. Limiting Temperature

Teaney, Phys.Rev. C68 (2003) 034913 (nucl-th/0301099)

 $\tau = \sqrt{t^2 - z^2}$: Time scale of the expansion

Another Big Surprise !

- The Hydrodynamical model assumes zero viscosity, i.e., Perfect Fluid.
- Phenomenological Analyses suggest also small viscosity.

Liquid or Gas ?

Literature (1)

- Iso, Mori and Namiki, Prog. Theor. Phys. 22 (1959) pp.403-429
 - The first paper to analyze the Hydrodyanamical Model from Field Theory.
 - Applicability Conditions were derived:
 - Correlation Length << System Size
 - Relaxation time << Macroscopic Characteristic Time
 - Transport Coefficients must be small

Literature (2)

G. Baym, H. Monien, C. J. Pethick and D. G. Ravenhall,

– Phys. Rev. Lett. 16 (1990) 1867.

- P. Arnold, G. D. Moore and L. G. Yaffe
 JHEP 0011 (2000) 001, (hep-ph/0010177).
 Leading-log results"
- P. Arnold, G. D. Moore and L. G. Yaffe
 JHEP 0305 (2003) 051, (hep-ph/0302165).

- Beyond leading log"

Literature (3)

 Hosoya, Sakagami and Takao, Ann. Phys. 154 (1984) 228.

- Transport Coefficients Formulation

- Hosoya and Kayantie, Nucl. Phys. B250 (1985) 666.
- Horsley and Shoenmaker, Phys. Rev. Lett. 57 (1986) 2894; Nucl. Phys. B280 (1987) 716.
- Karsch and Wyld, Phys. Rev. D35 (1987) 2518.
 The first Lattice QCD Calculation
- Aarts and Martinez-Resco, JHEP0204 (2002)053

- Criticism against the Spectrum Function Ansatz.

- Petreczky and Teaney, hep-ph/0507318
 - Impossible to determine Heavy Quark Transport coefficient

Literature (4)

- Masuda, A.N., Sakai and Shoji Nucl.Phys. B(Proc.Suppl.)42, (1995),526
- A.N., Sakai and Amemiya Nucl.Phys. B(Proc.Suppl.)53, (1997), 432
- A.N, Saito and Sakai Nucl.Phys. B(Proc.Suppl.)63, (1998), 424
- Sakai, A.N. and Saito Nucl.Phys. A638, (1998), 535c
- A.N, Sakai Phys.Rev.Lett. 94 (2005) 072305 hep-lat/0406009

Linear Response Theory

- Zubarev "Non-Equilibrium Statistical Thermodynamics"
- Kubo, Toda and Saito "Statistical Mechanics"

ρ : e^{-A+B} : non-equilibrium statistical operator

$$A = \bigwedge^{\mathsf{v}} d^{3}x \beta (x,t) u^{\mathsf{v}} T_{0\mathsf{v}} (x,t)$$

$$B = \bigwedge^{\mathsf{v}} d^{3}x \bigwedge^{\mathsf{v}}_{A} dt_{1} e^{\varepsilon (t_{1}-t)} T_{\mu\mathsf{v}} (x,t) \partial^{\mu} (\beta (x,t) u^{\mathsf{v}})$$
Using: $e^{-A+B} = e^{-A} + \bigwedge^{\mathsf{v}}_{0} dt e^{At} B e^{-At} e^{-A} + \cdots$

$$0 \approx \rho_{eq} + \bigwedge^{\mathsf{v}}_{0} dt (e^{At} B e^{-At} e^{-A} - \langle B \rangle_{eq}) \rho_{eq}$$

$$\rho_{eq} \$ e^{-A} / \operatorname{Tr} e^{-A} \to \exp(-\beta H) / \operatorname{Tr} e^{-A}$$
in the co-moving frame, $u^{\mu} = (1 \quad 0 \quad 0$

$$\left\langle T^{ij} \right\rangle = \eta \left(\partial^{i} u^{j} + \partial^{j} u^{i} \right) / 2$$

$$\left\langle T^{0i} \right\rangle = -\chi \left(\beta^{-1}(x,t) \partial^{i} \beta + \partial_{\alpha} u^{\alpha} \right)$$

$$\left\langle p \right\rangle - \left\langle p \right\rangle_{eq} = -\zeta \partial_{\alpha} u^{\alpha}$$

$$p \, \varsigma - \frac{1}{3} T^{i}{}_{i}$$

One can show

$$(T_{\mu\nu}(x,t),T_{\rho\sigma}(x',t'))_{eq} = -\beta^{-1} \check{\mathsf{n}}_{A}^{t'} dt \, "\langle T_{\mu\nu}(x,t),T_{\rho\sigma}(x',t'') \rangle_{ret}$$

Transport Coefficients are expressed by Quantities at Equilibrium
$$\eta = - \bigwedge_{A} d^{3}x' \bigwedge_{A}^{t} dt_{1} e^{\varepsilon (t_{1}-t)} \bigwedge_{A}^{\mathbf{v}_{1}} dt' < T_{12}(\vec{x},t)T_{12}(\vec{x}',t') >_{ret}$$

$$\frac{4}{3}\eta + \varsigma = - \bigwedge_{A} d^{3}x' \bigwedge_{A}^{t} dt_{1} e^{\varepsilon (t_{1}-t)} \bigwedge_{A}^{\mathbf{v}_{1}} dt' < T_{11}(\vec{x},t)T_{11}(\vec{x}',t') >$$

$$\chi = - \frac{1}{T} \bigwedge_{A} d^{3}x' \bigwedge_{A}^{t} dt_{1} e^{\varepsilon (t_{1}-t)} \bigwedge_{A}^{\mathbf{v}_{1}} dt' < T_{01}(\vec{x},t)T_{01}(\vec{x}',t') >_{ret}$$

$$\eta : \text{Shear Viscosity} \qquad \boldsymbol{\zeta} : \text{Bulk Viscosity}$$

$$\chi : \text{Heat Conductivity} \implies \text{we do not consider in}$$

$$\frac{T_{\mu\nu}(\vec{x}',t')}{t_{1}} \xrightarrow{T_{\mu\nu}(\vec{x},t)} t_{1}$$

Energy Momentum Tensors $T_{\mu\nu} = 2Tr(F_{\mu\sigma}F_{\nu\sigma} - \frac{1}{4}\delta_{\mu\nu}F_{\rho\sigma}F_{\rho\sigma})$ $(T_{\mu\mu} = 0)$ $U_{uv}(x) = \exp(ia^2 g F_{uv}(x))$ $F_{\mu\nu} = \log U_{\mu\nu} / ia^2 g$ or $F_{\mu\nu} = \left(U_{\mu\nu} - U_{\mu\nu}^{\dagger}\right) / 2ia^2g$

Real Time Green function vs. *Temperature* Green function

$$\text{Hashimoto, A.N. and} \\ \text{Stamatescu,} \\ \text{Nucl.Phys.B400(1993)267} \\ \text{i}\left[\phi\left(t,\vec{x}\right),\phi\left(t',\vec{x}'\right)\right] >> = \frac{1}{Z} \operatorname{Tr}\left(\frac{1}{e}\left[\phi\left(t,\vec{x}\right),\phi\left(t',\vec{x}'\right)\right]e^{-\beta H}\right) \\ = F \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega(t-t')} \Lambda\left(\omega,\vec{p}\right) \\ \phi\left(t,\vec{x}\right) = e^{itH}\phi\left(0,\vec{x}\right)e^{-itH} \\ G_{\beta}^{ret/adv}\left(t,\vec{x};t',\vec{x}'\right) = \pm \theta\left(t-t'/t'-t\right) << \ldots >> \\ = F \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega(t-t')} K_{\beta}^{ret/adv}\left(\omega,\vec{p}\right) \\ \end{array}$$

$$K_{\beta}^{ret/adv}(\omega, \vec{p}) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\Lambda(\omega')}{\omega - \omega' \pm \varepsilon}$$

Temperature Green function

$$\begin{split} G_{\beta} \left(\tau \,, \vec{x}; \tau', \vec{x}' \right) &= \langle \langle T_{\tau} \phi \,(\tau \,, \vec{x}) \phi \,(\tau', \vec{x}') \rangle \rangle \\ \phi \left(t, \vec{x} \right) &= e^{\tau H} \phi \,(0, \vec{x}) e^{-\tau H} \\ G_{\beta} \left(\tau \,, \vec{x}; 0, 0 \right) &= G_{\beta} \left(\tau + \beta \,, \vec{x}; 0, 0 \right) \\ \hat{K}_{\beta} \left(\xi_{n}, \vec{p} \right) &= F^{-1} \int_{0}^{\beta} d\tau \, e^{-i\xi_{n}(\tau - \tau')} G_{\beta} \left(\tau \,, \vec{x}; \tau', \vec{x}' \right) \\ \xi_{n} &= \frac{2\pi}{\beta} n, n = 0, \pm 1, \pm 2, ,, \end{split}$$

Matsubara-frequencies

Abrikosov-Gorkov-Dzyalosinski-Fradkin Theorem

$$\hat{K}_{\beta}\left(\xi_{n}\right) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\Lambda\left(\omega\right)}{\omega - i\xi_{n}} = iK_{\beta}\left(i\xi_{n}\right)$$

Transport Coefficients of QGP

<
$$T_{\mu\nu}$$
 (0) $T_{\mu\nu}$ (τ) >

Convert them (Matsubara Green Functions) to Retarded ones (real time).

Ansatz for the Spectral Functions

We measure Matsubara Green Function on Lattice (in coordinate space).

$$< T_{\mu\nu}(t,\vec{x})T_{\mu\nu}(0) > = G_{\beta}(t,\vec{x}) = F.T.G_{\beta}(\omega_{n},\vec{p})$$
$$G_{\beta}(\vec{p},i\omega_{n}) = \eta d\omega \frac{\rho(\vec{p},\omega)}{i\omega_{n}-\omega}$$

We assume (Karsch-Wyld)

$$\rho = \frac{A}{\pi} \left(\frac{\gamma}{(m-\omega)^2 + \gamma^2} + \frac{\gamma}{(m+\omega)^2 + \gamma^2} \right)$$

and determine three parameters, A, m, γ. We need large Nt !

Some Special Features of Lattice **QCD** at Finite Temperature

High Temperature $\longrightarrow N_{t}a_{t}$: small

Nt=8

Lattice and Statistics

Iwasaki Improved Action $16^3 \times 8$

 β =3.05 : 1333900 sweeps β =3.20 : 1212400 sweeps β =3.30 : 1265500 sweeps

$24^3 \times 8$

 β =3.05 : 61000 sweeps β =3.30 : 84000 sweeps

Results: Shear and Bulk Viscosities

Comparison with Pertubative Calculations

Good for T/Tc>5

$\frac{\eta}{s}$ can have the lower limit ?

- Counter Example by Prof.
 Baym
 - We heat up Billiard Balls which have inter-structure. Then Entropy increases. If the surface of the balls does not change, the Viscosity should be the same.

$$\frac{\eta}{s} \rightarrow 0$$

• We may give Counter-Argument ?

Fluctuations in MC sweeps

Correlators

10⁻⁴

10⁻⁵

10⁻⁶

10⁻⁷

10⁻⁸

G₁₂(t)

2

1

Simulation

Fit

3

Figure 3. Fit of $G_{11}(T)$ by the parameters of spectral function for SU(2) at $\beta = 3.0$

SU(2) Two Definitions:

F=log U

F=U-1

SU(3)

4

Improved Action

5

6

7

8

Errors in U(1), SU(2), SU(3) standard and SU(3) improved

1995 U(1)

1997 SU(2)

1998 SU(3) preliminary

Low Frequency Region in Spectral Function $\rho(\omega)$ is Important

$$\eta = \pi \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}$$
 Horsley and Shoenmaker
($\epsilon \rightarrow 0$) after the Thermo-Dynamics

Long Range in τ of Thermal Green Function < $T_{\mu\nu}$ (0) $T_{\mu\nu}$ (τ) > on the Lattice should be precisely determined.

The finite volume scaling will be required.

Aarts and Martinez-Resco, JHEP0204 (2002)053 Criticism against the Spectrum Function Ansatz. Petreczky and Teaney, hep-ph/0507318 Impossible to determine Heavy Quark Transport

Note that coefficient Non-Equilibrium Calculations are in general subtle.

- Important Regions : ω : 0
 - Physics is in Infra-Red i.e., Themodynamical Limit
- But this is Challenge of Lattice Simulation !

Summary

- We have calculated Transport Coefficients on Nt=8 Lattice. The limitations are
 - Quench Approximation
 - In order to convert Matsubara Green Function to Retarded one, we use Ansatz for Spectral Function with fitting parameters:

$$\rho = \frac{A}{\pi} \left(\frac{\gamma}{(m-\omega)^2 + \gamma^2} + \frac{\gamma}{(m+\omega)^2 + \gamma^2} \right)$$

- Shear Viscosity Positive η / s : 0.1
- Bulk Viscosity ~ 0
- Improved Action helps us a lot to get good Signal/Noise ratio.

Future direction ?

- If we can extract the Spectral Density $\rho(\omega)$ we can get the Transport Coefficients.
 - Maximum Entropy Method by Asakawa, Nakahara and Hatsuda
- We need (probably)
 - Anisotropic Lattice
 - Finite size scaling analysis
- Full QCD ?

or

with Quark Sector even in quench?

We need data at large τ (small ω) with $O\left(\frac{1}{10}\right)$ Errors

• Brute Force ?

 Not so crazy because the next Super-Computer is Peta-Flops Order.

- Good Operator
 - Extended
 - Renormalized

Limitations of the Current Lattice QCD Simulations for RHIC Physics

Spectral Functions

- Quench Approximation

- Transport Coefficients
 Quench Approximation
- Finite Density Simulations
 - Still Quantitative, not yet Qualitative
- Dynamical QCD Simulations

- Not yet with Chiral Fermions

We are the poorest group among Lattice Society But Interesting QGP Physics motivates us go further as possible as we can !

Anyone is welcome to join !

A Report to Andrzej

- Mr. and Mrs. Bialas visited Japan when I was a student. I learned lots from conversations with them.
- One day, Mrs. Bialas told me why you are not married, young gentleman !
- Andrzej was joking, "He is watching us, and has decided not to marry !"

- Andrzej continued, "You may doubt if a married man is happy or not, by watching me and others. But I storongly recommend you to marry some day !"
- Then Mrs. Bials gave me a Polish amber necklace, "This is for your future wife."

Now this necklace is take by my wife.

Backup Slides

Quark–Gluon Plasma

KOHSUKE YAGI, TETSUO HATSUDA, AND YASUO MIAKE

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY

23

- What is the quark-gluon plasma ? Part I Basic Concept of Quark-Gluon Plasma
- Introduction to QCD
- Physics of the quark-hadron phase transition
- Field theory at finite temperature
 - Lattice gauge approach to QCD phase transition
 - Part II Quark-Gluon Plasma in Astrophysics
 - Part III Quark-Gluon Plasma in Relativistic Heavy Ion ollisions

Omeric Ginzer Pieces

Comparison of Lattice with Resonance Gas Model

Karsch, Redlich and Tawfik

Phys.Lett. B571 (2003) 67 Masses in the model are modified to fit Lattice data.

Figure 16: Screening fits to the $Q\bar{Q}$ free energy F(r,T) for $T \ge T_c$ (left) and $T \le T_c$ (right) [28]

T-dependence of binding energy for J/Psi. H.Satz, hep-ph/0512217

Very high Temperature

Entropy Density

We reconstruct *p* from Raw-Data by CP-PACS (Okamoto et al., Phys.Rev.D (1999) 094510)

Spectral Function by Aarts and Resco $\rho(\omega) = \rho^{low}(\omega) + \rho^{high}(\omega)$

Fitting with three parameters, $b_1 c_1 m$ $c_1 < 0$?
Effect of High-Frequency part

$$\rho = \rho^{BW} + \rho^{high}$$

$$\frac{\rho^{low}(\omega)}{T^4} = x \frac{b_1 + b_2 x^2 + \cdots}{1 + c_1 x^2 + c_2 x^4 + \cdots} \qquad x \notin \frac{\omega}{T}$$

$$\rho^{BW} = \frac{A}{\pi} \left(\frac{\zeta}{\zeta} \frac{\gamma}{(m-\omega)^2 + \gamma^2} + \frac{\gamma}{(m+\omega)^2 + \gamma^2} \right)^{\frac{1}{2}}$$

$$\beta = 3.3 \qquad m_{th} \qquad m_{th} = 1.8$$

$$0.00225(201) \qquad A \qquad \rho^{high} \text{ contribution is larger than}$$

$$0.00126(204) \qquad 3.0 \qquad \rho^{BW} \quad \text{at t=1.}$$

Why they are so noisy ?

- RG improved action helps lot.
 - Noise from Lattice Artifact ?
 (Finite *a* correction ?)

 Once we checked that there is not so much difference between

 $F_{\mu\nu} = (U_{\mu\nu} - U_{\mu\nu}^{\dagger})/2i$ and $F_{\mu\nu} = \log U_{\mu\nu}/i$ for SU(2). But we should check it again.

- The situation reminds us Glue-Ball Case. (I thank Ph.deForcrand for discussions on this point.)
- Glue-Ball Correlators = $\left\langle \Box(\tau) \Box(0) \right\rangle$
- Large (extended) Operators work better,

• Mmmm... not works ...

Another Extended Fµv

A Crazy method Source method + Langevin (Parisi)

$$Z(J) = \bigwedge D\phi \ e^{-S + J\phi}$$
$$\langle \phi(x)\phi(y) \rangle = \frac{\delta}{\delta J(x)} \frac{\delta}{\delta J(y)} \log Z(J)$$

Langevin Update

Source

Method

$$\frac{d\phi(x)}{dt} = -\frac{\partial S}{\partial \phi(x)} + \eta$$

Deterministic No Accept-Reject step *t* : Langevin time,

 η : Gaussian Random Numbers

$$\langle \phi(x)\phi(y) \rangle = \frac{\delta}{\delta J(x)} \langle \phi(y) \rangle_{J} = \frac{\langle \phi(y) \rangle_{\varepsilon J} - \langle \phi(y) \rangle_{0}}{\varepsilon}$$

$$\begin{array}{c} \left\langle \phi \left(y \right) \right\rangle_{\varepsilon J} \\ \left\langle \phi \left(y \right) \right\rangle_{0} \end{array}$$

Calculate by Langevin by the same Random Numbers

Namiki et al., Prog.Theor.Phys. 76 (1986) 501 O(3) Non-linear σ -model

In our case, ... (Very very preliminary)

Anisotropic Lattice ?

 Anisotropic lattice has matured and will help us to get more data points to determine the spectral function.

