Intermittency and Constancy

Robi Peschanski
(SPhT, Saclay)
Cracow School of Theoretical Physics XLVI, 2006, Special Session

- 3 Axioms about A.B.

The "Inverse Polish Notation"

- Intermittency

A short story about signal and noise

- Constancy

A long story about friendship

3 Axioms about A.B.

...Using the Inverse Polish Notation

- AXIOM I

You are always considered as an equal (unless you really want to prove not to be)

- AXIOM II

One should be always optimistic (unless you meet somebody too optimistic)

- AXIOM III
A.B. never makes a computation error! (There is NO unless...)

Intermittency

AXIOM I

a)

[^0]
Intermittency
 AXIOM III

FIG. 1
A.B. never makes a computation error!

Intermittency
 AXIOM II

One should be always optimistic

Example of AXIOM II :
 The Factorial Moments

- Signal vs. Noise: $\left\langle k_{i}^{p}\right\rangle \neq\left\langle\rho_{i}^{p}\right\rangle$!

$$
\mathcal{Q}\left(k_{1}, k_{2}, \cdots, k_{m}\right)=\int \mathcal{P}\left(\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right) \times \mathcal{B}\left(k_{1}, \rho_{1} ; \cdots ; k_{m}, \rho_{m}\right)
$$

- Poisson Noise:

$$
\mathcal{B}\left(k_{1}, \rho_{1} ; k_{2}, \rho_{2} ; \cdots ; k_{m}, \rho_{m}\right) \propto \Pi_{i=1}^{m} \frac{\rho_{i}^{k_{i}}}{k_{i}!} d \rho_{i}
$$

- Factorial Moments

$$
\left\langle k_{i}\left(k_{i}-1\right), \cdots,\left(k_{i}-p+1\right)\right\rangle_{\mathcal{Q}} \propto\left\langle\rho_{i}^{p}\right\rangle_{\mathcal{P}}
$$

- Scaled Factorial Moments

$$
\frac{\left\langle k_{i}\left(k_{i}-1\right), \cdots,\left(k_{i}-p+1\right)\right\rangle_{\mathcal{Q}}}{\left\langle k_{i}\right\rangle_{\mathcal{Q}}^{p}} \equiv \frac{\left\langle\rho_{i}^{p}\right\rangle_{\mathcal{P}}}{\left\langle\rho_{i}\right\rangle_{\mathcal{P}}^{p}}
$$

What happened since?

- ~ Nothing during 3 years

Thoughts about 3 referee's reports

- Intermittency after 21 years

Two Sources: Bose-Einstein (eg. A.B.) and PQCD (eg. R.P.)

- (Un)expected Legacy

New Links between QCD and Stochasticity

The Balitskiǐ-Kovchegov Equation

- The Non-Linear BK Equation for \mathcal{T} :

$$
\partial_{Y} \mathcal{T}=\bar{\alpha} \chi_{B F K L}\left(-\partial_{L}\right) \mathcal{T}-\bar{\alpha} \mathcal{T}^{2}
$$

- Equation BK \Rightarrow F-KPP
S.Munier, R.P., 2003,2004

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)+u(t, x)(1-u(t, x))
$$

- "Dictionnary"

$$
\begin{aligned}
\text { Time } & =t \propto Y \\
\text { Space } & =x \propto L+\frac{\bar{\alpha} D}{2} Y \\
\text { Travelling Wave } & =u(t, x) \sim u(t-v x) \propto \mathcal{T}(Y, k)
\end{aligned}
$$

- Intermittency Partition Function:

$$
G(t, x, p) \equiv \sum_{q} \frac{1}{q!}\left\langle\left[-e^{x} \sum_{i=1}^{m(t)} \rho_{i}^{p}\right]^{q}\right\rangle_{\mathcal{P}} \Leftrightarrow 1-u(t, x)
$$

Constancy

A long story about friendship

- AXIOM I

You are always considered as an equal
(I hope I did my best to behave so!)

- AXIOM II

One should be always optimistic (I was/am the too optimistic person)

- AXIOM III
A.B. never makes a computation error! (A good reason to continue collaborating!...)

[^0]: You are always considered as an equal

