Chaotic wave maps coupled to gravity Chaos in General Relativity

Sebastian J. Szybka

Jagellonian University

References

- N. J. Cornish, J. J. Levin, The Mixmaster Universe is Chaotic, Phys. Rev. Lett. 78, 998–1001 (1997)
- P. Bizoń, A. Wasserman, Self-similar spherically symmetric wave maps coupled to gravity, Phys. Rev. D 62, 084031 (2000)
- S. J. Szybka, Chaotic self-similar wave maps coupled to gravity, Phys. Rev. D 69, 084014 (2004)
- P. Bizoń, S. J. Szybka, A. Wasserman, Periodic self-similar wave maps coupled to gravity, Phys. Rev. D 69, 064014 (2004)
- S. J. Szybka, PhD thesis, (2005)
- C. Gundlach, J. M. Martín-García, Kinematics of discretely self-similar spherically symmetric spacetimes, Phys. Rev. D 68, 064019 (2003)

Chaos in dynamical systems

- Chaos in dynamical systems
- Chaos in the context of General Relativity

- Chaos in dynamical systems
- Chaos in the context of General Relativity
 - The chaotic geodesics

- Chaos in dynamical systems
- Chaos in the context of General Relativity
 - The chaotic geodesics
 - Metric chaos

- Chaos in dynamical systems
- Chaos in the context of General Relativity
 - The chaotic geodesics
 - Metric chaos
 - The diffeomorphism invariance, e.g., the Lyapunov exponents do not satisfy general covariance $(t \rightarrow \ln \tau)$

$$\epsilon(t) = \epsilon_0 e^{\lambda t} = \epsilon_0 \tau^{\lambda}$$

- Chaos in dynamical systems
- Chaos in the context of General Relativity
 - The chaotic geodesics
 - Metric chaos
 - The diffeomorphism invariance, e.g., the Lyapunov exponents do not satisfy general covariance $(t \rightarrow \ln \tau)$

$$\epsilon(t) = \epsilon_0 e^{\lambda t} = \epsilon_0 \tau^{\lambda}$$

• The geometric method - fractals

• The action

$$S(X) = \frac{1}{G} \int_{M} \frac{R}{16\pi} - \frac{f_{\pi}^2}{2} \int_{M} (\partial X)^2$$

 $X: M \to N, \ \alpha = 4\pi f_{\pi}^{2}G \ (\text{dimensionless})$ $[(\partial X)^{2}] = [R] = L^{-2}$

• $N = S^3$

- Einstein's equations " $\partial g \sim \alpha(\dots)$ "
- The assumptions: spherical symmetry, self-similarity, equivariance

$$g_{ab} = e^{-2\tau} \hat{g}_{ab}(\rho)$$

● The metric (spherical symmetry and self-similarity)

$$g_{ab} = \exp(-2\tau) \begin{pmatrix} \tilde{A} & \tilde{B} & 0 & 0 \\ \tilde{B} & \tilde{C} & 0 & 0 \\ 0 & 0 & \tilde{F}^2 & 0 \\ 0 & 0 & 0 & \tilde{F}^2 \sin^2 \theta \end{pmatrix},$$

where

$$\begin{split} \tilde{A} &= \frac{\rho^2}{A} \left(1 - W^2 \right), \\ \tilde{B} &= -\frac{\rho}{A}, \\ \tilde{C} &= \frac{1}{A}, \\ \tilde{F} &= \rho \end{split}$$

● The system of ordinary differential equations

$$W' = -1 + \alpha (1 - W^2) D^2,$$

$$D' = 2\alpha W D^3 + \frac{\sin(2F)}{-1 + 2\alpha \sin(F)^2} \left(\alpha D^2 + \frac{1}{1 - W^2} \right),$$

$$F' = D$$

• The regularity conditions (c is discrete)

$$W(0) = 1, \quad D(0) = c, \quad F(0) = \frac{\pi}{2}$$

- Two families
 - type A a naked singularity
 - \checkmark type B an apparent horizon
- At the threshold between A and B, the critical solution type C

Type C solutions (weak coupling)

 $\alpha = 0.38$; type A (c = 2.36134); type B (c = 2.36135).

The bifurcation diagram

The lattice $\Delta \alpha = 10^{-4}$ i $\Delta c = 2 \cdot 10^{-4}$.

The bifurcation diagram

The bifurcation diagram enlarged 1000 times, the lattice $\Delta \alpha = 10^{-4}$ i $\Delta c = 2 \cdot 10^{-4}$.

The bifurcation diagram

The bifurcation diagram enlarged 200000 times, the lattice $\Delta \alpha = 10^{-5}$ i $\Delta c = 10^{-6}$.

Type C solutions

- The methods of construction
 - Straddle trajectories
 - Poincar'e-Lindstedt series (only weak coupling)

Straddle trajectories

The straddle orbit method

Type C solutions (strong coupling)

The C attractor $\alpha = 0.43$.

Type C solutions (strong coupling)

-0.3

0.3

0 W

The projection of the C attractor $\alpha = 0.43$.

Type C solutions (strong coupling)

The C attractor $\alpha = 0.43$.

The autocorrelation function

 $or(D,D)(x) = \int_{-\infty}^{\infty} D(x+\xi)D(\xi)d\xi$

The autocorrelation function $\alpha = 0.42$.

Fractal dimension

• The capacity dimension d

$$d = -\lim_{\epsilon \to 0^+} \frac{\ln N(\epsilon)}{\ln \epsilon}$$

 \checkmark Relation to uncertainty of the phase space f

$$d = D - a,$$

$$f(\epsilon) \sim \epsilon^a$$

in the limit

$$\lim_{\epsilon \to 0} \frac{\ln f(\epsilon)}{\ln \epsilon} = a,$$

where D is a dimension of the phase space

Independence on discretization

Fractal dimension

The slope $a = 0.663 \pm 0.003$ (for $\alpha = 0.4264$) implies $d = 0.337 \pm 0.003$.

The basin boundary for $\alpha = 0.43$.

The fractal basin boundary and horseshoe

The fractal basin boundary and horseshoe

Horseshoe dynamics of wave maps coupled to gravity

Heteroclinic intersection

The transversal intersection of the stable and unstable manifold

Causal structure

- The Carter–Penrose's diagrams
 - The numerical solution a problem
 - The C attractor Poincaré–Lindstedt series (weak coupling)
 - Kinematics of spherically symmetric self-similar space-times
 - The decomposition $g_{ab} = e^{-2\tau} \hat{g}_{ab}$
 - The kinematical and dynamical parts $K(\tau,\rho)=e^{4\tau}\hat{K}(\rho)$

The lowest order of the series

$$W(x) = \alpha^{\frac{3}{2}} \sin \frac{2x}{\sqrt{\alpha}} + 0(\alpha^2),$$
$$A(x) = \frac{1}{2}(1-\alpha) + O(\alpha^2)$$

The metric

$$gabdx^{a}dx^{b} = \frac{2e^{-2\tau}}{1-\alpha} \left(\left(1 - 4\frac{\alpha^{3}|\rho|^{4\alpha+2}}{(1+|\rho|^{4\alpha})^{2}} \right) d\tau^{2} - 2\rho d\tau d\rho + d\rho^{2} + \frac{1-\alpha}{2}\rho^{2}d\Omega^{2} \right)$$

Double null coordinates

$$\Psi_{\pm}(\tau,\rho) = \arctan\left(\frac{2}{\sqrt{1-\alpha^3}}\alpha^{\frac{3}{2}}\arctan\left(\frac{-sgn(\rho)|\rho|^{2\alpha}-\alpha^{\frac{3}{2}}}{\sqrt{1-\alpha^3}}\right) + 2\alpha(\ln|\rho|-\tau)\right)$$

$$\pm \arctan\left(\frac{2}{\sqrt{1-\alpha^3}}\alpha^{\frac{3}{2}}\arctan\left(\frac{+sgn(\rho)|\rho|^{2\alpha}-\alpha^{\frac{3}{2}}}{\sqrt{1-\alpha^3}}\right) + 2\alpha(\ln|\rho|-\tau)\right)$$

The part of the C attractor

The whole C attractor

The part of the C attractor embedde in additional dimension

The part of the C attractor embedde in additional dimension

The C attractor embedde in additional dimension

The table of objects

x	W	A(W,F,D)	object
$x(\rho = 0)$	$+\infty$	+1	regular center
$x(\rho=0)$	0	0 < A < 1	spatial singularity
$x(\rho = +1)$	+1	0 < A < 1	past self-similarity horizon
$x(\rho_A < 0)$	-1	0 < A < 1	future self-similarity horizon
$x(\rho_B > 0)$	+1	0	apparent horizon
$x(\rho=\pm\infty)$	0	0 < A < 1	gluing point

The type A solutions without a spatial singularity.

The type A solutions with a single spatial singularity.

The type A solutions with two spatial singularities.

The type A solutions with two spatial singularities.

The type A solutions with five spatial singularities.

The type B solutions with n spatial singularities.

The type C solution.

The summary

- The strong arguments for existence of chaos
- The causal structure
 - Oscillatory model
 - Chaos is not directly detectable by a physical observer