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Model
Spectral structure

Interactions

Let us consider real scalar field theory in 1+1 dim:

¢—¢"+2¢ (4" -1) =0.
The well known kink solution:
¢s(X) = tanhx

can be perturbed with a small field ¢(x,t) = ¢s(X) + &(X, t).
We can write an equation for ¢:

E+Le+N(E©) =0,
where
82

L= —W+2(3tanh2x—l)

and

N(&) = 6¢s&? + 26°.
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Neglecting the nonlinear part we seek solutions in the form
¢ = e'“xtn(x), where w? = k2 + 4.

Spectral structure of the soluti
@ one translational mode ¢s(X + 6X) = ¢s(X) + X (X) + O(0%x?)

1

=, w:07 k:2|
cosh? x ( )

ne(X)

ukiewicz Jagelloni iversity Cracow, Poland Interaction between top. def. and rad.



Introduction

c Model
Excitation of interna e Spectral structure

Another fractal N Interactions

Neglecting the nonlinear part we seek solutions in the form
¢ = e'“xtn(x), where w? = k2 + 4.

Spectral structure of the soluti

@ one translational mode ¢s(X + 6X) = ¢s(X) + X (X) + O(0%x?)

1 .
n(x) = ———, w=0, (k =2i)
cosh” x
@ one discrete mode
tanh x .
nd(X) = SRR wd = \/ga (k =1)
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Neglecting the nonlinear part we seek solutions in the form
¢ = e'“xtn(x), where w? = k2 + 4.

Spectral structure of the soluti

@ one translational mode ¢s(X + 6X) = ¢s(X) + X (X) + O(0%x?)

1

=, w:07 k:2|
cosh? x ( )

n(x)
@ one discrete mode

tanh x .
nd(X) = G wq = \/§, (k =1)

@ continues spectrum of scattering modes (radiation):

n(x) = e <3tanh2x — 3iktanhx — 3 — k2)
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What is interesting

@ We can excite the oscillational mode causing

o radiation and decay of this mode for small amplitude
[Manton]
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What is interesting

@ We can excite the oscillational mode causing

o radiation and decay of this mode for small amplitude
[Manton]
e creation of two kinks and radiation
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e the translational mode
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What is interesting

@ We can excite the oscillational mode causing

o radiation and decay of this mode for small amplitude
[Manton]
e creation of two kinks and radiation

@ We can reverse the process and create radiation far away
and in that way excite

o the translational mode
e or oscillational mode (asymmetric) and then creation of
kinks
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Let the perturbation ¢ has a form:

1 :
E(x,t) = EAnq(x)e""qt +c.c.
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Kink in monochromatic wave Radiation pressure
Negative radiation pressure - first order

second order

Let the perturbation ¢ has a form:

1 :
E(x,t) = EAnq(x)e""qt +c.c.

How will the kink behave? \

Answer (?) The kink will be pushed by the radiation

We simulate numerically the partial equation with conditions:
P(X,t =0) = ¢s(x), d(x,t=0)=0
#(—L,t) =0, o(L,t) =Asinwgyt
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Kink in monochromatic wave Radiation pressure
Negative radiation pressure - first order

second order

Surprise!
The kink is going toward the source of radiation!
We have "negative radiation pressure”.
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Surprise!

The kink is going toward the source of radiation!

We have "negative radiation pressure”.

The same happens to sine-Gordon model.

But this is not a generic feature. Most models behave "properly”:
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Kink in monochromatic wave Radiation pressure
Negative radiation pressure - first order

second order

Surprise!

The kink is going toward the source of radiation!
We have "negative radiation pressure”.

The same happens to sine-Gordon model.

But this is not a generic feature. Most models behave "properly”:
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What is so special in these theories?

The scattering modes have no reflection part
n(x) = e** (Stanh2 x — 3iktanhx — 3 — k2) ~ Be™™ (x — +00)

kinks are transparent in linear approximation.
The same for sine-Gordon equation (but there is no discrete
oscillational mode).
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What is so special in these theories?

The scattering modes have no reflection part
n(x) = e** (Stanh2 x — 3iktanhx — 3 — k2) ~ Be™™ (x — +00)

kinks are transparent in linear approximation.
The same for sine-Gordon equation (but there is no discrete
oscillational mode).

Reflectionless [Bordag]

All reflectionless spectra for potentials
V(x) = N(N + 1) tanh®x

N = 2 for ¢* and N = 1 for s-G
N — 1 - number of discrete modes
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Negative radiation pressure - first order

second order

We move up to the second order and solve the equation for &.
We seek the solution in the form of a series:

£(x,1) = AEW(x, t) + AZ@ 4 ...

where ¢() = el“aty, (x) 4 c.c. The equation for ¢?) is

A 3 . :
5(2) + Lé‘(z) + Z¢S (ngeZqut + znqn_q + n_qe—leqt) —0.

This is inhomogeneous linear partial equation. We can find a solution
in a form

£® = @) (x)e?ent 1 ¢B(x)e~2unt 4 g2 (x, ).
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(Psngn—qlnt) = (dsmilm) = (dsn’qlm) =0
(because of reflectionless spectrum).

We are interested only in a time dependent part, and since we
already know the solutions of homogeneous equation we can
construct the Green'’s function.

It is quite easy to get the asymptotic form for large |x|:

€@ (x,t) = b (wq) COS(2wqt F kX = 51) + ¢ (2wq ) COS(2wqt + 20X £ 62),

where k = k(q) = y/(2wq)? — 4.

The expressions for b and ¢ are complicated but can be calculated
analytically.
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Kink in monochromatic wave Radiation pressure
Negative radiation pressure - first order

second order

B"q5 O P T A,—g, ()
/// \\
b,~k, 20 : _/_ (I S
«=ANN\N\N\N— N — 4 - — b k 20)
— NN

¢, -2q,20 ¢ -2q, 20

Having these we can write the conservation laws for energy and
momentum inside the large segment and averaged over a period:

QwgA? — quqB? — 2kwq (b2 +b2) = % w1
dt dt
and dp
q2A2 _ QZBZ _ k2 (b% _ bi) _ _a _ _F*
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Kink in monochromatic wave Radiation pressure

Negative radiation pressure - first order
second order

As a solution of this system of equations we obtain the force with
which the kink is being pulled by this radiation:

1.2

[
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Kink in monochromatic wave

Radiation pressure
Negative radiation pressure - first order
second order

We can test our predictions for the minimum:
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Kink in monochromatic wave Radiation pressure

Negative radiation pressure - first order
second order

But for large amplitudes the higher orders are more important:
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Oscillating mode and creation
Creation of pairs and fractal boundary

Simplified theory

Let us take a closer look at the second possible process:

Radiation Oscillational mode

We can simulate this process numerically.
In order to measure the excitation of the osc. mode we calculate the
projection onto our mode:

Ad(t) = (¢ — ¢s|na)

The radiation in linear approx is orthogonal to 7q.

When the creation process occurs instead of a kink an antikink
remains and two kinks are radiated out:

What we see is




Oscillating mode and creation
Creation of pairs and fractal boundary

Excitation of internal degrees
Simplified theory

Example figure:
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Oscillating mode and creation
Excitation of internal degrees Creation of pairs and fractal boundary

Simplified theory

Finally we can present the figure:

-0.2
-04
-0.6
-0.8

-1.2
-14
-1.6

Frequncy o

0.4 0.45 0.5 0.55 0.6 0.65 0.7
Amplitude A

Notice a very complicated (fractal?) critical line for production of
defects.
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Creation of pairs and fractal boundary
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We can measure the fractal diminution:
2logl
= Iim g 5
I—0 log ny

where | - length of a box, n, -number of boxes containing boundary.

2 —e—— :
18} ® 1
[ ) [ ]
[ J
>
% 16} 1
-BSQ .
=
=
& 14t 1
<
N
12| 1
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Oscillating mode and creation
Excitation of internal degrees Creation of pairs and fractal boundary

Simplified theory

Again let us use the second order equation:
§-Le+6g5¢2=0
but now £(x,t) = Ahy (X) coswt + Ag(t)ng(X) + (7).
We substitute the above to our eq. and project onto the oscillational

mode (integrate with 7q):

Ag + wiAq + a(k)A? cos? wt + B(k)AA4 cos wt + yAZ = 0.

nczukiewicz Jagellonian University Cracow, Poland Interaction between top. def. and rad.
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By rescaling we can see there are only three important coefficients:
i + U + u? + g1u cos Qt + g, cos? Qt = 0.

The above eq. is similar to the Mathwieu’s eq. but with nonlinear term
and external force.

The above equations are correct for all double well field th. in 1+1d
(the difference is in « and () where we can expand the potentials into
the Taylor's series (exception: compactons).
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Lite e

Therefore it is interesting to investigate this equation for different g,
and g»:

Stability dla Q=2
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Oscillating mode and creation
Excitation of internal degrees Creation of pairs and fractal boundary

Simplified theory

Or finally we can reproduce the figure:

®

0.582 0.584 0.586 0.588 0.59 0.592
Amplitude A
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Annihilation and scattering of kinks

n-bounce windows
Another fractal example

Matzner studied collision of two kinks.
The kinks can either annihilate creating pseudo-breather (bion,
oscillon) or can be scattered back

v =0.17
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Annihilation and scattering of kin

n-bounce windows
Another fractal example

v =0.26
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Annihilation and scattering of kinks
n-bounce windows

Another fractal example

When v is between 0.18 and 0.26 for certain velocities the kinks can
come beck and reflect once more.
We can observe a narrowing series of two-bounce windows
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Annihilation and scattering of kinks
n-bounce windows

Another fractal example

When v is between 0.18 and 0.26 for certain velocities the kinks can
come beck and reflect once more.

We can observe a narrowing series of two-bounce windows

Each two-bounce window is surrounded by series of narrowing
three-bounce windows.
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Annihilation and scattering of kinks

n-bounce windows
Another fractal example

When v is between 0.18 and 0.26 for certain velocities the kinks can
come beck and reflect once more.

We can observe a narrowing series of two-bounce windows

Each two-bounce window is surrounded by series of narrowing
three-bounce windows.

Each three-bounce window is...
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Annihilation and scattering of kinks
n-bounce windows

Another fractal example

Three-bounce window

v =0.221
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Annihilation and scattering of kinks
n-bounce windows
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