Nonperturbative Yang-Mills from supersymmetry and strings

Or, in the Jungles of Strong Coupling

M. Shifman

with Adi Armoni

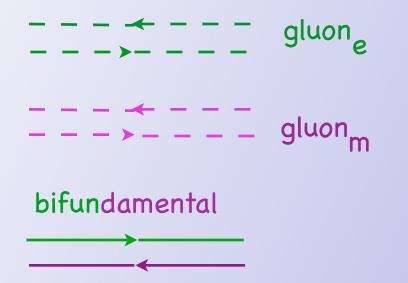
Unlike models whose relevance to nature is? QCD will stay with us

QCD is extremely rich:

- ★ Nuclear Physics
 - * Regge behavior
 - \bigstar QGM: high-T/high μ (neutron stars)
 - Richness of the hadronic world:
- chiral;
- ★ light & heavy quarkonia;
- * exclusive & inclusive phenomena;
- interplay between strong forces & weak interactions...

That's why I do not expect FULL analytic solution to QCD to be found

Orientifold


$$\dot{G} = -\frac{1}{4g^2} G^a_{\mu\nu} G^{\mu\nu a} + \frac{1}{g^2} \bar{\Psi}_{[ij]} (i \not\!\!D) \Psi^{[ij]}$$

Orbifold

$$L = -\frac{1}{4g^{2}} \left\{ \left(G_{\mu\nu}^{a} G^{\mu\nu a} \right)_{e} + \left(G_{\mu\nu}^{a} G^{\mu\nu a} \right)_{m} \right\} + \bar{\Psi}_{i_{e}}^{j_{m}} D_{\mu} \gamma^{\mu} \Psi_{j_{m}}^{i_{e}}$$

SUSY gluodynamics
$$\mathcal{L} = -\frac{1}{4g^2} G^a_{\mu\nu} G^{\mu\nu a} + \frac{i}{g^2} \bar{\lambda}^a_{\dot{\alpha}} D^{\dot{\alpha}\beta} \lambda^a_{\beta}$$

- * SUSY gluodynamics ----- gluon gluino
- * Orientifold
 * O
- * Orbifold

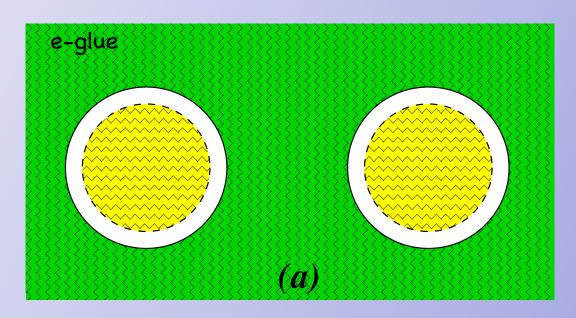
☆ Orientifolding/orbifolding;
 ☆ Large N (planar) limit;
 ☆ Supersymmetry.

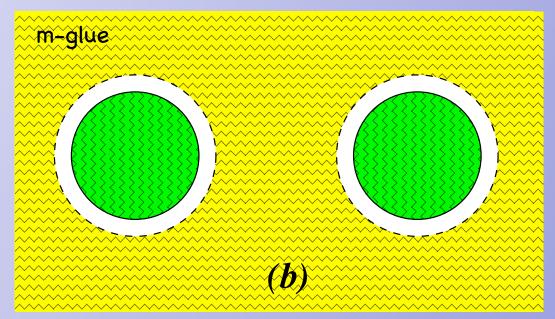
Perturbative planar equivalence proved:

S. Kachru & E. Silverstein, 4-D CONFORMAL THEORIES AND STRINGS ON ORBIFOLDS, 1998 R6 orbifolds + AdS/CFT; from $\mathcal{N}=4$ => distinct (perturbatively) conformal daughters with $\mathcal{N}<4$. Nonpert. hit tachyons!!

A.Lawrence, N.Nekrasov & C.Vafa, ON CONFORMAL FIELD THEORIES IN FOUR-DIMENSIONS, 1998
M.Bershadsky, Z.Kakushadze, Vafa, STRING EXPANSION AS LARGE N EXP. OF GAUGE THEORIES, '98
M.Bershadsky, a. Johansen, LARGE N LIMIT OF ORBIFOLD FIELD THEORIES, 1998
M.Schmaltz, DUALITY OF NONSUPERSYMMETRIC LARGE N GAUGE THEORIES, 1998
A. Armoni and B. Kol, Type-0 String Description of Schmaltz' conjecture

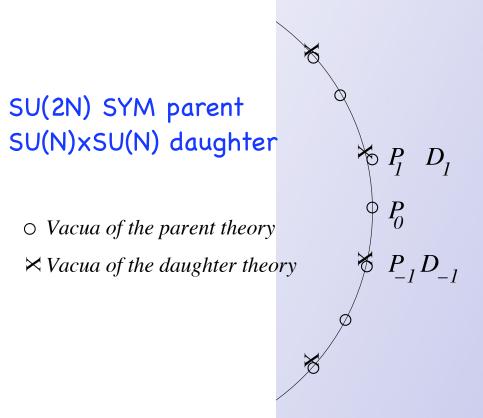
The question of non-perturbative planar equivalence (SUSY<->non-SUSY)[™] raised:

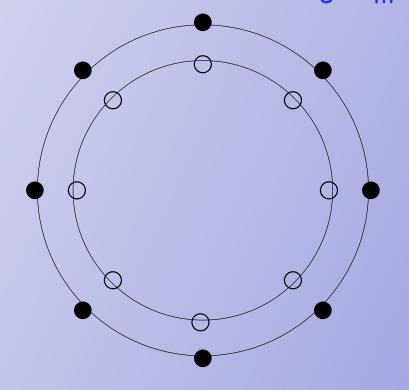

M.Strassler, ON METHODS FOR EXTRACTING EXACT NONPERTURBATIVE RESULTS IN NONSUPERSYMMETRIC GAUGE THEORIES, 2001


Z₂ Orbifold

(Z_N Orbifolds are nonchiral!)

Nonperturbative equivalence holds if and only if Z₂ symmetry e<->m is NOT broken spontaneously!


But, in fact, Z₂
symmetry e<->m IS
broken spontaneously!



Domain walls & vacuum structure:

Genuine vacua in the orbifold theory; $T = F_e^2 - F_m^2$

2-wall (parent) -> e-wall+m-wall (daughter)
1-wall (parent) -> e-wall OR m-wall (unstable!)

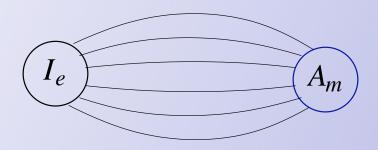
e-wall OR m-walls decay into ——— walls in the twisted sector which has no prototype in the parent theory!

T is the tachyonic operator in dual type-0 string theory

Gravitational anomaly (mis)match:

$$\partial_{\mu}A^{\mu} = -\frac{x}{192\pi^2} R_{\mu\nu\kappa\lambda} \tilde{R}^{\mu\nu\kappa\lambda}$$

If gluon parts of the anomaly are normalized appropriately,


$$x_D/x_P = \sqrt{2}$$

 ${f Z_2}$ is broken. The obvious order parameter is $T\equiv \left(TrF_e^2-TrF_m^2
ight)$

Remarkably, there is another, less obvious order parameter (to leading order in 1/N):

$$\theta^{\mu}_{\mu} = -\frac{3N}{32\pi^2} \sum_{\ell=e,m} \left(F^a_{\mu\nu} F^a_{\mu\nu} \right)_{\ell}$$

Side remark:

Instanton-antiinstanton pair is topologically stable...

Orientifold: nonperturbative planar equivalence (at N=3 we have one-flavor QCD)

Common Sector: SUSY←→Orienti | Glueballs+bifermions+...
Orientifold daughter:

```
* N-2 vacua labeled by \langle \Psi_R | \Psi_L \rangle = -6(N-2)\Lambda^3 e^{2\pi i k/(N-2)} + (1/N \text{ corr.})
```

At N=3 the vacuum is unique (at θ =0): one-flavor QCD

- ** Both theories confine; only composite color-singet hadrons in the spectra.
- ** Orientifold daughter is NOT supersymmetric: $m_B(parent)=O(N^0)$ while $m_B(daughter)=O(N^1)$.

Consequences of planar equivalence for orienti at $N = \infty$:

Usually in non-SUSY
$$\in_{\text{vac}} \sim N^2$$
; in orienti $\in_{\text{vac}} \sim N^1$

Infinite number of degeneracies: e.g. 0⁺ & 0⁻ | 1⁻ & 0⁺ | ...; "BPS" domain walls;

Lightness of σ ; $m_{\sigma}^2 = m_{\eta}^{2}$, $^2(1+O(1/N))$; Calculable quark condensate.

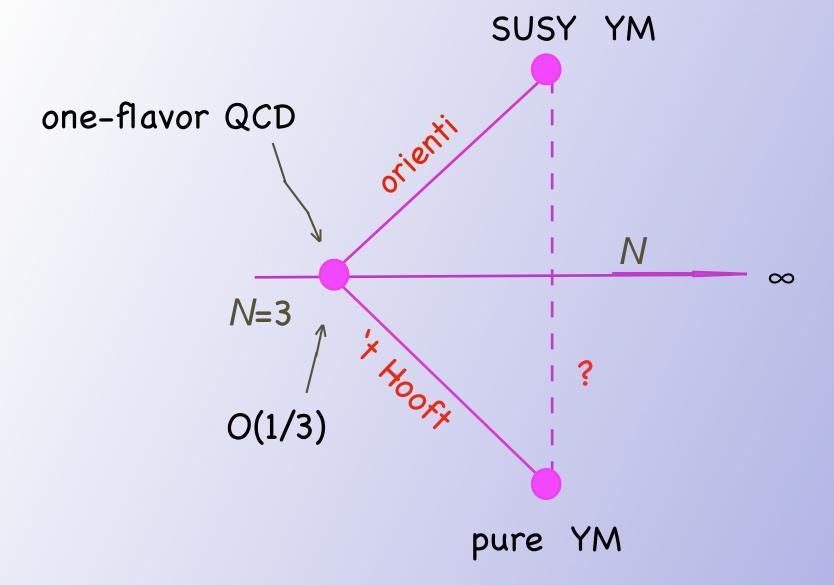
More generally:

* Parent: k "flavors" of adjoint Majoranas

* Daughter: k flavors of $\Psi^{[ij]}$'s

A new "orientifold" large N expansion

4 Hooft: Fundamental Dirac quarks at all N $\Gamma_{
m gl}/\Gamma_{
m qu}\sim N^{-1}$


The same at N=3!

orinexi. Dirac whilip

ax

all

rgl/rqu~N0

Remnants of SUSY in pure Yang-Mills?

Conclusions:

- SUSY gluodynamcs is planar equivalent to non-SUSY orienti;
- \triangle At N=3 we get one-flavor QCD;
- Analytic predictions: spectral degeneracies, condensates,... $\epsilon_{vac} \sim N^1$
- Orientifold large-N expansion (some ideas regarding diquarks; still to be explored!

Conclusions (second): It's the right time to start ...