Soft sector: promises, promises...

 $\forall \epsilon \sim 10 \text{ GeV/fm}^3 >> \epsilon_c \text{ (Bjorken / hydro)}$

• Early thermalization (v2 / hydro)

• $T_{chem} \sim T_H \sim T_c \sim 170 \text{ MeV}$ $\forall \mu_b \sim 30\text{-}40 \text{ MeV}$ -- near baryon free \rightarrow connection to lattice?

- further evolution (P·dV work?) & expansion leading to...
- cooling and bulk collective motion (pT spectra, v2, HBT, K- π)

Can we use an external probe to explore further?

Discovery and Properties: The Ideal Experiment

Can we do the same at RHIC?

But we can get close

June 2005

Fast Partons (Quarks & Gluons) Traversing Matter

- Jets:
 - high-p_T parton produced in a hard (high-Q) scatte
 process
 - Calculable in QCD (at high-p_T)
 - partons fragment into many correlated white had
 - emitted in a cone
 - created <u>early</u> in the collision

June 2005

Fate of jets in heavy ion collisions?

June 2005

The Ubiquitous R_{AA}...

5x fewer high p_T particles than "expected" in AuAu

Required checks:

• saturation (initial-state) effect?

Nuclear overlap model to calculate # incoherent NN collisions (no shadowing etc)

$$\langle T_{AB} \rangle_f = \frac{\int_f T_{AB}(b) \, d^2 b}{\int_f (1 - e^{-\sigma_{NN} T_{AB}(b)}) \, d^2 b} = \frac{\langle N_{coll} \rangle_f}{\sigma_{NN}}$$

 $R_{AA} = (\text{# seen in nuclear collision}) / (\text{# expected})$ $R_{AB} = \frac{dN_{AB}^{P}}{\langle T_{AB} \rangle_{f} \times d\sigma_{NN}^{P}} = \frac{dN_{AB}^{P}}{\langle N_{coll} \rangle_{f} \times dN_{NN}^{P}}$

(PHENIX notation: *f*=centrality cut)

The control experiment: d+Au, 2003

June 2005

Centrality Dependence

- Dramatically different and opposite centrality evolution of Au+Au experiment from d+Au control.
- Jet Suppression is clearly a final state effect.

June 2005

The Ubiquitous R_{AA}...

5x fewer high p_T particles than "expected" in AuAu

Required checks:

- saturation (initial-state) effect?
 - d-Au null result
- hard scattering rates understood?
 - measure "robust" hard processes

Nuclear overlap model to calculate # incoherent NN collisions (no shadowing etc)

$$\langle T_{AB} \rangle_f = \frac{\int_f T_{AB}(b) \, d^2 b}{\int_f (1 - e^{-\sigma_{NN} T_{AB}(b)}) \, d^2 b} = \frac{\langle N_{coll} \rangle_f}{\sigma_{NN}}$$

$$R_{AA} = (\text{# seen in nuclear collision}) / (\text{# expected})$$
$$R_{AB} = \frac{dN_{AB}^{P}}{\langle T_{AB} \rangle_{f} \times d\sigma_{NN}^{P}} = \frac{dN_{AB}^{P}}{\langle N_{coll} \rangle_{f} \times dN_{NN}^{P}}$$

(PHENIX notation: *f*=centrality cut)

Hard non-mesonic ("direct") photons & non-photonic ("charming") electrons

The Ubiquitous R_{AA}...

5x fewer high p_T particles than "expected" in AuAu

Required checks:

- saturation (initial-state) effect?
 - d-Au null result
- hard scattering rates understood?
 - measure "robust" hard processes
 - charm / direct γ follow N_{binary}

Accepted view

 final state effect is partonic energy le in color-charge-dense (not necc. deconfined) medium

 $\forall \epsilon = 15 \text{ GeV/fm}^3 @ \tau = 0.2 \text{ fm}$

• ~ consistent w/ $\epsilon_{_{BJ}}$ and hydro...

June 2005

The Ubiquitous R_{AA} .

5x fewer high p_{T} particles than "expected" in AuAu

Required checks:

- saturation (initial-state) effect?
 - d-Au null result
- hard scattering rates understood?
 - measure "robust"
 - charm / direct γ fo

Accepted view

- final state effect is partonic energy 1 in color-charge-dense (not necc. deconfined) medium
- $\forall \epsilon = 15 \text{ GeV/fm}^3 @ \tau = 0.2 \text{ fm}$
 - ~ consistent w/ ε_{BJ} and hydro...

Beyond leading particles

STAR p+p event

STAR Au+Au event

find this...

...in this

June 2005

Jets via azimuthal correlations

STAR p+p event

Jets via azimuthal correlations

STAR Au+Au event

Try the same in Au-Au (large combinatorics)...

June 2005

Azimuthal distributions in Au+Au

June 2005

Further geometric detail

June 2005

anything new in-between?

Probes *of* the system (hard)

- interesting results
- important open questions

System *itself* (soft)

- interesting/important results
- important open questions

If we bridge the gap ("firm")?

Connecting the sectors

soft-firm connection: v₂

- hydro breaks down above
 ~ 2 GeV/c (expected)
- mass systematic →
 meson/baryon systematic?
 - definitely not hydro!

Connecting the sectors

H_CP

soft-firm connection: v₂

- hydro breaks down above
 ~ 2 GeV/c (expected)
- mass systematic → meson/baryon systematic?
 definitely not hydro!

v2 generated by anisotropic energy loss?

hard-firm connection: R_{AA}

PID-differential → meson/baryon systematic!

BUT!..

June 2005

mike lisa - Cracow School o:

19

Non-hydro / non- ΔE origin of firm v₂?

meson/baryon (i.e. constituent quark number) systematics suggest...

coalescence ("recombination") of
already-flowing (!!) partons (*)

 $v_2^{hadron}(p_T^{hadron}) \gg n v_2^{quark}(p_T^{quark})$

 $p_T^{hadron} \gg n p_T^{quark}$

* well, constituent quarks <u>racow</u> P. Sorensen, SQM04

20

A growth industry...

Many model variants

Lin, Molnar, Pratt, Fries, Bass, Mueller, Ko, Das, Levai, Hwa, Greco, Voloshin, Nonaka...

Many schemes, all describe "anomalous" B/M, R_{AA}, v₂

But, data *themselves* (IMHO) clearly indicate exciting, collective partonic behaviour

Hope for a "hadronization testbed"?

mik B. Mueller TBS05 of 7

"calibrated" probes: final state effect color-dense medium new at RHIC (?) sensible geometrical systematics $\epsilon \sim 10 \epsilon_0$

bulk, collective system $\epsilon \sim 10 \epsilon_0$ $T_{ch} \sim T_C \sim 170 \text{ MeV}; \ \mu_b \sim 30 \text{ MeV}$ $T_{kin} \sim 100 \text{ MeV}, \beta_{flow} \sim 0.7c$

mike lisa

hydro works early thermalization. sensitivity to early-stage EoS

22

high pr