Large-scale QCD at RHIC An *experimental* overview

Mike Lisa The Ohio State Ur

June 2005

Similar but somehow different...

MICHIGAN

122

Dayton de

Cincinnati

KENTUCKY

275

INDIANA

475

Northwest

70

Southwest

Toledo

o Kelleys

Island

71

OHIO

Southeast

Portsmouth

Columbus

Central

Lake Erie

 \odot

271

Millersburg

Zanesville

480

Northeast

0

90

PENNSYUVANIA

680

Wheeling

© ELG Hospitality

Cleveland

Akron

Parkersburg

WEST VIRGINIA

Charleston

Outline - Achievements & Issues in 3 Regimes

June 2005

Cracow School of Theoretical Physics, XLV - Zakopane Poland PHENIX PRL 91 241803 (2003)

Outline - Achievements & Issues in 3 Regimes

$high-p_T$ ("hard") : thin air

- density? deconfinement?
- nuclear modification
- jet quenching

mid-p_T (**"firm"**): the journey

- degrees of freedom?
- non-hydro "flow"
- recombination

low-p_T (**"soft"**) : **base camp**

- bulk? matter? Equ. of State?
- chemistry
- femtoscopy
- collectivity

June 2005

"RHIC is big"

- big facility
- big detectors
- big collaborations
- "big" collisions

as seen by the Landsat-4 satellite...

Nuclear Particle

why on earth study A+A?

R.H.I.C. physics = partonic condensed matter physics even *more* fundamental than electronic C.M. physics

Bulk systems:

Much simpler systems (p+

under study.

- rich new phenomena of fundamental importance
- access physics domains not accessible in small systems
 superconductivity, band gaps, etc

(connection between simple and bulk systems nontrivial & theoretically intractable)

STID

The phase diagram of water

- Analogous graphssuperfluids
- superconductors
- metal/insulator

June 2005

The phase diagram of QCD

Lattice Calculations

June 2005

Bulk Matter

- We must create/compress/heat a **bulk** (geometrically large) system
 - freeze/melt a single H₂0 molecule?
 - fundamental distinction from particle physics
- *Only* achievable through collisions of the heaviest nuclei (Au, Pb) at the highest available energy– at Relativistic Heavy Ion Collider (RHIC)

QuickTime**S** and a YUV420 codec decompressor

1000's of particles produced in *each* collision

Relativistic Heavy Ion Collider (RHIC)

June 2005

Solenoidal Tracker At RHIC

goal: track "all" charged hadrons (bags of quarks) emitted in each collision

One collision seen by STAR TPC

Momentum determined by track curvature in magnetic field...

...and by direction relative to beam

Crudest, day-1 estimate of ε

Cracow School of Theoretical Physics, XLV - Zakopane Poland

Soft sector - ashes of the QGP $_{time (1/T)}$

- high-pT tail ("pQCD") not thermalized
- medium (?) itself decays into low momentum particles ("soft sector")
 - QGP is non-perturbative, low-Q phenomenon (need expt'l info)
 - dynamics difficult but crucial here
- *Is* it a "big" "system/medium"?
 - bulk, collective behaviour
- Thermo properties
 - potentials, temperature (EoS)
- How does it evolve in spacetime?
 - dynamic response to pressure, (EoS) hysics, x

Cracow School of Theoretical Physics, XLV - Zakopane Poland

19

- pp, AuAu described by same T, μ
 - phasespace dominance? / "born" into max entropy?
- differences
 - "strangeness enhancement" (loss of canonical suppression) in AA
- June 200: *measured* short-lived resonance yields suppressed (hadronic rescattering)

Collective motion in p_T spectra

- various experiments agree well
- different spectral shapes for particles of differing mass
 → strong collective radial flow

Thermal motion superimposed on radial flow

E.Schnedermann et al, PRC48 (1993) 2462 F. Retiere & MAL PRC70:044907,2004

June 2005

Kinetic F.O. - p_T spectra

June 2005

Cracow School of Theoretical Physics, XLV - Zakopane Poland

Impact parameter & Reaction plane

Impact parameter vector \vec{b} :

 $g \perp$ beam direction

gconnects centers of colliding nuclei

Impact parameter & Reaction plane

Impact parameter vector \vec{b} :

 $g \perp$ beam direction

gconnects centers of colliding nuclei

Reaction plane: spanned by beam direction and \vec{b}

How do semi-central collisions evolve?

June 2005

How do semi-central collisions evolve?

1) Superposition of independent p+p:

momenta pointed at random relative to reaction plane

2) Evolution as a **bulk** system

Pressure gradients (larger in-plane) push bulk "out" \rightarrow "flow"

more, faster particles seen in-plane

June 2005

Elliptic flow v₂

2) Evolution as a **bulk** <u>system</u>

Pressure gradients (larger in-plane) push bulk "out" \rightarrow "flow"

more, faster particles seen in-plane

symmetry, thermal smearing

 $v_2(p_T,m)$ consistent with anisotropic *velocity* field (i.e. property of *bulk*)

June 2005

Elliptic flow collectivity & consitivity to carby exctom

RHIC energies: the **first** quantitative success of hydrodirect access to EoS (phase transitions, lattice, etc.)

D. Teaney, BerkeleySchool 2005

Hydrodynamic calculation of *system* evolution

June 2005

"El

Βι

• X 6

se

• ev

Cracow School of Theoretical Physics, ALV - Zakopane Poland

⊥ ₩ ₩/c]

/c]

A more direct *geometric* handle?

• elliptic flow $(v_2) \rightarrow$ evidence towards QGP at RHIC

- –accounts for $\sim 1/3$ of RHIC HI experimental papers
- -oblique connection to crucial issue of dynamics/spacetime geometry
- -theoretical (hydro) dynamical evolution: "peering through the mist"

Two particle intensity interferometry: a more direct handle on spacetime

Recent review: MAL, S. Pratt, R. Soltz, U. Wiedemann nucl-ex/0505014

June 2005

Drobing course goometry through interforemetry

HBT: The Bottom line ...

if a pion is emitted, it is more likely to emit another pion *with very similar momentum* if the source is small

> experimentally measuring this enhanced probability: quite challenging

June 2005

 $\cdot \vec{p}_2$

Correlation functions for different colliding systems

(Still amazing to me...) Interferometry probes the smallest scales ever measured !

June 2005

More detailed geometry

Relative momentum between pions is a vector $q = p_1 - p_2$ \rightarrow can extract 3D shape information

> R_{long} – along beam direction R_{out} – along "line of sight" R_{side} – \perp "line of sight"

Source shape

- "observe" the source from all angles relative to the reaction plane
- expect oscillations in radii for non-round sources

June 2005

Measured final source shape

Initial size/shape estimated by Glauber calculation

Why do the radii fall with increasing momentum ??

HBT($\sqrt{s}; p_T, y, |\vec{b}|, \phi_{\ddot{B}}, m_1, m_2, A_{sys}$)

Decreasing $R(p_T)$

- usually attributed to collective flow
- flow integral to our understanding of R.H.I.C.; taken for granted
- femtoscopy the only way to confirm
 x-p correlations impt check

HBT($\sqrt{s}; p_T, y, |\vec{b}|, \phi_{\ddot{B}}, m_1, m_2, A_{sys}$)

- usually attributed to collective flow
- flow integral to our understanding of R.H.I.C.; taken for granted
- femtoscopy the *only* way to confirm
 x-p correlations impt check

Non-flow possibilities

- cooling, *thermally* (not collectively) expanding source
 - combo of x-t and t-p correlations

early times: small, hot source

late times: large, cool source

June 2005

HBT($\sqrt{s}; p_T, y, |\vec{b}|, \phi_{\vec{B}}, m_1, m_2, A_{svs}$)

- usually attributed to collective flow
- flow integral to our understanding of R.H.I.C.; taken for granted
- femtoscopy the *only* way to confirm
 x-p correlations impt check

Non-flow possibilities

- cooling, *thermally* (not collectively) expanding source
 - combo of x-t and t-p correlations

HBT($\sqrt{s}; p_T, y, |\vec{b}|, \phi_{\vec{B}}, m_1, m_2, A_{sys}$)

- usually attributed to collective flow
- flow integral to our understanding of R.H.I.C.; taken for granted
- femtoscopy the *only* way to confirm
 x-p correlations impt check

Non-flow possibilities

- cooling, *thermally* (not collectively) expanding source
 - combo of x-t and t-p correlations
- hot core surrounded by cool shell
 - important ingredient of Buda-Lund hydro picture
 e.g. Csörgő & Lörstad
 PRC54 1390 (1996)

June 2005

HBT($\sqrt{s}; p_T, y, |\vec{b}|, \phi_{\vec{B}}, m_1, m_2, A_{sys}$)

- usually attributed to collective flow
- flow integral to our understanding of R.H.I.C.; taken for granted
- femtoscopy the *only* way to confirm
 x-p correlations impt check

Non-flow possibilities

- cooling, *thermally* (not collectively) expanding source
 - combo of x-t and t-p correlations
- hot core surrounded by cool shell
 - important ingredient of Buda-Lund hydro picture
 e.g. Csörgő & Lörstad
 PRC54 1390 (1996)

(x²)-p correlation: yes(x)-p correlation: yes

Each scenario generates

x-p correlations but...

 $\langle x^2 \rangle$ -p correlation: yes $\langle x \rangle$ -p correlation: no

 $\langle x^2 \rangle$ -p correlation: yes

HBT(\sqrt{s} ; \mathbf{p}_{T} , \mathbf{y} , $|\vec{b}|$, $\phi_{\ddot{\mathbf{p}}}$, \mathbf{m}_{1} , \mathbf{m}_{2} , \mathbf{A}_{sys})

- flow-dominated "models" can reproduce soft-sector x-space observables
 - imply short timescales
- however, are we on the right track? [flow]
 - puzzles? → check your assumptions!
 - look for flow's "special signature" (x)-p correlation
- In flow pictures (BlastWave), low-p_T particles emitted closer to source's center
- non-identical particle correlations (FSI at low ∆v) probe:

$$\frac{\forall \langle (\mathbf{x} - \mathbf{x})^2 \rangle}{\text{Blast-Wave}}$$

R~13 fm, τ ~2,9 fm/c
T~110 MeV, β_{edge} ~0.8

F. Retiere & MAL, PRC70 044907 (2004)

Kaon – pion correlations: dominated by Coulomb interaction

Smaller source \rightarrow stronger (anti)correlation

K-p correlation well-described by:

Blast wave with same parameters as spectra, HBT

But with non-identical particles, we can access more information...

June 2005

Cracow School of Theoretical Physics, XLV - Zakopane Poland

e.g. Lednicky et al Phys. Lett. B373:30–34, 1996

HBT(
$$\sqrt{s}$$
; p_T , y , $|\vec{b}|$, $\phi_{\ddot{B}}$, m_1 , m_2 , A_{sys})

- extracted shift in emission point $\langle x_1 x_2 \rangle$
- boflowtpicturesolowcpaiparticlesaemitted closer to source's center (along "out")
- non-identical particle correlations (FSI at low Δv) probe:

$$\forall \langle (\mathbf{x}_1 - \mathbf{x}_2)^2 \rangle$$
 (as does HBT)
 $\forall \langle \mathbf{x}_1 - \mathbf{x}_2 \rangle$

Cracow School of Theoretical Physics, XLV - Zakopane Poland Kisiel (STAR) QM0447

Initial thoughts for your coffee...

- We are on the right track: The system *is* a system
 - consistent with thermochemical equilibrium
 - chemical freezeout on expected phase boundary
 - $T_{ch} \sim 170 \text{ MeV}; \ \mu_b \sim 30 \text{ MeV}$
 - bulk collective behaviour
 - explosive, anisotropic evolution to $T_{kin} \sim 100$ MeV, $\beta_{flow} \sim 0.7c$
 - momentum- and coordinate-space aspects of flow substructure (x-p)
 - initial versus final size/shape : system evolution
- Ideal hydro works for the first time at RHIC energies
 - evidence for early thermalization
 - mass, p_T systematics well-fit assuming:
 - **EoS** with HG -> QGP PT

 $\forall \varepsilon_{\text{init}} \sim 10 \text{ GeV/fm}^3$

Chemical Freeze-Out Model: Fit Results

Hadron resonance gas + decay effects

M. Kaneta, N. Xu, LBL, 2002 (Thermal Fest BNL 2001 and nucl-ex/0104021)

June 2005

Stages of collision

Chemical freezeout ($T_{ch} \le T_c$): inelastic scattering ceases Kinetic freeze-out ($T_{fo} \le T_{ch}$): elastic scattering ceases