High Energy QCD and Pomeron Loops

Dionysis Triantafyllopoulos

Saclay (CEA/SPhT)

Based on : E. lancu, D.N.T., Nucl. Phys. A 756 (2005) 419, Phys. Lett. B 610 (2005) 253
J.-P. Blaizot, E. Iancu, K. Itakura, D.N.T., Phys. Lett. B 615 (2005) 221
Y. Hatta, E. Iancu, L. McLerran, A. Stasto, D.N.T., hep-ph/0504182

Outline

- Approaches to High Energy QCD $\left(s \rightarrow \infty, \Lambda_{\mathrm{QCD}}^{2} \ll Q^{2} \ll s\right)$
- Color Dipole Picture
- Color Glass Condensate (CGC)- JIMWLK equation
- QCD - Statistical Physics correspondence
- Effective Action, Pomeron Vertices, Reggeized Gluons,...
- Outline:
- The BFKL Pomeron
- Pomeron Mergings, Saturation and the CGC
- The Saturation Momentum
- Pomeron Splittings and Fluctuations
- Pomeron Loops, Evolution Equations at High Energy
- Duality, Effective Hamiltonian
- The Saturation Momentum Revisited

The BFKL Pomeron

- Probe gluon distribution of generic hadron with small color dipole Dipole size : $r^{2}=(\boldsymbol{x}-\boldsymbol{y})^{2} \ll \Lambda_{\mathrm{QCD}}^{-2}$, Gluon momentum : $Q^{2} \sim 4 / r^{2}$

Lowest order in $p Q C D$

The BFKL Pomeron

- Probe gluon distribution of generic hadron with small color dipole Dipole size : $r^{2}=(\boldsymbol{x}-\boldsymbol{y})^{2} \ll \Lambda_{\mathrm{QCD}}^{-2}$, Gluon momentum : $Q^{2} \sim 4 / r^{2}$

One soft gluon: $\alpha_{s} Y$

- $Y=\ln (1 / x)=\ln \left(p^{+} / k^{+}\right)$

The BFKL Pomeron

- Probe gluon distribution of generic hadron with small color dipole Dipole size : $r^{2}=(\boldsymbol{x}-\boldsymbol{y})^{2} \ll \Lambda_{\mathrm{QCD}}^{-2}$, Gluon momentum : $Q^{2} \sim 4 / \boldsymbol{r}^{2}$

Two soft gluons: $\left(\alpha_{s} Y\right)^{2}$

The BFKL Pomeron

- Probe gluon distribution of generic hadron with small color dipole Dipole size : $r^{2}=(\boldsymbol{x}-\boldsymbol{y})^{2} \ll \Lambda_{\mathrm{QCD}}^{-2}$, Gluon momentum : $Q^{2} \sim 4 / r^{2}$

$$
n \text { soft gluons: }\left(\alpha_{s} Y\right)^{n}
$$

- Resum all $\left(\alpha_{s} Y\right)^{n}$ terms when $\alpha_{s} Y \gtrsim 1$

Gluon ladder : BFKL Pomeron

The BFKL Equation (1/3)

- Equivalent to diagram resummation \rightarrow

Write evolution equation for scattering amplitude T

- View soft gluon emission in projectile

At large- N_{c} : Gluon \rightarrow Quark-Antiquark pair
Either daughter dipole can scatter off target

- BFKL Equation (coordinate space)

$$
\frac{\mathrm{d} T_{\boldsymbol{x} \boldsymbol{y}}}{\mathrm{d} Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \underbrace{\mathcal{M}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})}_{\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}}\left[T_{\boldsymbol{x} \boldsymbol{z}}+T_{\boldsymbol{z} \boldsymbol{y}}-T_{\boldsymbol{x} \boldsymbol{y}}\right] \equiv \mathcal{K} \otimes T_{\boldsymbol{x} \boldsymbol{y}}
$$

- Kernel : dipole splitting differential probability

The BFKL Equation (2/3)

Linear evolution \rightsquigarrow Solve eigenvalue problem

- The easy problem: Integrate over impact parameter

$$
\mathcal{K} \otimes r^{2 \gamma}=[2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)] r^{2 \gamma}=\chi_{0}(\gamma) r^{2 \gamma}
$$

- The hard problem: Fixed impact parameter
- Solution: Superposition of (evolved) eigenfunctions Both cases: High energy, fixed r^{2} same eigenvalue dominates Energy dependence in asymptotics

$$
T \sim \alpha_{s} \varphi \sim \alpha_{s}^{2} n \sim \alpha_{s}^{2} \exp \left[\omega_{\mathbb{P}} Y\right]
$$

$\omega_{\mathbb{P}}=4 \bar{\alpha}_{s} \ln 2=\bar{\alpha}_{s} \chi_{0}(1 / 2)=$ hard pomeron intercept

- Exponential increase of gluon distribution φ, dipole density n in target

The BFKL Equation (3/3)

Pathologies of BFKL Equation

- Violation of Unitarity:

Amplitude must satisfy $T(\boldsymbol{r}, \boldsymbol{b}) \leq 1$
Maximal allowed gluon density is

$$
\varphi \sim a^{\dagger} a \sim \mathcal{A}^{2} \lesssim 1 / g^{2} \sim 1 / \alpha_{s}
$$

- Sensitivity to non-perturbative physics:

Transverse coordinates (\sim momenta) not strongly ordered Non-local in transverse coordinates (\sim momentum) kernel \rightsquigarrow Random-walk in $\ln \boldsymbol{r}^{2} \rightsquigarrow$ Diffusion to infrared: $\boldsymbol{r}^{2} \gtrsim 1 / \Lambda_{\mathrm{QCD}}^{2}$ BFKL evolution is not self-consistent

- Next to leading BFKL: resum $\alpha_{s}\left(\alpha_{s} Y\right)^{n}$ terms

Will not save from difficulties
Simply adds $\mathcal{O}\left(\alpha_{s}^{2}\right)$ correction to $\omega_{\mathbb{P}}$

Saturation - Unitarity (1/2)

$\bar{\alpha}_{s} \Delta Y \mathcal{O}\left(\alpha_{s} \varphi\right)$

$$
\bar{\alpha}_{s} \Delta Y \mathcal{O}\left(\alpha_{s}^{2} \varphi^{2}\right)
$$

- Second diagram small in perturbation theory $\varphi \ll 1 / \alpha_{s}$ Equally important at high density $\varphi \sim 1 / \alpha_{s} \rightsquigarrow$ $T^{(2)} \sim T$: Allow both dipoles to scatter

Saturation - Unitarity (1/2)

$\bar{\alpha}_{s} \Delta Y \mathcal{O}\left(\alpha_{s} \varphi\right)$

$$
\bar{\alpha}_{s} \Delta Y \mathcal{O}\left(\alpha_{s}^{2} \varphi^{2}\right)
$$

- Second diagram small in perturbation theory $\varphi \ll 1 / \alpha_{s}$ Equally important at high density $\varphi \sim 1 / \alpha_{s} \rightsquigarrow$ $T^{(2)} \sim T$: Allow both dipoles to scatter
- Third diagram (equiv to second): target evolution Merging of two pomerons
Gluon recombination

Saturation - Unitarity (2/2)

- First Balitsky Equation

$$
\frac{\mathrm{d} T_{\boldsymbol{x} \boldsymbol{y}}}{\mathrm{d} Y}=\mathcal{K}_{\mathrm{BFKL}} \otimes T_{\boldsymbol{x} \boldsymbol{y}}-\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) T_{\boldsymbol{x} \boldsymbol{z} ; \boldsymbol{z} \boldsymbol{y}}^{(2)}
$$

- "Mean field" approximation: closed equation (Kovchegov)

$$
T^{(2)}(\boldsymbol{x} \boldsymbol{z} ; \boldsymbol{z} \boldsymbol{y}) \simeq T(\boldsymbol{x}, \boldsymbol{z}) T(\boldsymbol{z}, \boldsymbol{y})
$$

- Fixed points
- $T=0 \rightsquigarrow$ unstable
- $T=1 \rightsquigarrow$ stable
- Pathologies are cured
- Amplitude satisfies unitarity bound
- Non-linear term cuts diffusion to the infrared
- Saturation line $Q_{s}^{2} \approx \Lambda^{2} \exp \left(\lambda_{s} Y\right)$ where $T\left(r \sim 2 / Q_{s}\right)=\mathcal{O}(1)$ Justifies weak coupling approximation: $\alpha_{s}\left(Q_{s}\right) \ll 1$

The Color Glass Condensate

- Fast moving partons with momentum $p^{+} \rightarrow$ Large lifetime

$$
\Delta x^{+} \sim 1 / p^{-}=2 p^{+} / p^{2}
$$

- Time scale separation:
"Frozen" sources for slow partons with momenta $k^{+}=x p^{+} \ll p^{+}$ Small- x gluons \sim color field radiated by fast partons
- Solve Classical Yang-Mills equation $\rightsquigarrow \mathcal{A}(\rho)$ for given source ρ

$$
\left(D_{\nu} F^{\nu \mu}\right)_{a}(x)=\delta^{\mu+} \rho_{a}\left(x^{-}, x\right) \quad \text { Non - linear }
$$

- Calculate observable $\mathcal{O}(\mathcal{A})=\mathcal{O}(\rho)$

$$
\langle O[\rho]\rangle_{Y}=\int \mathcal{D} \rho W_{Y}[\rho] O[\rho]
$$

$W_{Y}[\rho]=$ probability distribution of color sources at rapidity Y

The JIMWLK Equation (RGE) (1/2)

- Increase rapidity $Y \rightarrow Y+\Delta Y$

Previously slow modes now become fast
Integrate to include them in source
Obtain change of $W_{Y}[\rho]$

- Leading order in $\bar{\alpha}_{s} \ln (1 / x)$

All orders in classical fiels $\mathcal{A}[\rho] \rightsquigarrow$
Resum $\bar{\alpha}_{s} Y$ terms in presence of strong color field

- Still a classical theory at $Y+\Delta Y$

The JIMWLK Equation (RGE) (2/2)

- Renormalization Group Evolution Equation (JIMWLK)

$$
\frac{\partial}{\partial Y} W_{Y}[\rho]=-H\left[\rho, \frac{\mathrm{~d}}{\mathrm{~d} \rho}\right] W_{Y}[\rho]
$$

- Hamiltonian better expressed in terms of (covariant gauge) color field

$$
\alpha\left(x^{-}, \boldsymbol{x}\right) \equiv A^{+}\left(x^{-}, \boldsymbol{x}\right)
$$

$$
H=-\frac{1}{16 \pi^{3}} \int_{u \boldsymbol{v} z} \mathcal{M}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})\left[1+\widetilde{V}_{u}^{\dagger} \widetilde{V}_{v}-\widetilde{V}_{u}^{\dagger} \widetilde{V}_{z}-\widetilde{V}_{z}^{\dagger} \widetilde{V}_{\boldsymbol{v}}\right]^{a b} \frac{\delta}{\delta \alpha_{\infty}^{a}(\boldsymbol{u})} \frac{\delta}{\delta \alpha_{\infty}^{b}(\boldsymbol{v})}
$$

$x^{-} \sim 1 / k^{+} \rightarrow \infty$: "Action" takes place in last layer of longitudinal extent

- Wilson lines arise from propagator of integrated modes

$$
\widetilde{V}_{\boldsymbol{x}}^{\dagger}[\alpha]=\mathrm{P} \exp \left[\mathrm{i} g \int_{-\infty}^{\infty} \mathrm{d} x^{-} \alpha^{a}\left(x^{-}, \boldsymbol{x}\right) T^{a}\right]
$$

The "Observables"

- Hilbert space : Gauge invariant operators built from Wilson lines

$$
\mathcal{O}[\alpha]=\operatorname{tr}\left(V_{\boldsymbol{x}_{1}}^{\dagger} V_{\boldsymbol{x}_{2}} V_{\boldsymbol{x}_{3}}^{\dagger} V_{\boldsymbol{x}_{4}} \ldots\right) \operatorname{tr}\left(V_{\boldsymbol{y}_{1}}^{\dagger} V_{\boldsymbol{y}_{2}} \ldots\right) \ldots
$$

- Indeed: Left moving quark with eikonal trajectory

$$
\bar{\psi}\left(x^{\prime}\right) \gamma^{-} A^{+}\left(x^{\prime}\right) \psi\left(x^{\prime}\right) \rightarrow \delta^{(2)}\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}\right) \delta\left(x^{\prime+}\right) A^{+}\left(x^{\prime}\right)
$$

S-matrix \rightarrow Wilson line in fundamental represenation

- Scatter single dipole off target

$$
\begin{aligned}
S(\boldsymbol{x}, \boldsymbol{y}) & =\frac{1}{N_{c}} \operatorname{tr}\left(V_{\boldsymbol{x}}^{\dagger} V_{\boldsymbol{y}}\right)=1-T(\boldsymbol{x}, \boldsymbol{y}) \\
& =1-\frac{g^{2}}{4 N_{c}}\left[\alpha^{a}(\boldsymbol{x})-\alpha^{a}(\boldsymbol{y})\right]^{2}+\mathcal{O}\left(g^{3}\right) \\
& \equiv 1-T_{0}(\boldsymbol{x}, \boldsymbol{y})+\mathcal{O}\left(g^{3}\right)
\end{aligned}
$$

The Balitsky Equations

- Evolution of observables

$$
\frac{\partial\langle\mathcal{O}\rangle}{\partial Y}=\int \mathcal{D} \alpha W_{Y}[\alpha] H \mathcal{O}=\langle H \mathcal{O}\rangle
$$

- First Balitsky equation

$$
\frac{\partial\left\langle S_{\boldsymbol{x} \boldsymbol{y}}\right\rangle}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int_{\boldsymbol{z}} \mathcal{M}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\left[\left\langle S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{x} \boldsymbol{z}}\right\rangle-\left\langle S_{\boldsymbol{x} \boldsymbol{y}}\right\rangle\right]
$$

- Second Balitsky Equation

$$
\frac{\partial\left\langle S_{x z} S_{z y}\right\rangle}{\partial Y}=\left\langle\frac{\partial S_{x z}}{\partial Y} S_{z y}\right\rangle+\left\langle S_{x z} \frac{\partial S_{z y}}{\partial Y}\right\rangle+\mathcal{O}\left(\frac{\operatorname{tr}(6 V)}{N_{c}^{3}}\right)
$$

- Projectile evolution

One dipole \rightarrow two dipoles \rightarrow three dipoles + non-dipolar state $\rightarrow \cdots$

- Infinite hierarchy, factorization not justified, but consistent at large- N_{c}

The Saturation Momentum (1/3)

- Increase momentum, increase rapidity so that $T=$ const
- Line-1: DGLAP $\gamma \rightarrow 0$
- Line-2: Hard Pomeron Intercept $\gamma=1 / 2$
- Saturation-Line: $0<\gamma_{s}<1 / 2$

The Saturation Momentum (2/3)

- Can we use BFKL dynamics?
- Yes, but put absorptive boundary \rightsquigarrow

Cuts diffusive paths to saturation, mimics non-linear term

- Require constant T and saddle point
- $\chi_{0}\left(\gamma_{s}\right)+\left(1-\gamma_{s}\right) \chi_{0}^{\prime}\left(\gamma_{s}\right)=0 \Rightarrow \gamma_{s}=0.372$
- $T=\left(\frac{Q_{s}^{2}}{Q^{2}}\right)^{1-\gamma_{s}}\left(\ln \frac{Q^{2}}{Q_{s}^{2}}+\mathrm{c}\right) \quad$ "Scaling form"

Exact eigenfunction, valid up to diffusion radius $\sim \sqrt{Y}$ towards UV

- $\lambda_{s} \equiv \frac{\mathrm{~d} \ln Q_{s}^{2}}{\mathrm{~d} Y}=\bar{\alpha}_{s} \frac{\chi_{0}\left(\gamma_{s}\right)}{1-\gamma_{s}}-\frac{3}{2\left(1-\gamma_{s}\right)} \frac{1}{Y}=4.88 \bar{\alpha}_{s}-\frac{2.39}{Y}$
- Confirmed by rigorous analysis of non-linear equations (Calculated $1 / Y^{3 / 2}$ term)
- Full JIMWLK on lattice: Almost same \rightsquigarrow Factorization (at large- N_{c})

The Saturation Momentum (3/3)

- Next to leading BFKL (collinearly improved) + boundary

- Coupling decreases along saturation line \rightsquigarrow Running is dominant effect Analytic expression (Line-c)

$$
\lambda_{s}=\frac{1.80}{\sqrt{\left(Y+Y_{0}\right)}}-\frac{0.893}{\left(Y+Y_{0}\right)^{5 / 6}}
$$

- Full NLO result: Close to phenomenology $\lambda_{s} \simeq 0.3$

Deficiencies of Balitsky-JIMWLK

- Extreme sensitivity to the UV:

Reconstructing solution in two (or more) steps by completeness Contributions from momenta up to $\ln \left(Q^{2} / Q_{s}^{2}\right) \lesssim \sqrt{\bar{\alpha}_{s} \chi_{0}^{\prime \prime}\left(\gamma_{s}\right) Y}$
Embarrassing: Some orders of magnitude in Q^{2}

- Violation of Unitarity (!)
$\mathcal{O}(1) \sim T \sim \frac{1}{\alpha_{s}^{2}} T_{1} T_{2} \quad$ and for $\quad T_{1}<\alpha_{s}^{2}$ then $T_{2}>1$
- Absence of Pomeron splittings:

$$
\frac{\mathrm{d} \alpha^{n}}{\mathrm{~d} Y}=H_{\text {JIMWLK }} \alpha^{n} \sim \underbrace{\alpha \alpha \ldots \alpha}_{\geq 2} \frac{\delta}{\delta \alpha} \frac{\delta}{\delta \alpha} \sim \alpha^{m} \quad \text { with } \quad m \geq n
$$

Two ladders merge, but how could we have them in the first place?

- Nucleus target \rightsquigarrow Many sources \rightsquigarrow Many BFKL pomerons

No more dynamics needed - Initial condition to be lost at high energy

- Pomeron Splittings

The Missing Diagram(s)

- Diagrammatic illustration of splitting

$\bar{\alpha}_{s} \Delta Y \mathcal{O}\left(\alpha_{s}^{2} \varphi^{2}\right)$

$\bar{\alpha}_{s} \Delta Y \mathcal{O}\left(\alpha_{s}^{3} \varphi^{3}\right)$

$\bar{\alpha}_{s} \Delta Y \mathcal{O}\left(\alpha_{s}^{3} \varphi\right)$
- Third diagram not included in JIMWLK
- Important when $\varphi \sim \alpha_{s} \Rightarrow T \sim \alpha_{s}^{2}$, where JIMWLK has problems
- Low density region \rightsquigarrow fluctuations
- "Measure" fluctuations: probe with two dipoles
- First Balitsky equation remains unchanged

The Color Dipole Picture (1/2)

- Evolution of dipole density

$$
\begin{aligned}
\frac{\partial n(\boldsymbol{x}, \boldsymbol{y})}{\partial Y} & =\frac{\bar{\alpha}_{s}}{2 \pi} \int_{\boldsymbol{z}}[-\mathcal{M}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) n(\boldsymbol{x}, \boldsymbol{y})+\mathcal{M}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{y}) n(\boldsymbol{x}, \boldsymbol{z})+\mathcal{M}(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{x}) n(\boldsymbol{z}, \boldsymbol{y})] \\
& \equiv \frac{\bar{\alpha}_{s}}{2 \pi} \int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}} \otimes n(\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

- BFKL Equation for density

The Color Dipole Picture (2/2)

- Evolution of dipole-pair density

$$
\begin{aligned}
\frac{\partial n^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1} ; \boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} & {\left[\int_{\boldsymbol{z}} \mathcal{K}_{\boldsymbol{x}_{1} \boldsymbol{y}_{1} \boldsymbol{z}} \otimes n^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1} ; \boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)\right.} \\
& \left.+\mathcal{M}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{2}, \boldsymbol{x}_{2}\right) n\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{2}\right) \delta^{(2)}\left(\boldsymbol{x}_{2}-\boldsymbol{y}_{1}\right)\right]+1 \leftrightarrow 2
\end{aligned}
$$

- Multi-dipole density equations not consistent with factorization At low density $n^{(2)} \sim n$, rather than $n^{(2)} \sim n^{2}$

Pomeron Splittings

- Measure BOTH child dipoles \rightsquigarrow

Evolution equation for dipole-pair scattering at large- N_{c}

$\left.\frac{\partial T_{\boldsymbol{x}_{1} \boldsymbol{y}_{1} ; \boldsymbol{x}_{2} \boldsymbol{y}_{2}}^{\partial Y}}{\partial Y}\right|_{\text {split }}=\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \frac{\bar{\alpha}_{s}}{2 \pi} \int_{\boldsymbol{u} \boldsymbol{v} \boldsymbol{z}} \mathcal{M}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) \underbrace{\mathcal{A}_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1} \mid \boldsymbol{u}, \boldsymbol{z}\right)}_{\text {Dip-Dip Scatt }} \mathcal{A}_{0}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2} \mid \boldsymbol{z}, \boldsymbol{v}\right) \underbrace{\nabla_{\boldsymbol{u}}^{2} \nabla_{\boldsymbol{v}}^{2} T_{\boldsymbol{u} \boldsymbol{v}}}_{\sim \text { Dip-density }}$

- Low density fluctuations are the seed for higher-point correlations
- Equivalent to Bartels' $1 \rightarrow 2$ Vertex

The (Large- N_{c}) Equations

- At large $-N_{c}$, only $1 \rightarrow 2$ process $\rightsquigarrow T^{(n)} \rightarrow T^{(n+1)}$
- Structure of the Equations (adding large- N_{c} Balitsky)

$$
\begin{aligned}
& \frac{\mathrm{d} T}{\mathrm{~d} Y}=T-T^{(2)} \\
& \frac{\mathrm{d} T^{(2)}}{\mathrm{d} Y}=T^{(2)}-T^{(3)}+T \\
& \cdot \cdot \\
& \frac{\mathrm{~d} T^{(n)}}{\mathrm{d} Y}=\underbrace{T^{(n)}}_{\text {BFKL }}-\underbrace{T^{(n+1)}}_{\text {merging }}+\underbrace{T^{(n-1)}}_{\text {splitting }}
\end{aligned}
$$

- Can be summarized in a Langevin Equation Certain approximations \rightsquigarrow stochastic-FKPP equation

$$
\frac{\mathrm{d} T}{\mathrm{~d} Y}=T-T^{2}+\sqrt{T} \nu \quad \text { with } \quad\left\langle\nu(Y) \nu\left(Y^{\prime}\right)\right\rangle=\delta\left(Y-Y^{\prime}\right)
$$

Pomeron Loops

- Splittings + Mergings \rightarrow Loops

- This is a simple loop

Pomeron Loops will be built through evolution

- On can construct "effective pomeron vertices"

But system is non-linear \rightsquigarrow Need to solve hierarchy

Duality (1/3)

Duality (1/3)

- Merging in target \leftrightarrow splitting in projectile Pomeron Loop manifestly symmetric
- Effective theory with both splittings and mergings is self-dual High density \leftrightarrow Low density or Saturation \leftrightarrow Fluctuation Duality
- Splitting Hamiltonian

$$
\bar{H} \sim \alpha \alpha \underbrace{\frac{\delta}{\delta \alpha} \frac{\delta}{\delta \alpha} \cdots \frac{\delta}{\delta \alpha}}_{\geq 2}
$$

Hamiltonian Approach

- A proposed "splitting" Hamiltonian at large- N_{c}

$$
H_{1 \rightarrow 2}^{\dagger}=-\frac{g^{2}}{16 N_{c}^{3}} \frac{\bar{\alpha}_{s}}{2 \pi} \int_{\boldsymbol{u} \boldsymbol{v} \boldsymbol{z}} \mathcal{M}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) \rho_{\boldsymbol{u}}^{a} \rho_{\boldsymbol{v}}^{a}\left[\frac{\delta}{\delta \rho_{\boldsymbol{u}}^{b}}-\frac{\delta}{\delta \rho_{\boldsymbol{z}}^{b}}\right]^{2}\left[\frac{\delta}{\delta \rho_{\boldsymbol{z}}^{c}}-\frac{\delta}{\delta \rho_{\boldsymbol{v}}^{c}}\right]^{2}
$$

Two $\rho^{\prime} \mathbf{s}$, four $\delta / \delta \rho^{\prime} \mathbf{s} \rightsquigarrow 1 \rightarrow 2$ process

- Charge density is related to dipole density

$$
\rho^{a}(\boldsymbol{x}) \rho^{a}(\boldsymbol{y})=-g^{2} N_{c} \bar{n}(\boldsymbol{x}, \boldsymbol{y})
$$

Acting on $\bar{n}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \bar{n}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right) \rightsquigarrow$ Splitting term in evolution

- Assume two-gluon exchange in scattering

Acting on $T_{0}^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1} ; \boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right) \equiv T_{0}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) T_{0}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$
\rightsquigarrow Splitting term in evolution

Duality (2/3)

- Scattering of two evolved dipoles in two gluon exchange

$$
\langle S\rangle_{Y}=\int \mathcal{D} \alpha_{\mathrm{R}} \mathcal{D} \alpha_{\mathrm{L}} W_{Y-y}\left[\alpha_{\mathrm{R}}\right] W_{y}\left[\alpha_{\mathrm{L}}\right] \underbrace{\exp \left[\mathrm{i} \int_{\boldsymbol{z}} \rho_{\mathrm{L}}^{a}(\boldsymbol{z}) \alpha_{\mathrm{R}}^{a}(\boldsymbol{z})\right]}_{S}
$$

- S symmetric under $\mathrm{R} \leftrightarrow \mathrm{L}$; use $\nabla^{2} \alpha_{\mathrm{R} / \mathrm{L}}=-\rho_{\mathrm{R} / \mathrm{L}}$, integrate by parts
- Lorentz (boost) invariance requires

$$
\frac{\mathrm{d}\langle S\rangle_{Y}}{\mathrm{~d} y}=0 \quad \Rightarrow \quad H\left[\alpha, \frac{\delta}{\mathrm{i} \delta \alpha}\right]=H^{\dagger}\left[\frac{\delta}{\mathrm{i} \delta \rho}, \rho\right]
$$

- Conceptual problem (with no answer):

Splitting in R-wavefunction \leftrightarrow Merging in L-wavefunction This is large- N_{c}, do we understand dipole "recombination"?

Duality (3/3)

- From duality condition

$$
H_{2 \rightarrow 1}^{\dagger}=\frac{g^{2}}{16 N_{c}^{3}} \frac{\bar{\alpha}_{s}}{2 \pi} \int_{\boldsymbol{u} \boldsymbol{v} \boldsymbol{z}} \mathcal{M}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})\left[\alpha_{\boldsymbol{u}}^{a}-\alpha_{\boldsymbol{z}}^{a}\right]^{2}\left[\alpha_{\boldsymbol{u}}^{b}-\alpha_{\boldsymbol{z}}^{b}\right]^{2} \frac{\delta}{\delta \alpha_{\boldsymbol{u}}^{c}} \frac{\delta}{\delta \alpha_{\boldsymbol{v}}^{c}}
$$

- Gives correct equations of motion with Hilbert space T_{0} 's

$$
H_{2 \rightarrow 1}^{\dagger} T_{0}(\boldsymbol{x}, \boldsymbol{y})=\frac{\bar{\alpha}_{s}}{2 \pi} \int_{\boldsymbol{z}} \mathcal{M}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) T_{0}^{(2)}(\boldsymbol{x}, \boldsymbol{z} ; \boldsymbol{z}, \boldsymbol{y})
$$

- Can show that BFKL part H_{0}^{\dagger} is self-dual
- Self-dual Hamiltonian generating correct evolution at large N_{c}

$$
H^{\dagger}=H_{0}^{\dagger}+H_{1 \rightarrow 2}^{\dagger}+H_{2 \rightarrow 1}^{\dagger}
$$

Dual of JIMWLK

- JIMWLK : Expressed in terms of Wilson lines Involves $n \rightarrow 1$ processes with n arbitrary, finite N_{c}
High density limit of full Hamiltonian
- Low density limit of full H is dual of JIMWLK

$$
\frac{\delta}{\mathrm{i} \delta \alpha} \rightarrow \rho, \quad \alpha \rightarrow \frac{\delta}{\mathrm{i} \delta \rho}, \quad x^{-} \rightarrow x^{+}
$$

- Wilson lines, $1 \rightarrow n$ processes, finite N_{c}

$$
\begin{aligned}
\bar{H} & =\frac{1}{16 \pi^{3}} \int_{\boldsymbol{u v z}} \mathcal{M}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) \rho_{\infty}^{a}(\boldsymbol{u}) \rho_{\infty}^{b}(\boldsymbol{v})\left[1+W_{u} W_{\boldsymbol{v}}^{\dagger}-W_{\boldsymbol{u}} W_{\boldsymbol{z}}^{\dagger}-W_{\boldsymbol{z}} W_{\boldsymbol{v}}^{\dagger}\right]^{a b} \\
W_{\boldsymbol{x}} & =\mathrm{P} \exp \left[g \int_{-\infty}^{\infty} \mathrm{d} x^{+} \frac{\delta}{\delta \rho^{a}\left(x^{+}, \boldsymbol{x}\right)} T^{a}\right]
\end{aligned}
$$

- Full Hamiltonian: NOT any simple interpolation of high and low density

Full Hamiltonian (1/2)

$n \rightarrow 1$

$1 \rightarrow n$

$m \longrightarrow n$

- Resume $n \rightarrow m$ in $\bar{\alpha}_{s} \ln (1 / x)$ for arbitrary n, m
- Renormalization group in rapidity (from the beginning)
- $H_{\text {eff }}$ expected to involve both V^{\dagger} and W
- $H_{\text {eff }}$ expected to be dual under $V^{\dagger} \leftrightarrow W$

Full Hamiltonian (2/2)

- $H_{\text {eff }}=\frac{1}{2 \pi g^{2} N_{c}} \int_{x} \operatorname{Tr}\left[V_{\infty}^{\dagger}\left(\partial^{i} W_{-\infty}\right)\left(\partial^{i} V_{-\infty}\right) W_{\infty}^{\dagger}\right]+$ permutations
- Three independent Wilson lines: $V_{\infty}^{\dagger} W_{-\infty} V_{-\infty} W_{\infty}^{\dagger}=1$
- Expand W^{\prime} s to order $g^{2} \rightsquigarrow$ JIMWLK Expand V^{\prime} s to order $g^{2} \rightsquigarrow$ dual of JIMWLK

The Saturation Momentum Reloaded (1/4)

- Splittings in target in dilute region \rightarrow Merging in projectile \rightarrow UV boundary
- Confirmed by analogy to statistical physics Hierarchy \rightsquigarrow Langevin \rightsquigarrow sFKPP \rightsquigarrow cuttof at α_{s}^{2}
- $\Delta=1 /\left(1-\gamma_{s}\right) \ln \left(1 / \alpha_{s}^{2}\right)=$ separation of boundaries Within Δ, amplitude drops from $\mathcal{O}(1)$ to $\mathcal{O}\left(\alpha_{s}^{2}\right)$
- Look for a Y-independent BFKL solution

$$
\left[\chi_{0}\left(1+\frac{\partial}{\partial z}\right)-\lambda_{s} \frac{\partial}{\partial z}\right] T=0, \quad z=\ln \left(Q^{2} / Q_{s}^{2}\right)
$$

- Only real combination satisfying boundary conditions

$$
T \sim \exp \left[-\left(1-\gamma_{\mathrm{r}}\right) z\right] \sin \frac{\pi z}{\Delta}, \quad \gamma_{\mathrm{i}}=\frac{\pi}{\Delta}
$$

The Saturation Momentum Reloaded (2/4)

- Real part γ_{r} uniquely fixed in terms of γ_{i} or Δ or α_{s}

$$
\lambda_{s}=\frac{\chi_{0}(\gamma)}{1-\gamma} \quad \text { with } \quad \operatorname{Im}\left(\lambda_{s}\right)=0
$$

- For large separation of boundaries $\Delta \gg 1 \Leftrightarrow \alpha_{s} \ll 1$

$$
\frac{\lambda_{s}}{\bar{\alpha}_{s}}=\frac{\chi_{0}\left(\gamma_{s}\right)}{1-\gamma_{s}}-\frac{\pi^{2}\left(1-\gamma_{s}\right) \chi_{0}^{\prime \prime}\left(\gamma_{s}\right)}{2 \ln ^{2}\left(\alpha_{s}^{2}\right)}=4.88-\frac{150}{\ln ^{2}\left(\alpha_{s}^{2}\right)}
$$

- Correction: parametrically suppressed, but coefficient huge
- Denominator : "Effective" transverse space (same in single boundary)
- Boundaries in BFKL too sharp

Full equation has well-defined solution for reasonable values of α_{s}

The Saturation Momentum Reloaded (3/4)

- Real part of anomalous dimension: no significant change
- Reduces to $\gamma_{s}=0.372$ when $\Delta \rightarrow \infty$

The Saturation Momentum Reloaded (4/4)

- "Speed" of saturation momentum: significant change
- Positive for reasonable values of coupling: $\lambda_{s}\left(\alpha_{s} \lesssim 0.3\right)>0$ But not really under control: Can change $\alpha_{s} \rightarrow \kappa \alpha_{s}$
- Reduces to $\lambda_{s}=4.88 \bar{\alpha}_{s}$ when $\Delta \rightarrow \infty$

Conclusion-Perspectives

- Evolution equations at high-density and low-density (large- N_{c})
- Pomeron Loops:
- Basic "building block" to reach unitarity
- Free of divergencies
- NO diffusion to IR, NO diffusion to UV (good for numerics)
- More important than Next to Leading-BFKL corrections
- Go beyond multicolor limit (done)
- Self-dual effective theory
- Arbitrary density (semi-done)
- Phenomenology may change even at qualitative level

