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Outline

Approaches to High Energy QCD (s→ ∞, Λ2
QCD ≪ Q2 ≪ s)

Color Dipole Picture

Color Glass Condensate (CGC)- JIMWLK equation

QCD - Statistical Physics correspondence

Effective Action, Pomeron Vertices, Reggeized Gluons,...

Outline:

The BFKL Pomeron

Pomeron Mergings, Saturation and the CGC

The Saturation Momentum

Pomeron Splittings and Fluctuations

Pomeron Loops, Evolution Equations at High Energy

Duality, Effective Hamiltonian

The Saturation Momentum Revisited
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The BFKL Pomeron

Probe gluon distribution of generic hadron with small color dipole
Dipole size : r2 = (x − y)2 ≪ Λ−2

QCD, Gluon momentum : Q2 ∼ 4/r2

Lowest order in pQCD
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The BFKL Pomeron

Probe gluon distribution of generic hadron with small color dipole
Dipole size : r2 = (x − y)2 ≪ Λ−2

QCD, Gluon momentum : Q2 ∼ 4/r2

One soft gluon: αsY

Y = ln(1/x) = ln(p+/k+)
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The BFKL Pomeron

Probe gluon distribution of generic hadron with small color dipole
Dipole size : r2 = (x − y)2 ≪ Λ−2

QCD, Gluon momentum : Q2 ∼ 4/r2

Two soft gluons: (αsY )2
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The BFKL Pomeron

Probe gluon distribution of generic hadron with small color dipole
Dipole size : r2 = (x − y)2 ≪ Λ−2

QCD, Gluon momentum : Q2 ∼ 4/r2

n soft gluons: (αsY )n

Resum all (αsY )n terms when αsY & 1

Gluon ladder : BFKL Pomeron
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The BFKL Equation (1/3)

Equivalent to diagram resummation →
Write evolution equation for scattering amplitude T

View soft gluon emission in projectile
At large-Nc: Gluon → Quark-Antiquark pair
Either daughter dipole can scatter off target

ᾱs∆Y−→ + −

BFKL Equation (coordinate space)

dTxy

dY
=
ᾱs

2π

∫
d2z M(x,y, z)︸ ︷︷ ︸

(x−y)2

(x−z)2(z−y)2

[Txz + Tzy − Txy] ≡ K ⊗ Txy

Kernel : dipole splitting differential probability

D.N. Triantafyllopoulos (Saclay) Cracow School of Theoretical Physics, XLV Course, Zakopane, Poland, June 2005 High Energy QCD and Pomeron Loops – p. 4/35



The BFKL Equation (2/3)

Linear evolution Solve eigenvalue problem

The easy problem: Integrate over impact parameter

K ⊗ r2γ = [2ψ(1) − ψ(γ) − ψ(1 − γ)] r2γ = χ0(γ) r
2γ

The hard problem: Fixed impact parameter

Solution: Superposition of (evolved) eigenfunctions
Both cases: High energy, fixed r2 same eigenvalue dominates
Energy dependence in asymptotics

T ∼ αsϕ ∼ α2
s n ∼ α2

s exp[ωPY ]

ωP = 4ᾱs ln 2 = ᾱsχ0(1/2) = hard pomeron intercept

Exponential increase of gluon distribution ϕ, dipole density n in target
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The BFKL Equation (3/3)

Pathologies of BFKL Equation

Violation of Unitarity:
Amplitude must satisfy T (r, b) ≤ 1

Maximal allowed gluon density is
ϕ ∼ a†a ∼ A2 . 1/g2 ∼ 1/αs

Sensitivity to non-perturbative physics:
Transverse coordinates (∼ momenta) not strongly ordered
Non-local in transverse coordinates (∼ momentum) kernel 
Random-walk in ln r2  Diffusion to infrared: r2 & 1/Λ2

QCD

BFKL evolution is not self-consistent

Next to leading BFKL: resum αs(αsY )n terms
Will not save from difficulties
Simply adds O(α2

s) correction to ωP
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Saturation - Unitarity (1/2)

ᾱs∆YO(αsϕ) ᾱs∆YO(α2
sϕ

2)

Second diagram small in perturbation theory ϕ≪ 1/αs

Equally important at high density ϕ ∼ 1/αs  

T (2) ∼ T : Allow both dipoles to scatter
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Saturation - Unitarity (1/2)

ᾱs∆YO(αsϕ) ᾱs∆YO(α2
sϕ

2)

Second diagram small in perturbation theory ϕ≪ 1/αs

Equally important at high density ϕ ∼ 1/αs  

T (2) ∼ T : Allow both dipoles to scatter

Third diagram (equiv to second): target evolution
Merging of two pomerons
Gluon recombination
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Saturation - Unitarity (2/2)

First Balitsky Equation

dTxy

dY
= KBFKL ⊗ Txy − ᾱs

2π

∫
d2zM(x,y, z)T (2)

xz;zy

“Mean field” approximation: closed equation (Kovchegov)

T (2)(xz; zy) ≃ T (x, z)T (z,y)

Fixed points

T = 0 unstable

T = 1 stable

Pathologies are cured

Amplitude satisfies unitarity bound

Non-linear term cuts diffusion to the infrared

Saturation line Q2
s ≈ Λ2 exp(λsY ) where T (r ∼ 2/Qs) = O(1)

Justifies weak coupling approximation: αs(Qs) ≪ 1
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The Color Glass Condensate

Fast moving partons with momentum p+ → Large lifetime

∆x+ ∼ 1/p− = 2p+/p2

Time scale separation:
“Frozen” sources for slow partons with momenta k+ = xp+ ≪ p+

Small-x gluons ∼ color field radiated by fast partons

Solve Classical Yang-Mills equation A(ρ) for given source ρ

(DνF
νµ)a (x) = δµ+ρa(x−,x) Non − linear

Calculate observable O(A) = O(ρ)

〈O[ρ]〉Y =

∫
DρWY [ρ]O[ρ]

WY [ρ] = probability distribution of color sources at rapidity Y
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The JIMWLK Equation (RGE) (1/2)

Increase rapidity Y → Y + ∆Y

Previously slow modes now become fast
Integrate to include them in source
Obtain change of WY [ρ]

Leading order in ᾱs ln(1/x)

All orders in classical fiels A[ρ] 

Resum ᾱsY terms in presence of strong color field

Still a classical theory at Y + ∆Y
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The JIMWLK Equation (RGE) (2/2)

Renormalization Group Evolution Equation (JIMWLK)

∂

∂Y
WY [ρ] = −H

[
ρ,

d

dρ

]
WY [ρ]

Hamiltonian better expressed in terms of (covariant gauge) color field
α(x−,x) ≡ A+(x−,x)

H = − 1

16π3

∫

uvz

M(u,v, z)
[
1 + Ṽ †

u
Ṽv − Ṽ †

u
Ṽz − Ṽ †

z
Ṽv

]ab δ

δαa
∞(u)

δ

δαb
∞(v)

x− ∼ 1/k+ → ∞: “Action” takes place in last layer of longitudinal extent

Wilson lines arise from propagator of integrated modes

Ṽ †
x
[α] = P exp


i g

∞∫

−∞

dx−αa(x−,x)T a
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The “Observables”

Hilbert space : Gauge invariant operators built from Wilson lines

O[α] = tr
(
V †

x1
Vx2

V †
x3
Vx4

. . .
)
tr

(
V †

y1
Vy2

. . .
)
. . .

Indeed: Left moving quark with eikonal trajectory

ψ̄(x′) γ−A+(x′)ψ(x′) → δ(2)(x′ − x) δ(x′+)A+(x′)

S-matrix → Wilson line in fundamental represenation

Scatter single dipole off target

S(x,y) =
1

Nc
tr

(
V †

x
Vy

)
= 1 − T (x,y)

= 1 − g2

4Nc
[αa(x) − αa(y)]2 + O(g3)

≡ 1 − T0(x,y) + O(g3)
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The Balitsky Equations

Evolution of observables

∂ 〈O〉
∂Y

=

∫
DαWY [α]H O = 〈H O〉

First Balitsky equation

∂ 〈Sxy〉
∂Y

=
ᾱs

2π

∫

z

M(x,y, z) [〈SxzSxz〉 − 〈Sxy〉]

Second Balitsky Equation

∂ 〈SxzSzy〉
∂Y

=

〈
∂Sxz

∂Y
Szy

〉
+

〈
Sxz

∂Szy

∂Y

〉
+ O

(
tr(6V )

N3
c

)

Projectile evolution
One dipole → two dipoles → three dipoles + non-dipolar state → · · ·
Infinite hierarchy, factorization not justified, but consistent at large-Nc
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The Saturation Momentum (1/3)

DGLAP

B
F

K
L

Y

ρ = log(Q2/µ2)

log(1/α2

s)

ωP

2

1−γ0

log 1

αs

Sa
tu

ra
ti

on
 L

in
e

Cr
it

ic
al

 L
in

e

L
i
n
e
-
2

Line-1

T = const
≈ O(1)

T = const
≈ O(α2

s)

T ↓

T ↑

0

Saturation

Increase momentum, increase rapidity so that T = const

Line-1: DGLAP γ → 0

Line-2: Hard Pomeron Intercept γ = 1/2

Saturation-Line: 0 < γs < 1/2
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The Saturation Momentum (2/3)

Can we use BFKL dynamics?

Yes, but put absorptive boundary 
Cuts diffusive paths to saturation, mimics non-linear term

Require constant T and saddle point

χ0(γs) + (1 − γs)χ
′
0(γs) = 0 ⇒ γs = 0.372

T =

(
Q2

s

Q2

)1−γs
(

ln
Q2

Q2
s

+ c

)
“Scaling form”

Exact eigenfunction, valid up to diffusion radius ∼
√
Y towards UV

λs ≡ d lnQ2
s

dY
= ᾱs

χ0(γs)

1 − γs
− 3

2(1 − γs)

1

Y
= 4.88ᾱs −

2.39

Y

Confirmed by rigorous analysis of non-linear equations
(Calculated 1/Y 3/2 term)

Full JIMWLK on lattice: Almost same Factorization (at large-Nc)
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The Saturation Momentum (3/3)

Next to leading BFKL (collinearly improved) + boundary

5 10 15 20 25

0.2

0.4

0.6

0.8

1

a

b

c

d

e

All with running coupling

a. brown
b. green
c. blue
d. magenta
e. black

: L BFKL with
: L BFKL
: L BFKL + boundary
: L RG BFKL + boundary
: NL RG BFKL + boundary

Y0 =0

Coupling decreases along saturation line Running is dominant effect
Analytic expression (Line-c)

λs =
1.80√

(Y + Y0)
− 0.893

(Y + Y0)5/6

Full NLO result: Close to phenomenology λs ≃ 0.3
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Deficiencies of Balitsky-JIMWLK

Extreme sensitivity to the UV:
Reconstructing solution in two (or more) steps by completeness
Contributions from momenta up to ln(Q2/Q2

s) .
√
ᾱsχ

′′

0 (γs)Y

Embarrassing: Some orders of magnitude in Q2

Violation of Unitarity (!)

O(1) ∼ T ∼ 1

α2
s

T1T2 and for T1 < α2
s then T2 > 1

Absence of Pomeron splittings:

dαn

dY
= HJIMWLK α

n ∼ αα...α︸ ︷︷ ︸
≥2

δ

δα

δ

δα
∼ αm with m ≥ n

Two ladders merge, but how could we have them in the first place?

Nucleus target Many sources Many BFKL pomerons
No more dynamics needed - Initial condition to be lost at high energy

Pomeron Splittings
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The Missing Diagram(s)

Diagrammatic illustration of splitting

ᾱs∆YO(α2
sϕ

2) ᾱs∆YO(α3
sϕ

3) ᾱs∆YO(α3
sϕ)

Third diagram not included in JIMWLK

Important when ϕ ∼ αs ⇒ T ∼ α2
s, where JIMWLK has problems

Low density region fluctuations

“Measure” fluctuations: probe with two dipoles

First Balitsky equation remains unchanged
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The Color Dipole Picture (1/2)

Evolution of dipole density

∂ n(x,y)

∂Y
=
ᾱs

2π

∫

z

[
−M(x,y, z)n(x,y) + M(x, z,y)n(x, z) + M(z,y,x)n(z,y)

]

≡ ᾱs

2π

∫

z

Kxyz ⊗ n(x,y)

BFKL Equation for density
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The Color Dipole Picture (2/2)

Evolution of dipole-pair density

∂ n(2)(x1,y1; x2,y2)

∂Y
=
ᾱs

2π

[ ∫

z

Kx1y1z ⊗ n(2)(x1,y1; x2,y2)

+M(x1,y2,x2)n(x1,y2) δ
(2)(x2 − y1)

]
+ 1 ↔ 2

Multi-dipole density equations not consistent with factorization
At low density n(2) ∼ n, rather than n(2) ∼ n2
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Pomeron Splittings

Measure BOTH child dipoles 
Evolution equation for dipole-pair scattering at large-Nc

∂T
(2)
x1y1;x2y2

∂Y

∣∣∣∣
split

=
(αs

2π

)2 ᾱs

2π

∫

uvz

M(u,v, z)A0(x1,y1|u, z)︸ ︷︷ ︸
Dip−Dip Scatt

A0(x2,y2|z,v) ∇2
u
∇2

v
Tuv︸ ︷︷ ︸

∼Dip−density

Low density fluctuations are the seed for higher-point correlations

Equivalent to Bartels’ 1 → 2 Vertex
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The (Large-Nc) Equations

At large-Nc, only 1 → 2 process T (n) → T (n+1)

Structure of the Equations (adding large-Nc Balitsky)

dT

dY
= T − T (2)

dT (2)

dY
= T (2) − T (3) + T

· · ·
dT (n)

dY
= T (n)

︸︷︷︸
BFKL

−T (n+1)
︸ ︷︷ ︸
merging

+T (n−1)
︸ ︷︷ ︸
splitting

Can be summarized in a Langevin Equation
Certain approximations stochastic-FKPP equation

dT

dY
= T − T 2 +

√
T ν with 〈ν(Y )ν(Y ′)〉 = δ(Y − Y ′)
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Pomeron Loops

Splittings + Mergings → Loops

This is a simple loop
Pomeron Loops will be built through evolution

On can construct “effective pomeron vertices"
But system is non-linear Need to solve hierarchy
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Duality (1/3)
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Duality (1/3)

Merging in target ↔ splitting in projectile
Pomeron Loop manifestly symmetric

Effective theory with both splittings and mergings is self-dual
High density ↔ Low density or Saturation ↔ Fluctuation Duality

Splitting Hamiltonian

H̄ ∼ αα
δ

δα

δ

δα
· · · δ

δα︸ ︷︷ ︸
≥2
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Hamiltonian Approach

A proposed “splitting” Hamiltonian at large-Nc

H†
1→2 = − g2

16N3
c

ᾱs

2π

∫

uvz

M(u,v, z) ρa
u
ρa

v

[
δ

δρb
u

− δ

δρb
z

]2 [
δ

δρc
z

− δ

δρc
v

]2

Two ρ′s, four δ/δρ′s 1 → 2 process

Charge density is related to dipole density

ρa(x) ρa(y) = −g2Nc n̄(x,y)

Acting on n̄(x1,y1) n̄(x2,y2) Splitting term in evolution

Assume two-gluon exchange in scattering
Acting on T (2)

0 (x1,y1; x2,y2) ≡ T0(x1,y1)T0(x2,y2)

 Splitting term in evolution
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Duality (2/3)

Scattering of two evolved dipoles in two gluon exchange

〈S〉Y =

∫
DαR DαLWY −y[αR]Wy[αL] exp

[
i

∫

z

ρa
L(z)αa

R(z)

]

︸ ︷︷ ︸
S

• S symmetric under R ↔ L ; use ∇2αR/L = −ρR/L, integrate by parts

Lorentz (boost) invariance requires

d 〈S〉Y
dy

= 0 ⇒ H

[
α,

δ

i δα

]
= H†

[
δ

i δρ
, ρ

]

Conceptual problem (with no answer):
Splitting in R-wavefunction ↔ Merging in L-wavefunction
This is large-Nc, do we understand dipole “recombination”?
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Duality (3/3)

From duality condition

H†
2→1 =

g2

16N3
c

ᾱs

2π

∫

uvz

M(u,v, z) [αa
u
− αa

z
]2[αb

u
− αb

z
]2

δ

δαc
u

δ

δαc
v

Gives correct equations of motion with Hilbert space T0’s

H†
2→1 T0(x,y) =

ᾱs

2π

∫

z

M(x,y, z)T
(2)
0 (x, z; z,y)

Can show that BFKL part H†
0 is self-dual

Self-dual Hamiltonian generating correct evolution at large Nc

H† = H†
0 +H†

1→2 +H†
2→1
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Dual of JIMWLK

JIMWLK : Expressed in terms of Wilson lines
Involves n→ 1 processes with n arbitrary, finite Nc

High density limit of full Hamiltonian

Low density limit of full H is dual of JIMWLK

δ

i δα
→ ρ, α→ δ

i δρ
, x− → x+

Wilson lines, 1 → n processes, finite Nc

H̄ =
1

16π3

∫

uvz

M(u,v, z) ρa
∞(u)ρb

∞(v)
[
1 +WuW

†
v
−WuW

†
z
−WzW

†
v

]ab

Wx = P exp


g

∞∫

−∞

dx+ δ

δρa(x+,x)
T a




Full Hamiltonian: NOT any simple interpolation of high and low density
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Full Hamiltonian (1/2)

n→ 1 1 → n m→ n

Resume n→ m in ᾱs ln(1/x) for arbitrary n, m

Renormalization group in rapidity (from the beginning)

Heff expected to involve both V † and W

Heff expected to be dual under V † ↔W
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Full Hamiltonian (2/2)

t

z

x+x−

x−
=x−

τx+
=x+

τ

V †
∞W †

∞

V−∞ W−∞

Heff =
1

2πg2Nc

∫

x

Tr
[
V †
∞(∂iW−∞)(∂iV−∞)W †

∞

]
+ permutations

Three independent Wilson lines: V †
∞W−∞V−∞W

†
∞ = 1

Expand W ′s to order g2  JIMWLK
Expand V ′s to order g2  dual of JIMWLK
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The Saturation Momentum Reloaded (1/4)

Splittings in target in dilute region → Merging in projectile → UV boundary

Confirmed by analogy to statistical physics
Hierarchy Langevin sFKPP cuttof at α2

s

∆ = 1/(1 − γs) ln(1/α2
s) = separation of boundaries

Within ∆, amplitude drops from O(1) to O(α2
s)

Look for a Y -independent BFKL solution

[
χ0

(
1 +

∂

∂z

)
− λs

∂

∂z

]
T = 0, z = ln(Q2/Q2

s)

Only real combination satisfying boundary conditions

T ∼ exp[−(1 − γr) z] sin
πz

∆
, γi =

π

∆
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The Saturation Momentum Reloaded (2/4)

Real part γr uniquely fixed in terms of γi or ∆ or αs

λs =
χ0(γ)

1 − γ
with Im(λs) = 0

For large separation of boundaries ∆ ≫ 1 ⇔ αs ≪ 1

λs

ᾱs
=
χ0(γs)

1 − γs
− π2(1 − γs)χ

′′
0(γs)

2 ln2(α2
s)

= 4.88 − 150

ln2(α2
s)

Correction: parametrically suppressed, but coefficient huge

Denominator : “Effective” transverse space (same in single boundary)

Boundaries in BFKL too sharp
Full equation has well-defined solution for reasonable values of αs
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The Saturation Momentum Reloaded (3/4)

0.525 0.55 0.575 0.6 0.625 0.65
1-Γr

-0.5

-0.25

0.25

0.5

Γi = Π�D

Real part of anomalous dimension: no significant change

Reduces to γs = 0.372 when ∆ → ∞
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The Saturation Momentum Reloaded (4/4)

0.05 0.1 0.15 0.2 0.25 0.3
Αs

1

2

3

4

5

Λ�Α
��

s

“Speed” of saturation momentum: significant change

Positive for reasonable values of coupling: λs(αs . 0.3) > 0

But not really under control: Can change αs → καs

Reduces to λs = 4.88 ᾱs when ∆ → ∞
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Conclusion-Perspectives

Evolution equations at high-density and low-density (large-Nc)

Pomeron Loops:

Basic “building block” to reach unitarity

Free of divergencies

NO diffusion to IR, NO diffusion to UV (good for numerics)

More important than Next to Leading-BFKL corrections

Go beyond multicolor limit (done)

Self-dual effective theory

Arbitrary density (semi-done)

Phenomenology may change even at qualitative level
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