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Ia. The pendulums



Ib. The pendulums - equations of motion

I Pendulums at the points xi = ia, i = −N,−N + 1, ..., N − 1, N
(N=24.5 in the picture)

I Arm of length R, and a mass m at the free end.
I One degree of freedom per pendulum: the angle Φ(xi , t)

between the vertical direction and the arm. Φ(xi , t) = 0
corresponds to the upward position of the i-th pendulum

I Pendulums are connected by elastic strings, κ characterizes the
elasticity of the string

I |Φi | ≤ Φ0 < π due to the bounding rods (lines)

Equations of motion when N = ∞ and Φ(xi , t) < Φ0:

mR2 d2Φ(xi , t)
dt2 = mgR sin Φ(xi , t)+κ

Φ(xi − a, t) + Φ(xi + a, t)− 2Φ(xi , t)
a

.

(1)
The gravitational force acting on the mass m, and the torque due to
the elastic force from the strings.



Ib. The pendulums - continuum limit

Φ(x , t) : interpolating function of continuous variables x , t .

The identity

Φ(xi−a, t)+Φ(xi+a, t)−2Φ(xi , t) =

∫ a

0
ds1

∫ 0

−a
ds2

∂2Φ(s1 + s2 + x , t)
∂x2

∣∣∣∣∣
x=xi

The limit

a → 0, κ →∞, κa = constans, N →∞

Eqs.(1) are replaced by

mR2 d2Φ(x , t)
dt2 = mgR sin Φ(x , t) + κa

∂2Φ(x , t)
∂x2



Ic. The pendulums - the continuum limit, ctd.

Dimensionless variables:

τ =

√
g
R

t , ξ =

√
mgR
κa

x

∂2Φ(ξ, τ)

∂τ2 − ∂2Φ(ξ, τ)

∂ξ2 − sin Φ(ξ, τ) = 0

when
|Φ(ξ, τ)| < Φ0.

Elastic bouncing from the bounding rods:

∂Φ(ξ, τ)

∂τ
→ −∂Φ(ξ, τ)

∂τ
when Φ(ξ, τ) = ±Φ0.

A. C. Scott (1969): a system of elastically coupled pendulums to
demonstrate sinus-Gordon solitons.
Our system has very different properties due to the bounding rods.



Id. The pendulums - potential and ground states

The corresponding Lagrangian: L = 1
2 (∂τΦ)2 − 1

2 (∂ξΦ)2 − V (Φ),

V (Φ) =

{
cos Φ− 1 for |Φ| ≤ Φ0
∞ for |Φ| > Φ0.

0−φ

φ

0φ

(φ)V

I Two degenerate ground states: Φ = ±Φ0
I Spontaneously broken Z2 symmetry: Φ → −Φ
I Topological sectors
I V ′(±Φ0) 6= 0! - V -shaped potential
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IIa. The compacton

I The ground states Φ = ±Φ0.

I Static topological defect?

Assumption: Φ0 � 1. Then sin Φ ∼= Φ, and

∂2Φ(ξ, τ)

∂τ2 − ∂2Φ(ξ, τ)

∂ξ2 − Φ(ξ, τ) = 0

(when |Φ| < Φ0)

Φc(ξ) =

 −Φ0 if ξ ≤ −ξ0
Φ0 sin ξ if −ξ0 ≤ ξ ≤ ξ0
+Φ0 if ξ ≥ ξ0.

In general case: an elliptic function instead of sin ξ.
Lack of exponential tails! Compacton.
One can combine compactons and anti-compactons (−Φc(ξ)) into a
static chain (because of the zero-range forces)



IIb. The compacton and anti-compacton



IIc. The length of the compacton

-

6
Φ

ξ

ξ0 = 1, 67

Φ0 = 1

−Φ0

−ξ0

The length of the compacton at rest:

L ∼= π

√
κa

mgR

(
1 +

Φ2
0

16
+ . . .

)
when Φ0 � 1, or

L ∼= 2
√

κa
mgR

ln
4

π − Φ0

when Φ0 → π − .



IId. The lack of tails and V ′ 6= 0

∂2
ξΦ− V ′(Φ) = 0,

∂ξΦ =
√

2 (V (Φ)− V (Φ0))

Φ approaches Φ0 :

V (Φ)− V (Φ0) = V ′(Φ0)(Φ− Φ0)

+
1
2

V ′′(Φ0)(Φ− Φ0)
2 +

1
3!

V ′′′(Φ0)(Φ− Φ0)
3 + . . . .

The first term is dominating when Φ → Φ0−.

Φ(ξ) = Φ0 − δΦ(ξ),

where δΦ ≥ 0.
∂ξδΦ = −

√
2|V ′(Φ0)|

√
δΦ.

(V ′(Φ0) is defined as the limit from the side of Φ < Φ0).



IId. The lack of tails and V ′ 6= 0, ctd.

General solution:

δΦ(ξ) ∼=
1
2
|V ′(Φ0)|(ξ0 − ξ)2,

where ξ0 is an arbitrary constant.
The parabolic approach to the ground state value of the field Φ. This
value is reached at ξ = ξ0 exactly.
The parabolic approach is due to the fact that V ′(Φ0) 6= 0.
V ′ < 0 at Φ = Φ0 implies a threshold for a force which could move
pendulum from the bounding line upward - it has to be strong enough.

The well-known exponential tails are obtained when V ′(Φ0) = 0 and
V ′′(Φ0) > 0. In this case

δΦ(ξ) ∼= c0 exp(−
√

V ′′(Φ0)ξ),

c0 is a constant.
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IIIa. The folding transformation

The bouncing condition ⇒ discontinuity of velocities of pendulums.
‘Unfolded’ model: a new model with a field Φ(ξ, τ) such that ∂τΦ is
continuous in τ . Φ can take arbitrary real values.
The relation between Φ and Φ:

0−φ 2φ φφ

φ−φ φ

0 0 0 0

0 0

−2φ



IIIb. The unfolded model

0

V

φ

−φ φ 2φ 3φ
0 0 0

V (Φ) = −
Φ2

0

6

[
1− 12

π2 cos(
π

Φ0
Φ) +

12
π2

∞∑
n=2

(−1)n

n2 cos(
nπ

Φ0
Φ)

]
Non-analytic perturbation of the well-known sinus-Gordon model



IIIc. Spatially homogeneous motions

Φ(τ) :
d2Φ

dτ2 = Φ when |Φ| < Φ0 � 1

In the unfolded model: oscillations around a minimum of V

Φ = Φ0 + Φ0 ε(τ), |ε| < 1

ε̈ = ε− sign(ε)

Nonlinear equation for small oscillations around the ground state!
Solutions:

Φ(τ) = Φm cosh(τ − τ0), 0 < Φm < Φ0.

The reflection from the rod occurs at τr such that Φ(τr ) = Φ0.
Patching such solutions together → solution periodic in τ ,
Tosc = 4 arcosh(Φ0/Φm).
’Flights’ above the potential hills:

Φ(τ) = ±u sinh(τ − τ0),

τ0, u > 0 - constants. The patching yields another periodic (in τ )
solution, Tfl = 4 τq , τq = arsinh(Φ0/u).



IIId. Lorentz boost

’Lorentz’ symmetry of the evolution equation ⇒ the substitution

τ → ζ =
vτ − ξ√
v2 − 1

yields another solution: the infinite wave, periodic in ξ and τ .
v > 1 - the phase velocity, 1/v < 1 - the group velocity
The wave based on one rod:

-

6

ζ

Φ

Φ0

−Φ0



IIIe. Bouncing between two rods

0

φ

φ0

−τ 2τ 3τ

ζ
a b

τq q q q

−φ

ζ =
vτ − ξ√
v2 − 1

Dispersion relations for the waves:

ω2 − k2 = µ2, µ2 ∈ (0,∞).
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IVa. The boundary conditions

The two outermost pendulums are kept in the upward position by an
external force: Φ(x−N , t) = 0, Φ(xN , t) = 0.



IVb. Z2 symmetry breaking transition

When
π2κa

4mgR(aN)2 > 1

Φ = 0 is the stable state!
If this condition is not satisfied, e.g., κa is too small, small
perturbations of the stated Φ = 0 grow exponentially - the system
evolves towards a new stable state.
Then there are two ground states - one just shown, the other follows
from it by the Z2 transformation

Φ → −Φ.

The condition above means that the system is too short to host the
pair 1/2-compacton + 1/2-anticompacton at the boundaries.
Changing κ or R one can trigger the Z2 symmetry breaking transition.
The final state may contain several topological defects.



IVc. Example of the final state



IVd. Radiation from expanded (squized)
1/2-compacton

expanded compacton

↑ position, → time

squized compacton



I.The system of bouncing pendulums

II. Static configurations

III. Periodic waves

IV. Finite size system

V. Summary and remarks



Summary and remarks

I V -shaped potential:
I compactons
I only nonlinear oscillations around the ground states
I transfer of energy to large momentum modes

∗ ∗ ∗

I Interaction of compacton with anti-compacton with precise initial
data (in particular, better fractals)

I Dynamics of Z2 symmetry breaking phase transition (# of
defects)

I Propagation of radiation
I Discrete system of pendulums bouncing from the rods (system

with UV cutoff)
I Quantum version of the model (spectrum)
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