FIELD THEORY WITH A V-SHAPED POTENTIAL

H. Arodź

Institute of Physics, Jagiellonian University

Cracow School of Theoretical Physics Zakopane, 2005

Collaborators: P. Klimas, T. Tyranowski. Based on: Acta Phys. Pol. **B33** (2002) 1241 (nlin.ps/0201001); **B35** (2004) 625 (hep-th/0312036); **B36** (2005) 787 (cond-mat/0501112).

II. Static configurations

III. Periodic waves

IV. Finite size system

II. Static configurations

III. Periodic waves

IV. Finite size system

la. The pendulums

Ib. The pendulums - equations of motion

- ▶ Pendulums at the points $x_i = ia$, i = -N, -N + 1, ..., N 1, N (N=24.5 in the picture)
- Arm of length R, and a mass m at the free end.
- One degree of freedom per pendulum: the angle Φ(x_i, t) between the vertical direction and the arm. Φ(x_i, t) = 0 corresponds to the upward position of the *i*-th pendulum
- Pendulums are connected by elastic strings, κ characterizes the elasticity of the string
- $|\Phi_i| \le \Phi_0 < \pi$ due to the bounding rods (lines)

Equations of motion when $N = \infty$ and $\Phi(x_i, t) < \Phi_0$:

$$mR^{2}\frac{d^{2}\Phi(x_{i},t)}{dt^{2}} = mgR\sin\Phi(x_{i},t) + \kappa \frac{\Phi(x_{i}-a,t) + \Phi(x_{i}+a,t) - 2\Phi(x_{i},t)}{a}$$
(1)

The gravitational force acting on the mass m, and the torque due to the elastic force from the strings.

Ib. The pendulums - continuum limit

 $\Phi(x, t)$: interpolating function of continuous variables x, t. The identity

$$\Phi(x_{i}-a,t)+\Phi(x_{i}+a,t)-2\Phi(x_{i},t)=\int_{0}^{a}ds_{1}\int_{-a}^{0}ds_{2}\frac{\partial^{2}\Phi(s_{1}+s_{2}+x,t)}{\partial x^{2}}\bigg|_{x=x_{i}}$$

Т

The limit

$$a \rightarrow 0, \quad \kappa \rightarrow \infty, \quad \kappa a = constans, \quad N \rightarrow \infty$$

Eqs.(1) are replaced by

$$mR^{2}\frac{d^{2}\Phi(x,t)}{dt^{2}} = mgR\sin\Phi(x,t) + \kappa a\frac{\partial^{2}\Phi(x,t)}{\partial x^{2}}$$

Ic. The pendulums - the continuum limit, ctd.

Dimensionless variables:

$$au = \sqrt{rac{g}{R}} t, \quad \xi = \sqrt{rac{mgR}{\kappa a}} x$$

$$\frac{\partial^2 \Phi(\xi,\tau)}{\partial \tau^2} - \frac{\partial^2 \Phi(\xi,\tau)}{\partial \xi^2} - \sin \Phi(\xi,\tau) = 0$$

when

 $|\Phi(\xi,\tau)| < \Phi_0.$

Elastic bouncing from the bounding rods:

$$rac{\partial \Phi(\xi, au)}{\partial au}
ightarrow - rac{\partial \Phi(\xi, au)}{\partial au} \quad ext{when} \quad \Phi(\xi, au) = \pm \Phi_0$$

A. C. Scott (1969): a system of elastically coupled pendulums to demonstrate sinus-Gordon solitons.

Our system has very different properties due to the bounding rods.

Id. The pendulums - potential and ground states

The corresponding Lagrangian: $L = \frac{1}{2}(\partial_{\tau}\Phi)^2 - \frac{1}{2}(\partial_{\xi}\Phi)^2 - V(\Phi),$

$$V(\Phi) = \left\{ egin{array}{ccc} \cos \Phi - 1 & {
m for} & |\Phi| \leq \Phi_0 \ \infty & {
m for} & |\Phi| > \Phi_0. \end{array}
ight.$$

- Two degenerate ground states: $\Phi = \pm \Phi_0$
- Spontaneously broken Z_2 symmetry: $\Phi \rightarrow -\Phi$
- Topological sectors
- ► $V'(\pm \Phi_0) \neq 0!$ V-shaped potential

II. Static configurations

III. Periodic waves

IV. Finite size system

Ila. The compacton

- The ground states $\Phi = \pm \Phi_0$.
- Static topological defect?

Assumption: $\Phi_0 \ll 1$. Then sin $\Phi \cong \Phi$, and

$$\frac{\partial^2 \Phi(\xi,\tau)}{\partial \tau^2} - \frac{\partial^2 \Phi(\xi,\tau)}{\partial \xi^2} - \Phi(\xi,\tau) = \mathbf{0}$$

(when $|\Phi| < \Phi_0$)

$$\Phi_c(\xi) = \begin{cases} -\Phi_0 & \text{if} \quad \xi \leq -\xi_0 \\ \Phi_0 \sin \xi & \text{if} \quad -\xi_0 \leq \xi \leq \xi_0 \\ +\Phi_0 & \text{if} \quad \xi \geq \xi_0. \end{cases}$$

In general case: an elliptic function instead of $\sin \xi$. Lack of exponential tails! Compacton.

One can combine compactons and anti-compactons $(-\Phi_c(\xi))$ into a static chain (because of the zero-range forces)

IIb. The compacton and anti-compacton

IIc. The length of the compacton

The length of the compacton at rest:

$$L \cong \pi \sqrt{\frac{\kappa a}{mgR}} \left(1 + \frac{\Phi_0^2}{16} + \ldots \right)$$

when $\Phi_0 \ll 1,$ or

$$L \cong 2\sqrt{rac{\kappa a}{mgR}} \ln rac{4}{\pi - \Phi_0}$$

when $\Phi_0 \rightarrow \pi -$.

IId. The lack of tails and $V' \neq 0$

$$\partial_{\xi}^2 \Phi - V'(\Phi) = 0,$$

 $\partial_{\xi} \Phi = \sqrt{2 \left(V(\Phi) - V(\Phi_0) \right)}$

 Φ approaches Φ_0 :

$$egin{aligned} V(\Phi) - V(\Phi_0) &= V'(\Phi_0)(\Phi - \Phi_0) \ &+ rac{1}{2}\,V''(\Phi_0)(\Phi - \Phi_0)^2 + rac{1}{3!}\,V'''(\Phi_0)(\Phi - \Phi_0)^3 + \dots. \end{aligned}$$

The first term is dominating when $\Phi \to \Phi_0 -.$

$$\Phi(\xi) = \Phi_0 - \delta \Phi(\xi),$$

where $\delta \Phi \geq 0$.

$$\partial_{\xi}\delta\Phi = -\sqrt{2|V'(\Phi_0)|}\sqrt{\delta\Phi}.$$

 $(\textit{V}'(\Phi_0) \text{ is defined as the limit from the side of } \Phi < \Phi_0).$

IId. The lack of tails and $V' \neq 0$, ctd.

General solution:

$$\delta \Phi(\xi) \cong \frac{1}{2} |V'(\Phi_0)| (\xi_0 - \xi)^2,$$

where ξ_0 is an arbitrary constant.

The parabolic approach to the ground state value of the field Φ . This value is reached at $\xi = \xi_0$ exactly.

The parabolic approach is due to the fact that $V'(\Phi_0) \neq 0$.

V' < 0 at $\Phi = \Phi_0$ implies a threshold for a force which could move pendulum from the bounding line upward - it has to be strong enough.

The well-known exponential tails are obtained when $V'(\Phi_0) = 0$ and $V''(\Phi_0) > 0$. In this case

$$\delta \Phi(\xi) \cong c_0 \exp(-\sqrt{V''(\Phi_0)}\xi),$$

 c_0 is a constant.

II. Static configurations

III. Periodic waves

IV. Finite size system

IIIa. The folding transformation

The bouncing condition \Rightarrow discontinuity of velocities of pendulums. 'Unfolded' model: a new model with a field $\underline{\Phi}(\xi, \tau)$ such that $\partial_{\tau} \underline{\Phi}$ is continuous in τ . $\underline{\Phi}$ can take arbitrary real values. The relation between Φ and Φ :

IIIb. The unfolded model

Non-analytic perturbation of the well-known sinus-Gordon model

IIIc. Spatially homogeneous motions

$$\Phi(au): \qquad rac{d^2 \Phi}{d au^2} = \Phi \quad ext{when} \quad |\Phi| < \Phi_0 \ll 1$$

In the unfolded model: oscillations around a minimum of \underline{V}

$$egin{aligned} & \underline{\Phi} = \Phi_0 + \Phi_0 \ \epsilon(au), \quad |\epsilon| < 1 \ & \hline \ddot{\epsilon} = \epsilon - {
m sign}(\epsilon) \end{aligned}$$

Nonlinear equation for small oscillations around the ground state! Solutions:

$$\Phi(\tau) = \Phi_m \cosh(\tau - \tau_0), \quad 0 < \Phi_m < \Phi_0.$$

The reflection from the rod occurs at τ_r such that $\Phi(\tau_r) = \Phi_0$. Patching such solutions together \rightarrow solution periodic in τ , $T_{osc} = 4 \operatorname{arcosh}(\Phi_0/\Phi_m)$. 'Flights' above the potential hills:

$$\Phi(\tau) = \pm u \sinh(\tau - \tau_0),$$

 $\tau_0, u > 0$ - constants. The patching yields another periodic (in τ) solution, $T_{fl} = 4 \tau_q$, $\tau_q = \operatorname{arsinh}(\Phi_0/u)$.

IIId. Lorentz boost

'Lorentz' symmetry of the evolution equation \Rightarrow the substitution

$$\tau \to \zeta = \frac{\mathbf{v}\tau - \xi}{\sqrt{\mathbf{v}^2 - 1}}$$

yields another solution: the infinite wave, periodic in ξ and τ . v > 1 - the phase velocity, 1/v < 1 - the group velocity The wave based on one rod:

IIIe. Bouncing between two rods

Dispersion relations for the waves:

$$\omega^2 - k^2 = \mu^2, \quad \mu^2 \in (0,\infty).$$

II. Static configurations

III. Periodic waves

IV. Finite size system

IVa. The boundary conditions

The two outermost pendulums are kept in the upward position by an external force: $\Phi(x_{-N}, t) = 0$, $\Phi(x_N, t) = 0$.

IVb. Z₂ symmetry breaking transition

When

$$rac{\pi^2\kappa a}{4mgR(aN)^2}>1$$

$\Phi = 0$ is the stable state!

If this condition is not satisfied, e.g., κa is too small, small perturbations of the stated $\Phi = 0$ grow exponentially - the system evolves towards a new stable state.

Then there are two ground states - one just shown, the other follows from it by the Z_2 transformation

 $\Phi \to -\Phi.$

The condition above means that the system is too short to host the pair 1/2-compacton + 1/2-anticompacton at the boundaries. Changing κ or R one can trigger the Z_2 symmetry breaking transition. The final state may contain several topological defects.

IVc. Example of the final state

IVd. Radiation from expanded (squized) 1/2-compacton

 \uparrow position, \rightarrow time

II. Static configurations

III. Periodic waves

IV. Finite size system

Summary and remarks

- V-shaped potential:
 - compactons
 - only nonlinear oscillations around the ground states
 - transfer of energy to large momentum modes

* * *

- Interaction of compacton with anti-compacton with precise initial data (in particular, better fractals)
- Dynamics of Z₂ symmetry breaking phase transition (# of defects)
- Propagation of radiation
- Discrete system of pendulums bouncing from the rods (system with UV cutoff)
- Quantum version of the model (spectrum)