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Goals

Study QFT extended objects — solitons, domain walls, etc. –

in a quantitative, practical way. For example, compute the

energy of a static field configuration, to implement variational

search for quantum solitons.

Requirements:

� Unambiguous treatment of renormalization. Quantum field
theory has divergences, which are cancelled by divergent
counterterms. Ambiguities are resolved by imposing
perturbative renormalization conditions on low-order
Green’s functions, which must be implemented precisely.

� Practical for numerical calculation. Actual calculation
must not involve cancellation of large numbers.

� Able to handle situations where configuration is not
a solution to the equations of motion.

� Valid to all orders in the derivative approximation, since
often we expect interesting phenomena to occur precisely
when the size of the background field configuration is
comparable to the Compton wavelength of the dynamical
particle. (Derivative approximation is a useful check of
our method in the regime where it is valid).
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Introduction and Overview

� An Energy Functional in QFT

For time-independent fields Seff[φ(�x)] → TEeff[φ(�x)]

E
[
{φj(�x)}, {g}, {m}

]

• Energy functional of renormalized fields, masses and
couplings.

• Search for stationary {φj(�x)} at fixed g and m,

δE

δφj(�x)

∣∣∣∣
g,m

= 0 ⇒ φj = φ̂j

� Searching for solitons in renormalizable theories.

• Solitons in the Standard Model (“Top Quark Bags”)

• Unambiguous calculation of mass and central charge
for SUSY soliton in 1 + 1 dimension. . .
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• Quantum stabilization of solitions in 1 + 1 dimensional
chiral models

• L = gψ̄(φ1 + iγ5φ2)ψ

• No classical soliton

• Robust quantum soliton is a fermion

� Solitons −→ “Interfaces”

• Considerable interest in background configurations that
are nontrivial in m-dimensions but “trivial” in
n-dimensions. . .

Cosmic Strings/ Vortices: m=2 n=1

Branes: m=1 n=4,5,. . .

Monopoles on interfaces: m=3 n=1,2,. . .

• New computational method takes solitons to interfaces.
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� The Classic Casimir Effect:
Energy Densities and Forces

• Quantum zero-point energies (≡ one-loop effective
energy) in the presence of boundaries.

• Boundary conditions are an idealization of interactions
with materials.

• Even for the simplest geometries, calculations appear
to be fraught with divergences. Are divergences
benign – ie associated with renormalization of the
parameters of the theory? or
malignant – signatures that the physical effects
depend on the cutoffs that characterize the high energy
behavior of the material?

• Interpret in light of renormalizable quantum field
theory: Replace boundary conditions by renormalizable
couplings to background fields. Boundary conditions
correspond to singular background fields: “boundary
condition limit”.
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• We can successfully compute and renormalize Casimir
energy in the presence of strong, localized, but smooth
background fields. Then study what happens as
backrgound field approaches boundary condition limit.

• Total renormalized Casimir energy always diverges in the
boundary condition limit. So there is no meaningful,
formal, mathematical “Casimir problem” for the energy in
renormalizable QFT.

• However,

� Casimir energy density away from boundaries is finite
and calculable even as background fields go to the
boundary condition limit.

� The forces between rigid objects also remains finite in
the boundary condition limit.

� The Casimir “stress” on a surface cannot be defined in
a way that is independent of the details of the dynamics
on the surface. Thus, for example, the vacuum pressure
on a grounded sphere cannot be defined independent of
the detailed treatment of the surface dynamics.
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� Heavy fermions ⇐⇒ Solitons in the Standard
Model

• Naive idea of early 1990’s “Top Quark
Bags”

E[φ] = Eclassical[φ] + �ω0

Favors non-trivial φ.

• However, vacuum fluctuation energy cannot
be ignored:

E[φ] = Eclassical[φ] + �ω0 +
1

2

∑
j

(�ωj − �ω0)

• Destabilization!
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Outline of Remainder of Talk

� References

� Basic Idea

� “Born Renormalization” via dimensional regularization

� How it all works. . .

� Application 1: Quantum Soliton Formation in 1 + 1
Dimensions.

� Application 2: Interfaces

� Application 3: True Casimir Energies and Forces

� Progress report and future plans
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Basic Idea

Work in n + 1 dimensional space-time, where n is chosen so
that the entire theory is finite. Typically 0 < n < 1. Later
analytically continue to integer dimensions as appropriate.

[Standard dimensional regularization.]

Effective action formalism. For time-independent fields,

SEFF[φ(�x, T )] → T E[φ(�x)]

To one-loop order,

E[φ] = Eclassical + E1-loop

+ Ecounterterm

E(1 − loop):

E1−loop − Evacuum = ±
∑
k

1

2
�(|ωk| − |ω0

k |)

≡ ECasimir[φ]

RL Jaffe Zakopane 2003 13



ECasimir[φ] = ±
∑
k

1

2
�(|ωk| − |ω0

k |)

Work in the continuum:
∑

k → ∑
boundstates +

∫
dk

∑ 1

2
(|ω| − |ω0|) ⇒

∑
j

1

2
|ωj| +

∫ ∞

0

|ω|
2

(ρ(k) − ρ0(k))dk

=
∑
j

1

2
(ωj − m) +

∫ ∞

0

(ω − m)

2
(ρ(k) − ρ0(k))dk

� Levinson’s theorem allows subtraction.

� where ωj are bound states, |ω| =
√

k2 + m2 on the right
hand side, and ρ(k) is density of states.

� Assume (generalized) spherical symmetry (spherical, grand

spin, reduces to symmetric and antisymmetric as n → 1).

ρ(k) − ρ0(k) =
∑
	

D	
1

π

dδ	(k)

dk[
General result:

dn

dk
=

1

2πi

d

dE
Tr lnS(E)

]

� δ	(k) sums phase shifts for ±|ω(k)|.

� n – space dimension – suppressed on degeneracy factor D	
and δ	.
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Regularization and Renormalization

E[φ] = Ecl + E1−loop + Ect

To make contact with conventional renormalization theory,
must accept a counterterm contribution in some standard
perturbative scheme.

Ect = Ect[φ,Λ] cutoff dependent

� Implications for Casimir “Sum”

• Integral not sum,
∑

n En →
∫

dE.

• Seek conventional regularization, not

“energy cutoff” —
∫ Λ

dE or

“mode number cutoff” —
∫ Λ

dn(dE/dn)

� Cancellation of cutoff dependence

lim
Λ→∞

Ect[φ,Λ] + E1−loop[φ,Λ] = E1[φ]

• Numerical difficulties implied by Λ dependence of 1-loop
calculation. Imagine (eg) Pauli- Villars scheme —

E1−loop ∼
∫

dk(dn/dk)
(√

k2 + m2 −
√

k2 + Λ2
)

• Must calculate E1−loop repeatedly to map out,
fit, and subtract Λ dependence — including both
quadratic and logarithmic.

• A Nightmare
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Born Regularization

� Identify potentially divergent terms and

regularize through the Born Approximation.

� Born expansion (in n dim.) δ	(k) =
∑∞

i=1 δ(i)
	 (k)

� One-to-one correspondence between Born contributions

to density of states and Feynman diagrams

� Subtract N Born approximants to regulate

δ	(k) ⇒ δ̄	(k) ≡ δ	(k)−
N∑

i=1

δ
(i)
	 (k) So Ecas ⇒ Ēcas

Regulated ĒCasimir is both finite and cutoff independent.

• In theory, because divergent diagrams have been
subtracted.

• In practice, because leading large k & large 	 have been
subtracted.
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� Add back in Feynman diagrams

⇒
N∑

n=1

Γ(n)[φ,Λ]

Regulate in traditional fashion, combine with counterterms

and renormalize.
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How Renormalization Works

Formally, both the first Born Approximations and the lowest
Feynman diagram are (quadratically) divergent as n → integer.
How do we know we are not missing essential finite pieces?

Because we can identify them as analytic functions of n.

To be specific: LI = gψ̄φψ

� ψ is a 2Nn component Dirac field.

� g〈φ(r)〉 = V (r) + m with V (r) → 0 as r → ∞.

Standard Feynman graph. . .

Γ1[φ, n] = −2Nn
Γ(1−n

2 )mn−1

(4π)
n+1
2

∫
dnx V (x)

Scattering theory in n + 1 dimensions. . .

δ(1)
n,j (k) = −π

2

∫ ∞

0
dr rV (r)

(
J2

n

2
+j−3

2

(kr) + J2
n

2
+j−1

2

(kr)
)

Bessel function identity
∞∑

	=0

(2	 + 2q)Γ(2q + 	)

Γ(	 + 1)
J2

	+q(z) =
Γ(2q + 1)

Γ2(q + 1)

(z

2

)2q

Plus a little group theory to work out dimension of Dirac
algebra and degeneracy of partial waves as functions of n,

E(1)
cas,n[φ, n] =

2Nn(n − 2)

(4π)n/2Γ(n/2)

∫
dnx V (x)

∫ ∞

0
dk kn−3(ω − m)

Which equals Γ1 as an analytic function of n.

Note: Also confirms Levinson subtraction of m.
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E[φ(�x), {g}, {m}]
For a case where Feynman 1- and 2-point functions are

potentially divergent as n → integer. . .

E[φ(�x), {g}, {m}] = Ecl[φ(�x), {g}, {m}] +{
Γ1[φ,ε] + Γ2[φ,ε] − c1(ε)φ − c2(ε)φ

2− c3(ε)|�∇φ|2
}

+
1

2

∑
j

(Ej − m) − 1

2π

∫ ∞

0
dk (|ω(k)| − m)

∞∑
	=0

D	
d

dk
δ̄	(k)

� Classical energy.

� Potentially divergent Feynman diagrams plus counterterms.

� Regulated “Casimir” energy. Finite and smooth as n →
integer.

� Subtraction of mass protects against infrared divergences
and is an identity following from Levinson’s theorem.

� Renormalization Γ̄1[φ] = 0

dΓ̄2

dp2

∣∣∣∣
p2=0

= 1 Γ̄2[φ]
∣∣
p2=0

= −m2

With standard scale and scheme dependence as expected.

� Numerical calculations are convergent and quick.
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Detailed Example

Charged Scalar Field Coupled to Classical Scalar

Background in 3 + 1 Dimensions

L =
1

2
(∂µχ)2 − λ

4!

(
χ2 − v2

)2
+ ∂µφ∗∂µφ − Gφ∗χ2φ

+ a (∂µχ)2 − b
(
χ2 − v2

)
− c

(
χ2 − v2

)2

� The model

• φ appears quadratically and can be integrated out.

• φ couples to square of χ so classical potential for χ is
positive definite.

• No classical soliton (Derrick’s theorem)

• χ potential has minima at χ = ±v so define
χ(x, t) = v + h(x, t)
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� Renormalization

• Lcounterterm = a(∂µχ)2−b(χ2−v2)−c(χ2−v2)2

coefficients a, b, and c fixed by renormalization
conditions.

• “NO TADPOLE”

Tadpole diagram with external h(x, t) vanishes

• “ON SHELL”

Location and residue of pole in h-propagator remain
unchanged

� Eigenvalue problem for spherically symmetric h(r)

• Small oscillations potential for h is

V (r) = Gχ2(r) − M2 = G(h2(r) + 2vh(r))

• Eigenvalue problem:

−∇2φ(�r) + V (r)φ(�r) = (ω2 − M2)φ(�r)

Partial wave expansion. . .
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� Calculating phase shifts and the Born
Approximation
• ”Variable phase method” (Calegero)

φ(�r) =
1

r

∑
	m

ϕ	(k, r)Y	m(Ω)

ϕ	(k, r) → rh
(1)
	 (kr) as r → ∞

≡ e2iβ	(k,r)rh
(1)
	 (kr)

φ	(k, r) is the “Jost solution”, asymptotic to a free
outgoing wave at infinity.

• The variable phase, β	 obeys (from the wave equation),

−iβ′′
	 − 2ikp	(kr)β′

	 + 2(β′
	)

2 +
1

2
gV (r) = 0

� p	(kr) is a rational function,

p	(x) =
d

dx
ln

(
h
(1)
	 (x)

)

� limr→∞ β	(k, r) = β′
	(k, r) = 0

� g is a parameter introduced to count orders in the
Born approximation.

� Phase shift is δ	(k) = −2Reβ	(k, r)|r=0
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• Born Approximation

β	(k, r) ∼
∞∑

i=1

giβ
(i)
	 (k, r)

� Expand differential equation for β	 in powers of g

−iβ
(1)′′
	 − 2ikp	(kr)β(1)′

	 = −1

2
V (r)

−iβ
(2)′′
	 − 2ikp	(kr)β(2)′

	 = −2(β(1)
	 )2

−iβ
(3)′′
	 − 2ikp	(kr)β(3)′

	 = −4β
(1)
	 β

(2)
	

...

� Simple sequence of linear differential equations with
sources known order by order in g.

� Solve together with original equation for the vector

B =
{
β	, β

(1)
	 , β

(2)
	 . . .

}

� Very easy to generate phase shifts and Born
approximations.
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� Casimir energy and Feynman diagrams

• Three dimensions, complex scalar field, two Born

subtractions, two Feynman diagrams,

∆E[h] = Γ(1)
FD[χ] + Γ(2)

FD[χ]

+
∑
j,	

(2	 + 1)(ωj,	 − M) −
∫ ∞

0

dk

π

k√
k2 + M2

×
∑
	

(2	 + 1)
(
δ	(k) − δ

(1)
	 (k) − δ

(2)
	 (k)

)

• Γ(1)
FD[χ] is local and completely cancelled by

counterterm.

• Γ(2)
FD[χ]: Divergent part is cancelled by counterterm b.

Diagram also contributes finite wavefunction

renormalization, ∝ (∂µh)2, which is renormalized by a.

Γ
(2)
FD[χ] = −4v2G2

(4π)2

∫ ∞

0

q2dq

(2π)2
q2h̃2(q)

∫ 1

0
dx

x(1 − x)

M2 − x(1 − x)m2

+
G2

(4π)2

∫ ∞

0

q2dq

(2π)2
Ṽ 2(q)

∫ 1

0
dx

[
ln

M2 + x(1 − x)q2

M2 − x(1 − x)m2

− x(1 − x)m2

M2 − x(1 − x)m2

]
First line: finite effect of local counterterm a. Second line,

standard second order self energy.
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� Results for this (toy) model. . .

• Parametization of ansatz

E[h] = Ecl[h] + ∆E[h]

h(r) = −dve−r2v2/2w2

• Numerical results

-15

-10

-5

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4

E(d = 1, w) in units of v for G = 1,2,4 and 8
as function of w.

• Small G, no sign of solition
Large G vacuum instability!
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Application 1: Quantum Soliton Formation

� Original motivation for the whole program was

to establish existence (or not) of solitons in the

Standard Model at large Yukawa coupling.

� In 3 + 1 we’ve studied spherically symmetric and

Higg’s hedgehog ansätze and find no interesting

solitions in internally consistent parameter

domains. More on this at the end.

� To prove point of principal we studied 1 + 1

dimensional chiral model and. . .

Find a quantum stabilized fermionic soliton
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Model – Boson sector:

LB =
1

2
∂µ�φ · ∂µ�φ − V (�φ) ,

V (�φ) =
λ

8

(
�φ · �φ − v2 +

2αv2

λ

)2

−λ

2

(
αv2

λ

)2

−αv3 (φ1 − v) .

If α = 0, the U(1) transformation

φ1 + iφ2 −→ eiϕ (φ1 + iφ2)

would be a symmetry.

� Symmetry breaks at the classical level, but with α = 0
radiative corrections always restore symmetry in
one-dimension (Coleman, Mermin, Wagner).

� So we keep α large enough to suppress restoration of the

symmetry and keep

〈�φ〉 = �φclassical = (v,0).

� This model has no stable classical solitons. Kink-like
configurations with φ1 → ±v as x → ±∞ unravel in

φ1, φ2 plane.
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Model – Fermion sector:

LF =
i

2

[
Ψ̄, ∂/ Ψ

] − G

2

([
Ψ̄,Ψ

]
φ1 + i

[
Ψ̄, γ5Ψ

]
φ2

)
.

� Note careful treatment of charge conjugation.

� Take Nf → ∞ so one-fermion loop dominates.

� Vacuum is non-degenerate: �φ = v(1,0), but

� Domain near “chiral circle”, �φ = v(cosΘ, sinΘ)
has low energy, and binds a fermion mode
tightly. Θ′ measures width of soliton.
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� Dynamics will be balance of excursion of �φ from
its minimum, classical “kinetic energy” |�φ′|2,
tightly bound fermion level, and Casimir energy
from deformation of the fermion continuum.

� Parameterization of ansatz for �φ:

�φI(ξ, R, w) =
(
1 − R + R cosΘI(ξ, w), R sinΘI(ξ, w)

)
ΘI(ξ, w) = π

(
1 + tanh(ξ/w)

)
.

� Parameters R and w: radius of circle in chiral
boson plane and width of soliton.
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Results
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The lowest quark eigenenergy, ω1, as a function of R and w.

Note that for large R and w, ω1 is negative. A solid curve

marks the contour ω1 = 0.

The vacuum contribution to the one-loop fermion energy as a

function of R and w. Note the discontinuity in gradient when

the negative energy level is filled.
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B as a function of the ansatz parameters for α̃ = 0.5, λ̃ = 1.0,

and v/
√

NF = 0.375. A solid curve marks the contour B = 0,

and a star indicates the minimum at w = 2.808 and R = 0.586.

The regions of soliton stability in the plane of v/
√

NF and α̃. In

the shaded area on the left, a growing width indicates potential

infrared instabilities. In the shaded area on the right, the soliton

is bound by less than 5 percent. In between, we have a stable,

tightly bound soliton.
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Extension to Standard Model

� A Very Heavy Quark in the Standard Model

m ∼ gv 〈φ〉 = v

Would seem to favor “evacuation” of Higgs VeV near quark

t-quark bag a la Friedberg-Lee

∆φ ∼ v

∆p ∼ m ∼ gv

Derivative expansion
unlikely to be useful

• Classical

• F. Wilczek, IASSNS/90-20
• G. Anderson, L. Hall, S. Hsu, Phys. Lett. B249 (1990)
• S. Dimopoulos, B. Lynn, S. Selipsky, N. Tetradis,
Phys. Lett. B253 (1991) 237.

• Derivative Expansion

• J. Bagger, S. Naculich, Phys. Rev. Lett. 76 (1991) 2252;
hep-ph/9209283
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� Decoupling a fermion in the Standard Model

• Decoupling is non-trivial because Higgs-fermion
coupling → ∞ as mf → ∞.

• If one succeeded in decoupling a fermion doublet in an
SU(2)L gauge one would have a conceptual problem:
Residual gauge theory would be anomalous (Witten
anomaly)

• Imagine originally two doublets. As mf → ∞ for one
doublet, what cancels Witten anomaly at the level of
the states?

• Decoupling induces a Wess-Zumino-Witten term via
heavy fermion loop

So Higgs field carries heavy fermion number

• Suspect that a hedgehog-soliton in the Higgs sector
carries heavy fermion number.

• Something must give as mf exceeds MSphaleron
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Complete study of hedgehog ansatz
E. Farhi, N. Graham, RLJ, V. Khemani, H. Weigel

hep-th/0303159

� SU(2)L gauge theory with a single (degenerate) fermion
doublet.

� Field parametrization:

Φ =

(
φ∗
2 φ1

−φ∗
1 φ2

)
Φ(x) = v (s(x) + ipa(x)τa)

V (A,Φ) = −gγµAµ(x)
1 − γ5

2
+ f (h(x) + ivpa(x)τaγ5)

h(x) ≡ v(s(x) − 1)

LF = Ψ(iγµ∂µ − fv)Ψ − ΨV Ψ

� Spherical ansatz (in A0 = 0 gauge)

Ai(�x) =
1

2g

[
a1(r)τjx̂jx̂i

+
α(r)

r
(τi − τjx̂jx̂i) +

γ(r)

r
εijkx̂jτk

]
Φ(�x) = v

[
s(r) + ip(r)τjx̂j

]
� Moduli and phase:

−iρeiθ ≡ α + i(γ − 1) and Σeiη ≡ s + ip
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One example: Twisted Higgs Ansatz

� Starting point: η = −πe−r/w Σ = ρ = 1

Variations:

η = −πe−r/w + p0
r/w

1 + (r/w)2
e−r/w

Σ = 1 + p1
1

1 + (r/w)
e−r/w

a1 = p2
r/w

1 + (r/w)2
e−r/w

ρ = 1 + p3
(r/w)2

1 + (r/w)3
e−r/w

� Sample interpolation from trivial to twisted configuration:

Σeiη = 1 − ξ + ξ exp
(
−iπe−r/w

)
with f = 10(!)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.2 0.4 0.6 0.8 1

E

ξ

Min(Eeff
(1) - Evac)

Min(Eeff
(1))
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Another example: A Path over the Sphaleron
� Note there is a fermion zero mode in the background of a

sphaleron. Suggestive.

� Sphaleron interpolation:

Φ = v(1 − ξ)1 + ξvU(1)

Aj = ξ
i

g
U(1)∂jU

(1)†

where

U(1)(�x) = eif(r)τjx̂j/2

� As ξ goes from 0 to 1 configuration goes from trivial
vacuum to winding number 1 vacuum with sphaleron at
ξ = 1/2.

� For example, f(1)(r) = −2πe−r/w.
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Conclusion on Standard Model

� Quantum corrected sphaleron is heavier than

classical sphaleron by an amount of order the

perturbative fermion mass.

� This generates a barrier that stabilizes heavy

fermions even when perturbative fermion mass is

greater than spaleron energy.

� Heavy enough fermions are still unstable.

� No sign of residual light fermion to resolve

Witten anomaly.

• Anomaly saturated by states without a

particle interpretation?

• Beyond the spherical ansatz?
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Application 2: Interfaces

Interface ≡ a field configuration

Nontrivial in m dimensions ⊗ Trivial in n dimensions

Examples:

� Domain walls in lattice simulations.

� Fluctuations of bulk fields in braneworld models.

� Casimir induced cosmological constant?

Restrictions:

� One-loop – O(�)

� Renormalizable theory

� Symmetric in m space.

Notation:

� µ – mass

p – momentum in trivial directions

k – momentum in non-trivial directions

� ω(p, k)=
√

µ2 + k2 + p2 µ(p)=
√

µ2 + p2

� Em[φ] → En,m[φ] ≡ En,m[φ]/Ln

Illustrate with gψ̄φψ where n + m + 1 = d heads toward

value where only first Born (i.e., tadpole graph) diverges.
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En,m[φ] = ±
∫

dnp

(2π)n

∑
	

D	
m

[∫ ∞

0

dk

2π
(ω(k, p) − µ(p))

⊗ d

dk

(
δ	
m(k) − δ

(1)	
m (k)

)
+

1

2

∑
j

(|ω	
j,m(p)| − µ(p))

]

+ F(1)
n,m[φ] .

Note: because phase shift does not depend on p, the p

integration looks trivial, but one cannot interchange it with k

integration in physical dimension:

Perform p integration using dimen. regularization,

Result:

En,m[φ] = ∓
Γ(−1+n

2 )

2(4π)
n+1
2

∑
	

D	
m

[∫ ∞

0

dk

π
(ωn+1(k) − µn+1)

⊗ d

dk

(
δ	
m(k) − δ

(1)	
m (k)

)
+

∑
j

(|ω	
j,m|n+1 − µn+1)

]

+ F(1)
n,m[φ]

Γ(−n+1
2 ) diverges at n = 1,2, . . .!

But theory is renormalizable at those dimensions by

construction!
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Resolution?
Coefficient of Γ must vanish as n → 1,3, . . .. Implies
finite energy sum rules, which generalize Levinson’s
theorem:∫ ∞

0

dk

π

d

dk
δ	
m(k) +

∑
j

1 = 0∫ ∞

0

dk

π
k2 d

dk

(
δ	
m(k) − δ(1)	

m (k)
)
−

∑
j

(κ	
j,m)2 = 0∫ ∞

0

dk

π
k4 d

dk

(
δ	
m(k) − δ(1)	

m (k) − δ(2)	
m (k)

)
+

∑
j

(κ	
j,m)4 = 0

where first is Levinson’s theorem and the last is the
identity required to go to a dimension where Γ2

diverges. Graham, RLJ, Quandt, & Weigel,
Phys. Rev. Lett. 87, 131601 (2001) [hep-th/0103010].

Ann. Phys. 293 240 (2001) [quant-ph/0104136].
R. D. Puff, Phys. Rev. A11 (1975) 154.

Then with these identities in hand, continuation to
integer n is smooth and straightforward.

Born + dimensional regularization is

� Simple

� Unambiguous

� Correct
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Examples

n → 1:

E1,m = ± 1

4π

∑
	

D	
m

[∫ ∞

0

dk

π
k log

ω(k)2

µ2

(
δ	
m(k) − δ(1)	

m (k)
)

− 1

2

∑
j

(ω	
j,m)2 log

(ω	
j,m)2

µ2
+ (κ	

j,m)2

]
.

n → 3:

E3,m = ± 1

32π2

∑
	

D	
m

[
−

∫ ∞

0

dk

2π
4kω(k)2 log

ω(k)2

µ2(
δ	
m(k) − δ(1)	

m (k) − δ(2)	
m (k)

)
+

1

2

∑
j

(
(ω	

j,m)4 log
(ω	

j,m)2

µ2
+ µ2(κ	

j,m)2 − 1

2
(κ	

j,m)4

)]
.

Applications to branes, vortices, etc. have yet to be explored.
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Application 3: Boundary Conditions
& the “Casimir Problem”

� (a) Classic example:

Electromagnetic field

between parallel plates.

Measure force/area:

F

A
= − π2

240

�c

d4

Confirmed by experiment.

� (b) Mathematical physics

problem: The Dirichlet Sphere:

What is the energy (relative to

the true vacuum) of a

fluctuating field constrained to

vanish on the surface of a

sphere? In particular, how does

this energy change with R, the

radius of the sphere?

� Important distinction: (a) is a force between rigid

bodies; (b) is a surface stress, measurable only

by deforming the surface, R → R + δR.
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What is the problem?

� “Let φ(�x, t) be a scalar field that vanishes
on a surface S. . . ”

� Casimir Effect
Bag models
Brane worlds
Lattice quantum field theories

� hep-th/0207205 and forthcoming.

A Boundary Condition on All Modes is a
serious affair. . .

− φ′′ + λσ(x)φ + m2φ = ω2φ

1. σ → δ(x) Sharp

2. λ → ∞ Strong

}
Dirichlet

. . . that one would expect to have a
significant effect on the theory
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Elementary Considerations

Dirichlet point in 1-dimension

Standard Result:

Ẽ1 =
1

2

∑
�ω − �ω0 = 0

• Free: φ ∼ sin kx k > 0

φ ∼ cos kx k > 0

• Constrained: φ ∼ sin kx k > 0

φ ∼ sin k |x| k > 0

Identical spectra −→ Ẽ1 = 0

Surprised? It costs no energy to constrain

the field on all scales.
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Two Dirichlet Points

� Casimir energy for two Dirichlets:

−φ′′(x) = k2φ(x), with φ(−a) = φ(a) = 0.

� Traditional answer:

ECasimir = − π

48a

� Critique:

• Limit a → ∞ gives ECasimir = 0?

Expect 2× E1 So it costs no energy to force a

field to vanish at a point!

• Limit a → 0 gives ECasimir → ∞?

Expect E1 So it costs infinite energy to force

a field to vanish at a point?!

• ECasimir should diverge like lnm as scalar

mass → zero in 1-dimension.
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Embed in renormalized, continuum QFT

� Field theoretic approach:

Lint = λσ(x)|φ(x)|2 + C1σ(x)

with

σ(x) = δ(x + a) + δ(x − a)

C1σ(x) is counterterm in expectation of
logarithmic divergence of effective action
in 1 + 1 dimensions.

� Renormalization condition:

〈σ(x)〉vac = 0

� Boundary condition limit is λ → ∞.

� Note: One could introduce arbitrary action for σ
– with some justification. But we ignore this in
the spirit of the mathematical physics problem.
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Approach to Dirichlet Point

Sharp σ(x) → δ(x)

E1(λ) =
1

2π

∫ ∞

m
dt

t log
(
1 + λ

2t

)
− λ

2√
t2 − m2

E2(λ, a) =
1

2π

∫ ∞

m
dt

t log
(
1 + λ

t + λ2

4t2
(1 − e−4at)

)
− λ√

t2 − m2

• a → ∞ E2(λ, a) → 2E1(λ)

• a → 0 E2(λ,0) = E1(2λ)

√√

But

Dirichlet −→ λ → ∞
E2(λ, a) −→ −λ logλ

So Dirichlet limit doesn’t exist for the energy
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Force?

• Boundary condition: F̃2(a) = −dẼ2

da
= − π

48a2

• QFT: F2(λ, a) = −dE2(λ, a)

da

λ → ∞, F2(λ, a) −→ F̃2(a)

Conclude

From this simple example

� Energy – relative to the vacuum cannot
be reliably calculated with
boundary condition method

� Renormalized energy in continuum QFT
diverges in boundary condition limit

i.e., cutoff dependent
i.e., material dependent

� Force – change in energy with rigid displacement
is finite & cutoff independent &
agrees with boundary condition method

� Also, energy density agrees with boundary
condition method at points away from “surface”.
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Generic!

� All fields — scalar, Dirac, vector

� All dimensions — divergences get worse

as D grows

� Origin — high momentum components of

backgrounds; not loop divergences

So What?

� Forces – between rigid bodies – are fine

� Stresses are not!

•“Dirichlet sphere” φ(�x) = 0 |�x| = R

in D-space dimensions

• E(R) diverges like
log ε

ε
in

sharp limit and so does
dE

dR
!

• Conducting sphere?
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Gaussian approximation to Dirichlet circle in

2-dimensions.

σ(r) = λAe
−(r−a)2

2w2

0.8 0.9 1 1.1 1.2
r m

 100

0

100

200

ε(
r)

 / 
m

2

w = 0.02 m
 1

w = 0.03 m
 1

w = 0.05 m
 1

w = 0.08 m
 1
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Dirichlet Sphere and Planes in Light of QFT

� σ = 0 on sphere or planes?
Couple φ(�x, t) to a background field, σ(�x)

E[σ] =
∫

dnx
{

1
2φ̇2+1

2|�∇φ|2+1
2m2φ2+λσ(�x)φ2(�x, t)

}
To obtain Dirichlet condition:

1. σ → δ(r − R) (sphere) or
σ → δ(z + a/2) + δ(z − a/2) (planes)

2. λ → ∞
Both are highly singular and damage the high
energy behavior of Green’s functions.

Can the damage be absorbed by the
counterterms available in a renormalizable QFT?

or

Does it signal a real divergence in the
renormalized energy of this singular background
field configuration?

� Sphere and plane look similar, but are very
different

Plane
F

A
=

dĒ(a)

da
Sphere F/A =

1

4πR

dĒ(R)

dR
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Results on the Dirichlet Casimir Problem

� Consider for n = 1,2,3:

• 1-dimension Sphere/plane → two points, x = ±a

� Energy is finite as σ → δ(x ∓ a), but diverges like
−λ lnλ as λ → ∞

� Force is finite and agrees with naive calculation.

• 2-dimensions “Dirichlet circle” or lines

Fourier components of σ fall too slowly with �p as
σ → δ. So the Casimir energy is infinite in the sharp
limit (ε → 0), even before the Dirichlet limit is taken.

� Dirichlet circle: E(R) ∝ Rλ2 ln ε so dE/dR
diverges in the sharp limit even at finite strength, λ.

� Force between lines is finite and agrees with naive
calculation, even though the energy of the individual
Dirichlet lines diverges in the sharp limit just as badly
as the circle.

• 3-dimensions “Dirichlet sphere” or planes

Worse than n = 2. Casimir energy again diverges in
the sharp limit, ε → 0, one power worse in ε.

� Dirichlet circle: E(R) ∝ (R2λ2 ln ε)/ε so dE/dR
diverges in the sharp limit even at finite strength, λ.

� Force between planes is finite and agrees with naive
calculation, even though the energy of the individual
Dirichlet planes diverges in the sharp limit just as
badly as the sphere.
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Insight from Continuum Renormalizable
Quantum Field Theory

� Conclusions:

• The “Dirichlet/Casimir” problem for the

energy doesn’t exist as a formal mathematical

problem, even in simple cases in low

dimensions.

• The total energy depends in detail on the

interactions that constrain the fluctuating

field on the boundary.

• Nevertheless, boundary condition methods

give correct results for forces between rigid

bodies and energy densities away from the

boundaries.

• But boundary condition methods do not make

sense for “Casimir stress” (energy per unit

area) or for the total energy.
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Summary and Outlook

� Method is robust, unambiguous, computationally efficient,
and makes contact with standard renormalization theory.

� It is limited to one-loop, enough spatial symmetry to
reduce to partial waves, and renormalizable theories.

� Update on the Standard Model.

• Heavy quarks do not seem to form (spherically
symmetric) non-topological solitons. Sphaleron and
other classical objects receive large quantum
corrections when quarks are heavy.

• Study of Z-strings – vortex-like solitions to standard
model – are underway. Khemani & Schröder

� � �

� Traditional Casimir calculations: parallel plates,
spheres, etc. Can be brought into the regime of traditional
calculations in the context of renormalizable QFTs.

• Energy density calculations are robust and trustworthy.

• Forces between rigid bodies are well defined.

• Deformation stresses are not.

� • Gravity

• Energy densities

• Branes and vortices
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