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_ Introduction

Multivariate Analysis is becoming an increasingly popular tool
within High Energy Physics.

The techniques are borrowed from a variety of different fields, which
leads to an incoherent picture.

In this talk | will try to outline some general considerations and
clarify the different approaches.
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_ Why the Confusion?

Consider the search for a new particle.

Goal Type of Problem Local/Global

Discover a new particle Statistical
Select candidate events Classification

These two problems are similar but distinct.

Define:
- Local = Decision based on a single event

- Global = Decision based on entire data set

Global
Local

June 5, 2003 Generalizing multivariate analysis (page 3)

Cracow School of Theoretical Physics Information Theory, Statistical Learning Theory, & Projection Pursuit

Kyle Cranmer

University of Wisconsin-Madison



_ Local vs Global

Consider a Soap film stretched between two rings, there are two approaches to
the solution:

Local: The total forces cancel, thus the
curvature in the two (appropriate)
orthogonal directions should be

equal and opposite.

Global: The surface wishes to take the
shape with the least area because that
minimizes the stored energy.

F+F=0

These two approaches are equivalent. The Variational Problem 5;1_}[3‘] = ( leads to

a local condition. E.g. Minimal Surfaces have Zero Mean Curvature everywhere.

We shall find similar equivalences in the Statistical and Classification problems
which follow.
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_The Classification Problem

What is the classification problem?

Consider an event with some data € I which can be associated
with one of a set of classes C.

Based only on = we wish to determine to which ¢ € C the event
belongs.

In addition we may be able to estimate the conditional probabilities
P(x]i) from independent observations, theory, or Monte Carlo.

Note: for a given x, there may be several ¢ € C such that
P(x|i) > 0. lLe. The classes are not disjoint.
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_ The Statistical Problems

Often in Particle Physics we are more interested in
Hypothesis testing or Parameter Estimation.

Consider a set of NV observations which make up some data set
{z; € I} withi € {0... N}. Also consider a set of Hypotheses
{H;} which predict the probabilities of observing x viz. P(x|H;).

Based only on {z;} we wish to reject or accept one of the
Hypotheses with some confidence.
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__ Critical Regions

For both problems, we are essentially interested in defining some
Critical Region W C I such that if x € IV we accept the event as a
candidate event or associate it with some class.

x ] :
N mmmm——— |t is very common that
= ,,/,2552:55’/??2,7;;7 N\ -] this critical region is a

3 % \ T T .

; = contour of some function

f:I—-NR
Note: The function f is a local concept,
but the critical region W is a global concept.
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__ The Approaches

Essentially Multivariate Analysis is a family of techniques which
produce some function f on a multi-dimensional space.

The different approaches to multivariate analysis correspond to:

techniques to construct the function f from training data

properties of an abstract f necessary or sufficient to satisfy some condition

limits on the performance of f

behavior of f in the presence of uncertainty, noise, or error

These approaches include:
- Statistics
- Artificial Intellegence & Statistical Learning Theory
- Signal Processing & Information Theory
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The Statistical Point of View
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_ Hypothesis Testing

Consider a single Hypothesis H from which we can predict the
probabilities of observing = viz. P(x|H).

In 1925 Fisher developed the idea of a pure signficance test based
on a set of observations {z;} in which record the probability

p =TT Plai ¢ Wi (1)

However, the choice of W was left up to the experimenter and was
not uniquely determined by the p-value.
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__ The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H
- the Alternate Hypothesis H;

Given some probability that we wrongly reject the Null Hypothesis
a= P(x & W|H) (2)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hi is true)

B =Pz e W[H) (3)
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_ The Neyman-Pearson Lemma

The region W that minimizes the probability of wrongly accepting
the H is just a contour of the Likelihood Ratio:

P(x|Hy)
P(x|H,)

> k, (4)

In principle, all that is left to do is estimate the probability density
functions P(x|Hy) & P(z|H).

But this is not the end of the story...
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The Artificial Intelligence Point of View
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_ Learning Machines

Learning Machines / Pattern Recognition Algorithms / A.l.
are essentially Black Boxes with some parameters.

Formally, a learning machine looks like a family of functions
from an input space I to an output space O,
each specified by some parameters a.

falz € I) = f(z;0) =y € O (5)

Training Data is a set of pairs {x;,y; }

The way in which the function’'s parameters are determined from
training data is associated learning.
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_ The Performance Functional

Formally, learning is a variational problem:
find the function f that maximizes the performance P.

oPL/]
of

The most common choice of P is the Error Functional or Risk:

— 0 (6)

1 [
Rewp(0) = 2 3 |vi — [ (@i )],
1=1

For instance, a Neural Network with Back Propagation adjusts «a so
as to minimize Repp.
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_ Bounds on Risk

Suprisingly, there are general bounds on the generalization
performance of a Pattern Recognition Algorithm, given by:

1
R(a) = /§Iy—f(:v;a)|p(:v,y)dwdy
h(log(2(/h) — log(n/4
. Remp<a>+\/( log(24/1) ~ ogln/4
14
1.2 -
Q 1
ks h — the Vapnik Chervonenkis (VC) dimension
= 08 f
o For Sample Size of 10,000 .
O [ — the sample size
g 0.6 + 95% Confidence Level
1 —n — the confidence the bound holds.
04 -
0.2 e
0.1 02 03 04 05 06 07 08 09 1
h /1 =VC Dimension / Sample Size
June 5, 2003 Generalizing multivariate analysis (page 16) Kyle Cranmer

Cracow School of Theoretical Physics Information Theory, Statistical Learning Theory, & Projection Pursuit University of Wisconsin-Madison



__Vapnik Chervonenkis Dimension

The VC dimension A is equal to the maximal number of points that can be
shattered by the learning machine f(z; ).

“A set {x;} is shattered by f(x;a)” means that for every permutation of
classifications {x;,y;}, there is an « such that f(x;;a) = ;.

§O\ \O< , . ° Examples:

o [ ]

An oriented line can shatter
3 points in R?

)’/ /o(o —~/° o/ A Hyperplane can shatter
° . 0 . d + 1 points in R?

Note: Not every set of h elements must be shattered by f(z;«), but just one.
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— Examples of VC Dimension

The somewhat counter-intuitive point is that to minimize the risk,
one should find the learning machine with the lowest VC dimension.

Higher VC dimension — Higher Generalization Capacity — Higher Risk

These idea of minimizing the risk is the motivation for Support Vector Machines

In General Neural Networks have a very high or even infinite VC dimension

For Learning Machines which form a Vector Space:
VC dimension = dimensionality the parameters span in the Vector Space.
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___Relationship to Neyman-Pearson’s Lemma

Neyman-Pearson not symmetric under Hy <+ H;, but Error
Functional is symmetric.

For a given learning machine, there may not be any parameters «
that can reproduce the Likelihood Ratio P(xz|H)/P(x|H1).

The Classification Problem is distinct from Hypothesis Testing.
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The Signal Processing Point of View
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__ Testing Your a priori Knowledge

How much information is in the this message?

Q11001171

len=&

< 8 bits

)

b) No information
)
) Not well defined
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___Abit about Information Theory

The information contained in a “message” of length 1 with an “alphabet” {a;} is
given by:

H=— Zpi log,(p;) bits (7)

where p; is the a priori probability of the ¥ “letter” to occur.

=
N
‘

For Messages with Alphabet {0,1}

=Y
T T

Examples:

o
oo

If you know that the sender will send letter a; with prob-
ability 1 = no information in the message.

o
»

o ¢ ¢
~

Information per symbol (bits)

Expect Information to be symmetric under a; <+ a;

7 = Information Maximized when p; = p; Vi,
0.2

o b b b b b b b b b1y
O0 01 02 03 04 05 06 07 08 09 1
a priori Probability for Symbol O
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__ Relating Information Theory to Physics

Now consider the messages which answer the following questions:

- WIill this Monte Carlo Algorithm accept or reject this event? € {accept, reject}
= Find Phase Space generator that gives narrow weight distribution.

- Did this event come from signal or background? € {signal, background}
= Boundry of Critical Region is dense in information.

The answers to these questions carry information in a formal way.
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_ Mutual Information

When the “messages” are longer, we must look at joint probabilities
Define the Mutual Information between X and Y as follows:

I(X,Y)=H(X)- H(X|Y)=H(Y) - HY|X) = I(Y, X) (8)

PP -\ " Correlations between variables:
: ;{;:::. P(x,y) : J‘_ﬁ :
f - Reduce the Joint Information H(X,Y)
Py) P(X) - Increase the mutual information I(X,Y)
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_ Mutual Information

Mutual Information tells us h0\_/v two variables are correlated,
but unlike the covariance matrix it sees all orders.

Consider two situations:

Probability Covariance Mutual
Density Matrix Information

x is uniformly distributed

y=zory=—x 10
[ 0 J H(x)-1
: y
z and y are uniformly 10 0
distributed & independent 01
X
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_ Mutual Information as a Learning Rule

Mutual Information offers yet another Performance Functional

In different words, we want to reduce the information loss
AI(X,Y)=1(X,Q)—I(Y,Q) (where now X is thought to be the
input after noise is added to the true source ().

It is fairly intuitive that the backpropogation algorithm is aiming to
reduce information loss, by minimizing the error Repy,.

Quite significantly, this learning rule makes sense even when there is
no “training data”. The InfoMax technique is called an
unsupervised learning rule.
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___Information Geometry

Amari considered the Fisher Information Matrix g;; as a metric on a Manifold M
parmetrized by

gi5(@) = [ dof (o) | TeE L |08 oL2)] (9

Example:
Consider Gaussians G(x; i, o) as a Manifold

parametrized by o = (u, o)

the geometry is isotropic and negatively curved

Natural Learning Rules correspond to geodesics on the Manifold M.

June 5, 2003 Generalizing multivariate analysis (page 27) Kyle Cranmer

Cracow School of Theoretical Physics Information Theory, Statistical Learning Theory, & Projection Pursuit University of Wisconsin-Madison



Projection Pursuit

Boundary Magnification
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_ Choosing Variables

Intuitively we want as much information as possible in our variables x;
= maximize I(z,C)

But we need exponentially more samples as the dimensionality d grows
“The Curse of Dimensionality” viz. N o e?

This tradeoff means we want the variables to have little redundancy
= minimize [(z;, ;)

Boos, Dudko, & Ohl (EPJ C 11) have suggested that angular and singular
variables from Feynman graphs as 'optimal’ variables.

Including detector effects, these variables may not be optimal even in theory.
Practicalities of the Multivariate Algorithm may in fact dominate.
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_ Projection Pursuit: Principal Component Analysis

Typically, for HEP data sets (which are very large) dimensionality of greater than
5 or 6 is the “histogram limit".

To reduce the dimensionality, statisticians have searched for novel types of
projections which preserve as much information in the original data as possible.
This search is called “Projection Pursuit”

Principal Component Analysis is a very common technique which rests on the
eigenvalue decomposition of the Covariance Matrix.
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_ Projection Pursuit: Principal Component Analysis

Principle Component Analysis (PCA) diagonalizes the covariance
matrix, and projects the data to the z} with the largest variance.
><H10 —
ol
8 PCA is constructive, not an optimization.
At
o
5F .
N Consider:
N 0l (x, ) (10)
2! 00
0571 ;(io
Can generalize PCA by considering projections paremtrized by S and maximizing Mutual
Information I(z,x;) w.r.t. 8
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_ Reparametrizations and the EplD Algorithm

In regions dominated by a single class, classification of x is obvious.
It is near the boundary of critical regions that it is difficult to classify.

From an information theory point of view, we ask the question:
“To which class does this event belong?”
The answer to that question carries information H(x).

It seems natural to provide bandwidth to the pattern recognition algorithm in
proportion to the Information Density H(z)|P(x|Hy) + P(x|Hy)].

The Equi-partition of Information Density (EpID) is an algorithm | developed to
do just that.
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___Boundary Magnification

. Background
. Overlap

. Signal
Before O Learning Machine

Boundary Magnification After
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Examples
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__An Example: Neural Networks

Neural Networks are a very popular multivariate algorithm.

As a correlarry of Kolmogorov's solution to Hilbert's 13" problem,
Hecht-Nielson showed that a Neural Network can approximate

an arbitrary function with an arbitrary accuracy.

The Network is made of Nodes N;
which process inputs I;

The node function is usually something
simple like:

N; = arctan(z Wi l; +6;) (11)

Input Units Output Unit

Neural Networks gained prominance when the PDP Group introduced the

back-propogation learning algorithm.
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___An Example: Neural Networks

//['
A
AN
AN
,',’:'I"%"
'0

Y
N4/,
RS/ W
\\s.ll/,;ll/?/,

o
£

X7
S
%

5%
::"«

A

N\ |

Input Units Output Unit

1) Start with some parameters o 2) Calculate the Error |y—f_ (X)|
which correspond to some fa(x) By d
x 10
L 017 ¢
5 0.168 W\
;:9 0.165 m\
\;.,3 0.163 ; MM - 3-5—1
g 016 | M@ - 3-20—1
5 [
4 0.158 | e g {3-10-1
3 [
: 0.155 |
° 0.153 |
0-15 5500 400 600 800 1000
Epoch / 10
3) Apply the Chain rule to find 4) Repeat Many Times
Ao of Steepest decent until Error is minimized
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__An Example: Neural Networks

Once the neural network has been trained, we test with an
Independent sample.

Typically, histograms of the NN Output are made which show the discrimination
between signal and background.

0
C 1400 -
2 ! Candidate events are chosen by requiring that
qu; 1200 NN Output is greater than some NN ;.
1000 |-
o H
-g 800 |- S
)
Z 0 L The choice of the N N,.,: can be chosen to optimize:
: - S/B - The Signal-to-Background Ratio
400 . . P
: - S/v/B - The Gaussian Significance
200 o - P(S + B; B) - The Poisson Significance
0 047020 02 04 06 06 1 12 74
NN Output

It is also possible to use the shape in a statistical calculation based on the
likelihood ratio. In that case you weight each event x; by log(1 + H(x;)/Hp(x;))
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__An Example: Kernel Estimation

It is possible to discriminate between classes of events if we have pdf’s for all the classes.

We can construct the pdf's from an emperical

f : source, sort of like Monte Carlo in reverse:
e
T samples — pdf
3 fs(z)
D(z) = (12)
fs(@) + fo(z)
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—_Support Vector Machines: Introduction

Support Vector Machines find an “optimal” decision hyperplane in a
high-dimensional “Feature Space”.

A non-linear map from the original space to the “feature space” is what allows
the signal region to be of arbitrary complexity.

" Feature Space”

Linear Decision Surface

The Decision Boundary isUnique!!

Non-Linear Map ®

‘Kﬁgnal-like Region

Original Space
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__ Genetic Programming Approach: The Metaphor

Genetic Programming is usually discussed within the context of a Metaphor...

Population <= Set of cuts
Individual <= A particular cut
Evolution <=  Optimization of a set of cuts
Generation <= A training epoch
Mutation <= Stochastic search
Fitness <= Significance (in “sigma”)
Competition <= Sampling a Fitness Distribution

CAUTION! Genetic Programming # Genetic Algorithms

Genetic Programming and Genetic Algorithms rest on a similar Metaphor, but the techniques
are quite different.

While Genetic Algorithms have been used in HEP, Genetic Programming seems to be new
technique for event selection!
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___ Genetic Programming Approach: Cut Construction

Cutstaketheform: -1<[expression] <1
’ where [expression] is constructed as atree

ONNO» Example Expression:
TO=V1+V2-03/V5

Boolean Conjunctions of Cuts
form another tree \
Example Conjunction: )

Test =(T0&& T1) && T2
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__ Genetic Programming Approach: Mutation

Mutation is a random process which results in a stochastic search in the space of
all possible cuts.

Site-Mutation

Because the mutations are based on the previous generation, the search is a
Markov process — it's much faster than an ergodic search would be.
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__ Genetic Programming Approach: Mutation

Cross-over is a mutation which takes two parents and swaps a random sub-tree.

Cross-Over Parent 1 Cross-Over Parent 2
e
N\
A
@) ) N
o
o
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___ Genetic Programming Approach: What it produces

ot Here we see the significance
“F improving as the cuts evolve.
as . ooy SR

After training, we select the
most fit individual (cut) and
apply it to the data.

Significance

In this case, the individual has
constructed 4 variables each

with discriminating power.
\

HAEEEEAW

&8 B B § B & § §
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_ Conclusions

Multivariate Algorithms have a wide range of applications

Each application is interested in optimizing
a specialized notion of performance

As physicist we must be clear about what we want to optimize

In addition, we must take care that we use these
techniques in a sensible way
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