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_ Kolmogorov's Superposition Theorem

THEOREM 1 (KOLMOGOROV’S SUPERPOSITION THEOREM)

For each d > 2 there exist continuous functions ¢, : [0,1] = R, ¢ =0, ..., 2d and constants
Ap €ER, p=1,...,d such that the following holds true: for each continuous function

F :[0,1]¢ — R there exists a continuous function ¢ : [0,1] — R such that

2d d
F(z1,...,xq) =) g (Sj )\pgbq(xp)> .

Note, ¢, and A, are independent of the represented function F.

Kolmogorov's paper, published in 1957, did not refer to neural networks directly; instead, it was
in response to Hilbert's 13*" problem posed in 1900 to the International Congress of
Mathematicians in Paris.

Exactly 30 years later Hecht-Nielsen noticed the application to the theory of neural networks:
each continuous function F': [0,1]™ — R can be implemented by a feed-forward neural network
with continuous activation functions ¢ : [0, 1] — R.
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_ Neural Networks for Classification

From Theory we can predict distributions of x for signal & background

If we associate signal with 1 & background with 0, we define a function on x

Kolmogorov's Theorem tells us a Neural Network can represent this function
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_An Introduction to Neural Networks

What do Neural Networks look like?

The Network is made of Nodes /V; which process

inputs [;

Input Units

Hidden Layers: Processing Units

Examples of o(x):
- arctan(z)

- 1/(1 + exp(—=x))

- The Heaviside function

Neural Networks gained prominance when the PDP Group introduced the

backpropogation learning algorithm.

The node is composed of a linear operation and
a non-linear transfer function o

N,=0 Z Wi, I; + 6, (1)

June 3, 2003

Cracow School of Theoretical Physics

Prospects for Neural Network Applications in the LHC Data Analysis (page 5)

Kyle Cranmer

University of Wisconsin-Madison



___ Schematic of Backpropagation
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___The Neural Network Output

Once the neural network has been trained, we test with an
Independent sample.

Typically, histograms of the NN Output are made which show the discrimination
between signal and background.

0
C 1400 -
2 ! Candidate events are chosen by requiring that
qu; 1200 NN Output is greater than some NN ;.
1000 |-
o H
-g 800 |- S
)
Z 0 L The choice of the NN, can be chosen to optimize:
: - S/B - The Signal-to-Background Ratio
400 . . P
: - S/v/B - The Gaussian Significance
200 oo - P(S + B; B) - The Poisson Significance
0 047020 02 04 06 06 1 12 74
NN Output

It is also possible to use the shape in a statistical calculation based on the
likelihood ratio. In that case you weight each event x; by log(1 + H(x;)/Hp(x;))
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_ Choice of Architecture

The architecture of a Neural Network has impact on both its
generalization properties and the training time.

Input Units Hidden Layers Output Unit

/

Hidden Layers: Processing Units

/-10-10-1

Kolmogorov's Theorem suggests
at least twice as many hidden nodes as input variables.

The choice of Architecture is largely a matter of trial-and-error.
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__ Overtraining

In physics a specific phase-space point may correspond to signal AND background.
Given a finite training sample, the network might just learn the samples
a phenomenon called overtraining.
X 10_1
5 0.17 r | | | |
0165 oo b
0.163 s
3—-20-1 .
o This Network
0.158 3-10-1 i
e | was overtrained
0.153
015 5500 400 600 800 1000
Epoch / 10
Training Testing
Phase Phase
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___Validating NN with Data

Once you have real data, you should validate
the Monte Carlo you used to train the network
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NN b-tag Output

Example: This is a b-tagging Neural Network from ALEPH
Data & Monte Carlo agree very well
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Applications of Neural Networks to the LHC
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___Applications of Neural Networks to the LHC

Neural Networks can be applied all along the analysis chain

Triggering: Hardware NN's have been used for triggering

Track Fitting: Some are studying the use of NN's to fit tracks

Flavor Tagging: A multivariate problem well-suited for NN's
Used at LEP, Tevatron, and BaBar

New Particle Searches: Searches for Higgs & SUSY will use NN's
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_ Motivation for a Light Higgs

LEP direct search limit places
Mg > 114.4 GeV at 95% Confidence
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LEP Electroweak Fits limit
Mg < 211 GeV at 95% Confidence

The MSSM predicts lightest Higgs to have M), < 135 GeV

The low mass region is very exciting and very challenging!

400
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___Production and Decay of the Standard Model Higgs
M. Spira Fortsch. Phys. 46 (1998)
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Gluon-Gluon Fusion dominant production process.

< £,b - Vector Boson Fusion (VBF) ~ 20% of gg at 120 GeV
\ H - H — bb dominant at low mass, but hard to trigger
_— Forward Tagging Jets of VBF help S/B
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__Standard Model Discovery Potential
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What is the impact of Neural Networks on the VBF Channels?
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__TheqqH(H — WW) and qqH(H — 771) Final States
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_ Backgrounds for Different Channels

A brief overview of the main backgrounds for each VBF channel:
X = Dominant
x = sub-dominant

tt WWjets Wjets Z+jets
H—->WW —=lviv | X X X

H—-WW —=lvjj| x X X
H — 71— lvvive | x X X
H— 1 —lvvjr | x X
June 3, 2003 Prospects for Neural Network Applications in the LHC Data Analysis (page 17) Kyle Cranmer

Cracow School of Theoretical Physics University of Wisconsin-Madison



___ The tt Background

Process Example Diagram
tt is a major background and appears in
i TR each of the VBF channels.
tt
m@&
TR About 80% of the time one of the tag-
tt; 57 ging jets comes from ISR and the other
& from a b-jet (from the top decay)
) 5 o
ttjj o -
ol Divergences in ttj & ttjj are a problem,
TR difficult to model well
tt(jj5) w/ FWE l
&
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_ EW Zjj & QCD Zjj

EW Zjj QCD Zjj
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|dentical color structure as signal Larger cross-section than EW Zjj

Z — 77 lrreducable background for H — 77
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_ WWjj & Wjj

QCD Wy
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Diagrams by MadGraph
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Very small cross section
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___Motivation for a Central Jet Veto

The differing color structures between the VBF Signal and
Backgrounds motivates a Central Jet Veto
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___Analysis Strategy

Look for the Higgs decay products between the tagging jets

Veto the event if hard jets between the tagging jets

Look for two forward tagging jets
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~ Why NN'’s are good for Vector Boson Fusion

Vector Boson Fusion is a complicated final state

Expect correlations between tagging jets and the Higgs 4-momenta

Because the Higgs is a scalar, we expect the distribution of the
"Higgs decay products” to be different for background

Exploiting these correlations is the job of a multivariate analysis
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~ Choosing Variables

Intuitively we want as much information as possible in our variables x;

But we need exponentially more training samples as the dimensionality d grows
“The Curse of Dimensionality” viz. N o e?

This tradeoff means we want the variables to have little redundancy

Boos, Dudko, & Ohl (EPJ C 11) have suggested that angular and singular
variables from Matrix Elements as 'optimal’ variables.

Including detector effects, these variables may not be optimal even in theory.
Practicalities of the Multivariate Algorithm may in fact dominate.
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___ Choosing Variables (cont’d)

As an experimentalist the choice of input variables is a practical
matter guided by several considerations.

- Is the variable trustworthy?
Is the Monte Carlo simulation prone to theoretical uncertainties?
Are the relevant aspects of the detector simulation well-modeled?

- Does the variable discriminate between signal and background?

- Is the variable strongly correlated with other variables already included?
If so, are the correlations well modeled?
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___ Choosing Variables (cont’d)

As a first step, we see how much the current cut analysis is improved by applying
Neural Networks

Thus, we restrict ourselves to kinematic variables which were used or can be
derived from the variables used in the cut analysis.

- Any - the pseudo-rapidity difference between the two leptons,

- A¢y - the azimuthal angle difference between the two leptons,

- My, - the invariant mass of the two leptons,

- An,; - the pseudo-rapidity difference between the two tagging jets,
- A¢;; - the azimuthal angle difference between the two tagging jets,
- M;; - the invariant mass of the two tagging jets,

- Mt - the transverse mass.

where My = \/ (Bl + Ey)? — (PY + )’
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__ Learning Algorithm

There are a pleathora of learning algorithms available.
| will leave it to the other speakers to describe them.

We performed two analyses:

1) With SNNS we used backpropagation with momentum
A learning parameter n = 0.01 and momentum term = 0.01 were used

2) With MLPfit we used Broyden - Fletcher - Goldfarb - Shanno method with a
reset frequency of 400 and a 7 value for the line search of 1.2.

The two methods agreed within the expected variability of different training runs.
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_ Choice of Architecture

We tried using a variety of Networks

Input Units Hidden Layers Output Unit

/N

’(‘:“ W\ \'. 2;’727
SN Zestw
—f Z2\

Input Units Output Unit

/-10-10-1

After some experimentation, we used both
7-10-10-1 and 7-10-3-1 architectures
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NN Output
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The neural network output for signal (solid line) and background (dashed line) for
My =115 — 130 GeV with H — WTW~ — e uT pr.
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Notice that the signal is concentrated near 1
and the background is concentrated near O.
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___Stability of the Neural Network

We do not yet have data to validate the neural network with...
. so we tried varying the Parton Shower model in the dominant ¢¢ background

By using the same Matrix Element with Pythia & Herwig,
the Parton Shower Systematic can be isolated.

We used the MadCUP Matrix Elements
L adou twith pythia for ¢t and interfaced them with Pythia
i & Herwig via the Les Houches interface.

— MadCUP tt with Herwig

Normalized to Unity

— Pythia Internal tt

For Herwig, use 4.5 Million events

For Pythia, use 27.3 Million events
X-sec (W — {ev,ur}) = 20.8 pb

0 0.1 0.2 0.3 0.4 0

.5 0.6 0.7 0.8 0.9 1
Neural Network Output
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__ The Signal-like & Background-like Regions
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__ Finding the Optimal cut on the Neural Network Qutput
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Neural Network output Cut Value Cut Value

Varry the cut on the Neural Network output
Calculate Number of signal events s and background events b that survive cut

Maximize some sensitivity e.g. s/v/b or P(s + b; b)
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__Impact on Significance

Result: For the H — WW — [lvv analysis

=100
S
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The Poisson Significance increased ~ 30% with Neural Networks
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_ Neural Networks with Confidence Level Calculations

It is also possible to use the shape of the Neural Network
in a likelihood-ratio calculation

In that case each event z; is weighted by Q) = 1+ H,(z;)/Hy(x;)

[ 1 Expected Background +/- 5¢
[  Expected Background +/- 30
----- Expected Signal + Bac

20

0
20— T
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o0 |- [Ldt=30fb" H-WW S epw ™.
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H
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__Impact on Significance
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Using statistics based on the Likelihood Ratio
signficance increased 10 — 15% for the cut analysis.

Combining the Neural Network with Likelihood Ratio increased the
signficance 40 — 50% relative to the cut analysis with Poissonian statistics.
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__Impact on Discovery Luminosity

A similar analysis was done for H — 77
T; ——Cut
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Preliminary work suggests that Neural Networks cause a significant impact to the
amount of luminosity required to reach the 50 discovery threshold.
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_ Conclusions

Neural Networks have great potential in the complex analyses
encountered at the LHC

Expect Neural Networks to be used for
Flavor Tagging & New Particle Searches

Preliminary work for Higgs produced via Vector Boson Fusion
show 40-50% improvment in significance

Still A lot of work to be done!
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