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21 Intermolecular Energy transfer

21.1 incoherent transfer

We consider the transfer of energy from an excited donor molecule D* to an
acceptor molecule A
D*+A— D+ A”

We assume that the optical transitions of both molecules can be described
by the transition between the highest occupied (HOMO) and lowest unoccupied
(LUMO) molecular orbitals. The Hartree-Fock groundstate of one molecule can
be written as a Slater determinant of doubly occupied molecular orbitals

|HF >= [¢11¢1] - dnor1PmHO||

Figure 104: HOMO-LUMO transition
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Promotion of an electron from the HOMO to the LUMO creates a singlet or
a triplet state which both are linear combinations of the four determinants

| T1>=[p1101, - - dHOT LU
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| [1>=|p11¢1) - PO PLUT]
| 11>=|p11¢1, - - pHOTPLUT]

| [I>=[¢1101, - dno | PLU|

obviously the last two determinants are the components of the triplet state
with S, = £1

T, +1>=]11>

‘val >= | ll>

For the first two components consider the square of the total spin (let A =1
for a moment)

S% = (81 + S2)? = S + 83 + 251,52, + 251,52, + 251,55,

where the components of each spin are described by the matrices

_ 0 1/2 - 0 —i/2 ([ 1/2 0
51(1/2 0 ) Sy<i/2 0 ) SZ( 0 —1/2>

For the first two determinants

3 3 1
S% 4 52 428,,5,.| >= (Z +7- §)| >=|>
and further
) 1 42
ST T>=111>+2(7 = PIHTI>= 11>+ 11>

and similarly with the two determinants exchanged. This shows that the
symmetric and antisymmetric combinations are Eigenvectors of the total spin
operator
1 1 .
§* = 11>+ 11>) = 27 (| 11> +] 11>)  triplet

V2

5

52%(\ 11>—]117>)=0 singlet

Let us now consider the states of the molecule pair DA. The groundstate is

|p11¢1) - dHO,D,10HO,D, | PHO,A,1PHO, A,
which will be simply denoted as

|DA >= DD A1 Al
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The excited singlet state of the donor is

* 1 * *
|D*A >= E(|D1D1ATA1\ — |DI Dy A1 Ay)
and the excited state of the acceptor is
* 1 * *
DA >= E(\DTDlATAM —|D1D AT Aq])

The interaction responsible for energy transfer is the Coulombic electron-electron
interaction

e2

V(g1 d2gpar) = /d3T1d3T2¢Ta(T1)¢§,a/(T2) b1 (r1) P27 07 (T2)

drelry — 1ol
and the transfer matrix element consists of four summands. The first one is
1 * *
5 < ‘DTDlATAl‘V‘DTDlATAl‘ >
which give the two contributions

%V(D*D AA%) — %V(D*A*A D)

where the first part is the excitonic interaction and the second part is the
exchange interaction

Figure 105: excitonic and exchange interactions
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The second summand
1 1
—5 < |DTD1ATA1|V|DTD1AIAT‘ >= §V(D*DAA*)
has now exchange contribution due to the spin orientations. Also we note

that for the triplet combination its sign changes. The two remaining summands
are just mirror images of the first two. Alltogether the interaction is

2V(D*DAA*) —V(D*A*AD) singlet

—V(D*A*AD) triplet
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In the triplet case energy can be transferred only by the exchange coupling
(Dexter mechanism). Since this involves the overlap of electronic wavefunc-
tions ie will be important at small distances. In the singlet state the excitonic
interaction allows for energy transfer also at larger distances.

We will now apply a multipole expansion to the excitonic matrix element

e2

V(D * DAAx) = /d3r1d3rz¢i—)*(ﬁ)¢2/ (r2) e =7

(r1)pax(rs)

Figure 106: multipole expansion

We take the position of the electrons relative to the centers of the molecules
ri2=Rio+pi12

and expand the Coulombic interaction

1 _ 1
‘7'1*7'2‘ |R1*R2+p1—p2\

using the Taylor series

|11 pR13IRI(Rp’— |RP/
"+ R CIREIR T2 IRP

for
R=Ry— Ry p=p1—p2

The zeroth order term vanishes due to the orthogonality of the orbitals. The
first order term gives

62

_47re|R|3R /d3p1d392¢3*(rl)¢D(r1>(Pl = p2)¢a(r2)da.(r2)

and also vanishes due to the orthogonality. The second order term gives the
leading contribution

€2 1

IncR|° 2 / & p1d® p2¢ . (11)6p (1) (3| RI(Rp1—Rp2)* = | R (01— p2)) 04 (r2) g 4. (r2)
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Only the integrals over mixed products of p; and ps are not zero. They can
be expressed with the help of the transition dipoles

= /d3p1¢*p*(p1)ep1¢o(p1)

po = /d3P2¢*A(P2)€pz¢A*(P2)

as 9
e

4me|R|®

This is often written with an orientation dependent factor K

(IRIPp1p2 — 3(Rpn)(Rpz))

K
V=_—
|R‘3 ‘Nl”/@‘

Now consider once more Fermi’s golden rule for the transition between vi-
bronic states |[i >— |f >

2m )
k= 7z ZR\ <i|V|f > [*6(w; — wy)
&f

1 | —iw; w .
:ﬁ/za<m AV|f > @it < Vi > dt
if

1 it it
= E/ZPZ- <ile”ntoyen oy > dt

1
zﬁ/ﬁ<wmwp
The Hamiltonian is partitioned as

< Hp.+ Hga VDA

— Ho+V
Vl;*A* HD+HA* > 0

and initially only the donor is excited. Then the average is over the vibrational
states of D x A

1 K?

— / dt < D % Al ()p2(8) 1 (0)12(0)| D % A >

Here we assumed that the orientation does not change on the relevant time
scale (K2 = (2/3)(e?/4me)?) . Since each of the dipole operators acts only on
one of the molecules we have

1 K2

- FRE / dt < D |y () (0)| D >< Alps(t) p(0)| A >
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The two factors are related to the acceptor absorption and donor fluorescence
spectra. Consider the optical transition A — Ax. The absorption coefficient is
proportional to the Einstein coefficient times the photon energy

12

B =
fiw 360h2 i

where the so called line strength of the singlet -singlet transition is given by

1
p=< ATAHe?“l% (IAx Ay > —[Ax Ay >)

= \/i/d3r¢A(er)¢A*
Hence apart from some factors the absorption spectrum is given by
a(hw) =" P <ilp?|f > |*0(hw + hw; — hwy)
i’f
1 ) ) )
= 5 Zﬂ/dt e~ <dleT | f > e rt < fluli >

=5 dte ™ < Ale= 5oy o)A >
7r

_ —iwt A A
57 | dte”™" < Alp(t)u(0)|A >

Similarly the fluorescence intensity of the Donor is proportional to

_ 8mh?
- 3

A B

C

and the properly normalized fluorescence is

1 .
o(hw) = Py dte ™" < D x |u(—t)u(0)|Dx >

1 .
=57 dte™t < D x |u(t)u(0)|Dx >

Let us now make use of the Condon approximation again. Then the dipole
moment does not depend on the nuclear coordinates and can be written as

pw=1A> paa. < Ax|+h.c.
The propagator can be written as
e HHo = |A > e REAHL) < A 4 | Ax > e~ HBata) < gy
and the dipole correlation function becomes

it it
< Anle~wHopen Hopy) Ap >=
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it it
=< Anle= " HopenHoy 4 |Axn >

= pan < Anle” FH0 A >< Alp|Ax >< Ax " T0|Axn >
= |MAA*\26%(EA*’EA) < n|e’%HAe%HA*\n >

But this now involves the correlation function for the nuclear motion and
the absorption spectrum becomes

z(wA*A w)tF
o= 27rh/dte (t)

similarly the fluorescence spectrum

Figure 107: absorption and emission

Finally the energy transfer rate becomes

1
T \R|6|MDD*\ ansl? / dt e!(#a A7 20 D) (1) Fp. (1)

In the frequency domain this will lead to a convolution of the two spectra
The inverse Fourier transformations are

Fa(t) = h/dwei“’ta(w + wasa)

FD*(t) = h/dwe“"t (wD*D — w)
and we find

/ dt e wara=wp D) B\ (1) Fpy, (t)
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*hZ/dteZ(wA*A wD*D)t//dwdw/ i(wtw’)t (w+w)a(wD*D—w’)

= 27rh2//dwdw’5(w + W 4+ wasa — wpwp)(w — waxa)o(w — wpps)

— 201 [ dwa(u)o(w)

For optimum efficiency of energy transfer the maximum of the absorption of
the acceptor should be at longer wavelength.

Figure 108: Energy transfer

VAVE:

Consider now energy transfer in the triplet state. Here the transitions are
optically not allowed and the rate is

k= ,112 dt < V(OV(0) >

The interaction operator now changes the electronic state of both molecules
simultaneously and can be written as®®

= |Dx > |A>Vege < A% | < D|+ h.c

and the rate becomes in the static case (Ve = const)

1
k= = dt < Dx;np.| < A;nale”n FHoy o HUV\A na > |D¥;np, >

58we assume that the wavefunction of the pair can be factorized approximately
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V2 it it
% dt < nD*| < nA|e’ it (E(D*A)+HD*+HA)€h’(E(DA*)wLHDJrHA*)‘nA > |TLD* >

% _it _ _it it _it it
= —cxc [ gt~ n (BDHA=BDA)) «pp je=nHDew o |pp S <nyle”nHaeh Har |, >

_ VEQOUC dt e~ #(wpsp—wasa) p (t)F (t
= h2 Dx A )

which is very similar to the Forster expression. The excitonic interaction is
replaced by the exchange coupling matrix element and the Convolution of the
optical spectra is replaced by the convolution of the Franck-Condon weighted
densities of states.
21.2 coherent energy transfer
If the excitonic coupling is large compared to fluctuations of the excitation
energies, a coherent excitation of two or more molecules can be generated.

21.2.1 strongly coupled dimers

Let us consider a dimer consisting of two strongly coupled molecules A and B
as in the reaction center of photosynthesis. The two excited states

|Ax B >,|ABx >

are mixed due to the excitonic interaction. The eigenstates are given by the
eigenvectors of the matrix
EasB Vv
Vv EAB*

For a symmetric dimer the diagonal energies have the same value and the eigen-
vectors can be characterized as symmetric or antisymmetric

? _1\% (EA*B v ) \/Lﬁl ?5 :<EA*B_V >

RS Vv Ea«B -z 2 Easp+V

The two excitonic states are split by 2V 9. The transition dipoles of the
two dimer bands are given by

1
= (uax
H+ \/5 (,UA ,UB)

and the intensities by

1
|us]? = 5(#?4 + i £ 2papp)

59also known as Davidoff splitting
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For a symmetric dimer p% = p% = p? and
sl = 42(1 £ cosa)

where o denotes the angle between ;14 and pp . In case of an approximately
C5 symmetric structure the components of 4 and pp are furthermore related
by symmetry operations. If we choose the Cy axis along the z-axis we have

UBzx —UAz
KBy = —HAy
UBz HAz
and therefore
0
1 1
— (patpus)=—| 0
\/§ \/§ 2,u/Az
1 1 2:“'141

E(MA —uB) = 7 2MOAy

which shows that the transition to the state |+ > is polarized along the sym-
metry axis whereas the transition to |— > is polarized perpendicularly.

For the special pair dimer interaction with internal charge transfer states
|A+ B— > and |A — B+ > has to be considered. In the simplest model the
following interaction matrix elements are important.

Figure 110: extended dimer model

- e —— —
—— 00 0 —e
A+B- A-B+
UL Uy UL
_—
—o— oo o0 —0—
A*B AB*

The local excitation A+ B is coupled to the CT state A+ B— by transferring
an electron between the two LUMOS

1
< A*B|H|A+B— >= 5 < (A*TAl_A*lAT)BTBlH(B*TAl_B*lAT>BTBl >

= Hawpx = UL
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Figure 109: special pair dimer

excitonic splitting absorption
E

l+> — /

IA*B> _ /
IAB*> 2V
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and to the CT state A — B+ by transferring an electron between the HOMOs

< A*B|H|A—B+ >= < (A*TAl_A*lAT)BTBlH(A*TBl_A*lBT)ATAl >

N[ —

=—-Hyp=Un

Similarly the second local excitation couples to the CT states by

< AB*|H|A—|—B— >= < (B*TBl_B*lBT>ATAlH(B*TAl_B*lAT>BTBl >

DN =

=—-Hyp=Un

< AB*|H|A—B+ >= < (B*TBl_B*lBT>ATAlH(A*TBl_A*lBT)ATAl >

DN =

= Huu B« =UpL

The interaction of the four states is summarozed by the matrix

EA*B v UL UH
7 V. Ep:a U Ur
Up, Uy Faip-
Un Ur Ear_py
Again for a symmetric dimer Ep.4 = Eap.« and Fayp_ = Ea_p+ and

the interaction matrix can be simplified by transforming to symmetrized basis
functions with the transformation matrix

1 1

S= V2 1 1

iz

V2 V2

The transformation gives
E, -V UL —Un
_ E,.+V Up+ Uy
ST'HS =
Ur—Un Ecr
Ur+Un Ecr

where the states of different symmetry are decoupled

H. — E.+V Up+Ugy H - E.,—-V Up—-Ugy
+ UL+ Uy Ecr - U, —-Uy Ecr
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Figure 111: dimer states

|A+B—> , [A-B+> e —_—

e +
U_E UL
o0 “ +
IA*B>, IAB*> s,y

21.2.2 circular molecular aggregates

182

We consider now a circular aggregate of N chromophores as it is found in the
light harvesting complexes of photosynthesis.®® We align the Cy symmetry axis

along the z-axis. The position of the n-th molecule is

. cos(2mn/N)
R,=R/| sin(27rn/N) n=01---N-1
0

which can also be written with the help of a rotation matrix

cos(2n/N) —sin(27/N)

Sy = | sin(2x/N)  cos(2w/N)
1
as
. L 1
Rn = SK]R() Ro = 0
0

Figure 112: circular aggregate

CN

60R.J.Cogdell,A.Gall,J . K6hler, Quart.Rev.Biophys. 39,3(2006) pp227-324
M.Ketelaars et al, Biophys. J. 80 (2001) 1591-1603
M.Matsushita et al, Biophys.J. 80 (2001) 1604-1614
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similarly the transition dipoles are given by
fin = SN fio
the component parallel to the symmetry axis is the same for all monomers

Hn,z = 10,z

whereas for the component in the pependicular plane
tnaz \ _ [ cos(n2n/N) —sin(n2m/N) 10,2
Pny )\ sin(n2w/N)  cos(n2m/N) Ko,y

We describe the orientation of iy in the x-y plane by an angle ¢q:
( 110, ) . ( cos(¢) >
10,y sin(¢)

Hna | _ cos(¢ + n2w/N)
Pny | Hbot sin(¢ + n2w/N)

Then we have

Figure 113: orientation of the transition dipoles

y

\ X\ oo
o /.A -

We denote the local excitation of the n-th molecule by
[n >=|AgAg--- Ay -+ An_1 >

Due to the symmetry of the system the excitonic interaction is invariant
against the Sy rotation and therefore

<m|V|n>=<m —n|V|0 >=< 0|V|n —m >

Without an magnetic field the coupling matrix elements can be choosen real
and depend only on |m — n| . Within the dipole-dipole approximation we have
furthermore

Vim—n| =<m|V|n >=

62

- = 25 o — - - .
= BT (IRmnI [ fin 3(Rmnum)(Rmnun))
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Now we find

Emn = Em - én = (Sﬁ - Sjr\LI)R‘O = S]%(Sjy\/‘n_n - 1)EO

cos((m —n)2n/N) — 1 sin((m —n)2w/N) 1
|Rpn| = R —sin((m —n)27/N)  cos((m —n)2r/N) —1 0
0 0
= R|cos((m —n)2r/N) — 1|
and

fimfin = (SR fi0)(Siefio) = ng Sy~ "™ o

cos(2n(n —m)/N)  sin(2w(n —m)/N) e
=(pa py pz)| —sin@r(n—m)/N) cos(2r(n—m)/N) ,

= 12 + (13 + py) cos(2m(n — m)/N)
and finally
Bounfion = ((S% = Sk)Ro) Sk
= Ry (Sy™ = Sy") SR o = Rg (1= S5 "o
= lz(1 — cos(2m(m —n)/N)) — py sin(2n(m — n)/N))

Bonufin = (SR — S%)Ro) Sicfio

— RI(Sy™ = Sx™)Skmo = RE (S} ™ = o
= pg(cos(2m(m —n)/N) — 1) — py, sin(2n(m —n)/N))
and the product is
(é7ﬂ7lﬁ7rl)<ﬁ77LTLﬁTL> = (/’Ll(l - COS) — My Sln)<_l’l/‘1/(1 - COS) — My Sin)

= pzsin(2m(m — n)/N)? — p2(1 — cos(2m(m — n)/N))?

The interaction matrix has the form

E Vi Vo - Vo W
w Ev i - V3 W
g_| v '
S Va
Vo V3 W1
i Va - Vo Vi En.y

Due to the symmetry the excitonic wavefunctions are easily constructed as

N-1

h>=—=>" e*"n>

n=0
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with 5
k= Nﬂl 1=0,1,---N—1
] NoIN-1
<K[H[k>= + SN et < n'|Hln >
n’=0 n=0
| NoiN-l
— N Z ezknefzk n H‘n,n/‘
n’=0 n=0
substitute
m=n-—n'
to get
N—1n—N+1

1 i(k—k')n+ik'm
SKHk>= 53 > ¢t

n=0 m=n

N-1
ik'm
:5k,k’§ e " Hm)
m=0

= 0.1y (Eo +2Vi cosk + 2Va cos 2k + - - )

For even N the lowest and highest state are not degenerate whereas for all

of the other states
Ey=En_r=FE_4

Figure 114: exciton dispersion relation

E(k)
10=—8 2 8
11=—7 7
12=-6 6
13=-5 5
14=—4 4
13=-3 3
12=-2 2
11=—1
0

The transition dipoles of the k-states are given by

—

1 N-1 1 N-1
= ikn ikn gn —
uk:—fE e un:—h§ e Sy fio
N n=0 N n=0
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;| N1 g cos(2m n/N) + p, sin(2r n/N)
= — Z e® [, cos(2m n/N) — g sin(27 n/N)
\/N n=0 Mz

For the z-component we have
L Nf hn — /Nu.é
\/N/’(‘Z Z € Hz0k.0
For the x,y-component we introduce complex variables

1 )
P, = ﬁ(ﬂk,z Eipg,y) =

A conlt) s o
= — e ( % 5 sin(33*)  cos(%E oy
N n=0 1 Lz

| Nl Lo

_ ikn < 1 _+i2nw/N :l:L +i2nmw/N 0 )

= e e € 12

/ V2 V2 Y

N s

1 N—li _ ; ;
ZWZG(kiQ/N)(% %)(Zy)

n=0

. 1 .
= VNG ton/n i with f14 = ﬁ(ﬂm + ipy)

Figure 115: allowed optical transitions

10=—-8 2 8
11=-7 7
12=—-6 6
13=-5 5
14=—4 4
13=-3 3
= %
11=—
— 0
circ. pol. circ. pol.
-) Vol | &

groundstate
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21.2.3 dimerized systems of LHII

The light harvesting complex LHII contains a ring of nine weakly coupled chloro-
phylls and another ring of nine stronger coupled chlorophyll dimers. The two
units forming a dimer will be denoted as «, 3.

Figure 116: Model of the arrangement of BCHIs for the LH2 of Rps.Acidophila

The arrows represent the transition dipole moments of the BChl molecules.
Ra=26.0A, Rﬁ:27.2A,1/ = 10.3° ,¢o = —112.5°, ¢ = 63.2° ,0 = 84.9°.

The transition dipole moments are

sinfcos(n2Z — v + ¢q) sin 0

fina = b sinﬂsin(n% —v+¢a) | =puSNR(—V + ¢a) 0
cos cos
sin cos(nZZ + v + ¢g) sin @

fing =p | sinfsin(nsF +v+¢g) | = pSNR(+v + ¢p) 0
cos 0 cos 0

from which we also find the relation
fin,g = R.(2v + ¢35 — da)fin,a
with the experimental value
2v+ ¢g — po = 196.3°

which is very close to the value of 180° 4+ 20° which we would expect for
a circle with Cjg-symmetrical positions but alternating transition dipole direc-
tions.

We have to distinguish the following interaction matrix elements between
two monomers in different unit cells:

Va,a,\mhva,,@,m = V,G,a,fma Va,ﬁ,fm = Vﬁ,a,mvﬁ,BJm\
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Figure 117: dimerized ring

The interaction matrix of one dimer is

Ea Vdim
Vdim E,B

The wavefunction has to be generalized as

N—
1
|k, s >= \/—_ Z k1 (Cyolna > +Cyp|np >)

< K's'|H|ks >=

y—t

N-1N-—
1

n=0 n’=0

3

1(kn Kn') Cb (beaHaa|n n’| +Cs ’,BCsBH,Bﬁm n’| + Csr aCé,BHaﬁ(n n’) +Cs ’,BCéaHﬁa(n n'))

N 1N-1
1

_( 6i(kk’)n+ik'm< Hoza|m\ Haﬁm > ( Csa )
N s'a

n:O — Hpom — Hppim| Css

_ . N—-1
Zm:O elkaﬁam Zm:O elkaﬁﬁm Csﬁ

The coefficients Csqand Csg are determined by diagonalization of the matrix

N—-1 ikm py ikm [y C.
:§k,k’ ( Cs'a Cs’,B ) ( Z%:Ole aa|m| Zm 06 aBm > ( s )

I E, + 2V, cosk + - Viaim + eikValg,l + e*ikVa,@*,q +
k= Viim + €~ lkVaﬁl""elkVaﬁ—l'i_ Ea+2V5571COSk+"'

If we consider only interactions between nearest neighbours this simplifies to

o E(x Vdim + e_ikW . o
Hk = ( V:iim + eikW Eﬁ > with W = Va@fl

with the Eigenvalues
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+ W2 4+ 2V W cos k

E,.+ E E., — E3)?
Ek,:l:: 2 Bi\/( 4 IB) +Vd2im

which in the limit of zero energy splitting F, = E3 becomes

Ep+=E.x \/Vinm + W2+ 2V W cos k

and the Eigenvectors are in this limit

1 " , )
—( L ) V4 e "W = |V 4 e FWeix

V2 \ e X
The transition dipoles follow from
s = S N £ R + 05— G
n=0
= \/%(1 + e XR.(2v + ¢p — Pa)) Jf e SR fio,a
n=0

and similar selection rules as for the simple ring system follow for the second
factor

N-1
Z eik",uo,Z =V Ny optcost

=0

==

3

N-1
. 1 . .
+i kn Qn = . 2 —v
( \}5 V2 ) ~ E :ek S fio,e = VNG, £on/npsinfe™ (#a=)

n=0
The first factor determines the distribution of intensity among the + and -
states. In the limit V = W we have
V4e W =1+ F)W =e H2(eh2 L o7 h/2) = ¢k/22V cos k /2
and hence
x=k/2
and the first factor becomes

cos(m + 2w /2N) —sin(m + 27/2N)

1 1 .
— + —e /2| sin(r +21/2N)  cos(m 4 27/2N)
V2 V2 1

\v}

cos(2n/2N) —sin(27/2N)

1 1 ;
:ﬁ$ﬁeﬂk/ﬂ sin(2w/2N)  cos(21/2N) 1

For the z-component the selection rule of k=0 implies
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Mz+ =V 2N5k,ou COSH, Mz — = 0
and for the perpendicular components we consider

N—-1
1 _ ; 1 » o
E(Mk,xﬂmc,y) = ( 7 v 70) (ﬁ(l +e *PR.(20+ ¢p — 6a)) D e’k”SKzuo,a>

n=0

The first part

( 5 5 ,0) <\/%(1:I:eik/2Rz(2u+¢,@¢a))>

L 1 1 ks CQS(W/N) —sin(7/N)
(ﬁ V2 ,0) ﬁ$ﬁe sin(r/N)  cos(m/N)

1 N ,
:§(IZ|:€Z7T/N M2y(1 i 0)
and hence
1 1 N—-1 )
b Hinny) = 5AF SN (100 S S

n=0

1 ) . )
= 5(1 = e”/N_”‘m)v 2N, 27 /v 18I0 Pei(Pa—r)
which is zero for the upper case (+ states) and
1 . . % —v
E(:U'k,z + iftk,y) V2N o v prsin O’ Po =)

for the lower case (- states)
Similarly we find

1 . : —1 —v
ﬁ(ﬂk,z — iftiy) V2N, 2 v pusin O~ (P2 )

for the (- states)
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Figure 118: dispersion relation of the dimer ring
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In the LHC the transition dipoles of the two dimer halves are antiparallel.
The oscillator strengths of the N molecules are concentrated in the three lowest
transitions. This means that the lifetime of the optically allowed states will
be reduced compared to the radiative lifetime of a monomer. In the LHC the
transition dipoles have only a very small z-component. Therefore in a perfectly
symmetric structure the lowest (k=0) state is almost forbidden and has a longer
lifetime than the optically allowed k = 41 states. Due to the degeneracy of the
k = +1 states the absorption of photons coming along the symmetry axis does
not depend on the polarization.

21.3 Influence of disorder

So far we considered a perfectly symmetrical arrrangement of the chromophores.
In reality there exist deviations due to the protein environment and to low
frequency nuclear motion which leads to variations of the site energies, the
coupling matrix elements and the transition dipoles.

21.3.1 Diagonal disorder

Let us first consider a static distribution of site energies for a ring of N chro-
mophores®!. The Hamiltonian

N—-1 N—-1 N-1
H=> |n>(Eo+0E,) <nl+ Y > [n> Ve <]
n=0

n=0 n’=0,n'#n

contains energy shifts § F,, which are assumed to have a Gaussian distribution
function.

P(SE,) exp(—0E2 /A?)

1
NV

Transforming to the delocalized states the Hamiltonian becomes
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S.Jang,R.J.Silbey, J.Chem.Phys. 118 (2003) 9324



