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Part VI
Elementary photoinduced processes

18 Molecular states
In the following we consider a molecule without translational or rotational mo-

tion

18.1 Born-Oppenheimer separation

In molecular physics usually the Born-Oppenheimer separation of electronic (r)
and nuclear motion (Q) is used. The molecular Hamiltonian (without consider-
ing spin or relativistic effects ) can be written as

H =Tn(Q) + Ta(r) + VN(Q) + Ven(Q,7) + Vee(r)
with kinetic energy
K2 02 K2 9?
=S -9 1,37
N z]: 2m; 8@? ! Z 2m Or?

and the Coulombic interaction

Z'Zj/€2
V = VN(Q)+Ven (Q, )+ Vee(r Z 4re|R; — Rj/| Z 47re|R - rk| Z 47re|rk — T

The BO wavefunction is a product

Y(r, Q)x(Q)

where the electronic part depends parametrically on the nuclear coordinates.
The nuclear masses are much larger than the electronic mass. Therefore the

kinetic energy of the nuclei is neglected for the electronic motion. The electronic

wavefunction is approximately obtained from the Eigenvalue problem

(Tel + V)ws(ra Q) = ES(Q)ws(T’ Q)

which has to be solved for each set of nuclear coordinates separately. Using now
the BO product ansatz we have

st (Ta Q)Xs (Q) = TN"Z)S (Ta Q)XS(Q) + Es (Q)d)s (Ta Q)XS(Q)

. 92P,(r,Q) | Ix.(Q) D,
2”%'(8@) 0 oa, a@)

The sum constitutes the so called nonadiabatic interaction V,,.q . If it is
neglected in lowest order the nuclear wavefunction is a solution of the Eigenvalue
problem

= 1hs(r, Q)(Tn + E4(Q))xs(Q) — Z

(TN + Eb(Q))Xa(Q) = EXS(Q)
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often the potential energy E<(Q) can be expanded around the equilibrium con-
figuration Qq, *?

1 0?
Es = Es s 5 7E5 + -

Within the harmonic approximation the matrix of second derivatives is diago-
nalized and the nuclear motion becomes a superposition of independent normal
modes Q, with reduced masses M, and frequencies w, 43

0 Mﬁs) 7(]“)2
FQ) = B0 + 3 AT

w 2
2 @

Xs (Q) = H Xs,rmn(r) (Qr)
and the total energy of a molecular state is

1
0 (s) -
E; + % hw,® (n(r) + 2)

For biological molecules the vibrations form a very dense manifold of states.This

is often schematically represented in a Jablonsky-diagram #*
Figure 90: Jablonsky diagram
E
S,
T,
S
T,
So

18.2 Nonadiabatic interaction

The nonadiabtic interaction couples the adiabatic electronic states.*®> If we

expand the wavefunction as a linear combination of the adiabatic wavefunctions
which form a complete basis at each configuration Q

U =>" Ca(r,Q)xs(Q)

42which will be different for different electronic states s in general

43all these quantities will be different for different electronic states s of course
44which usually also shows electronic states of higher multiplicity
45sometimes called channels
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Figure 91: Bacteriopheophytine model
The normal modes are calculated quantum chemically. The densitiy of vibra-
tional states is evaluated with a simple counting method
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we have to consider the nonadiabatic matrix elements*6

ymad / dr dQ X (Q)s (7, Q) Vina (1 Q)X (Q)
K2 52
== ; % / dQ Xs’ (Q) XS(Q) /drws’ (T7 Q) (@ws(r, Q))

Z% [ dax.@ (%xs@)) [arvanQ) (%j%(w))

The first term is generally small. If we evaluate the second at an equilibrium
configuration Q) of the state s and neglect the dependence on Q *"we have

naa,e h2 a
Vit~ —Vg,s/d’ lz om, /dQ Xs (@) (T@XS(Q))

veste = [ nQ®) (a%_zps(w(o)))
J

Within the harmonic approximation the gradient operator can be expressed

as
0 M,w,

0Q, V 2
and the nonadiabatic matrix element becomes

R [ Mw
nad _ __yynadel rWr L ,
Vs’,n(r’)ﬁs,n(r) - Vs,s’ oM, 2h /dQ (1;[ Xs'r'n(r )) X

X H Xs,r"" n(r'") (\/ TL(T) + 1Xs,r,n(r)+1 + V n(r)Xs,r,n(r)—l)

!

(b —b,)

T

This expression simplifies considerably if the mixing of normal modes in the
state s’ can be neglected (the socalled parallel mode approximation). Then the
overlap integral factorizes into a product of Franck-Condon factors

[ Mw
nad _ nad,el r=r
Vimensmir) = Ve ot \ Tan *

X H FC’f,/S(n/,n) (\/nr + lFCf,S(n’T, n.+1)+ \/nTFC’f/S(n’TnT — 1))

r!#r
with

Fcaf/s(n;nr) = /dQ XS/’I‘,’N/(T)(Q) Xs,r,n(r) (Q)

46Without a magnetic field the molecular wavefunctions can be chosen real valued.
47this is known as the Condon approximation
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19 crossing of two electronic states

19.1 adiabatic and diabatic states

We consider the avoided crossing of two electronic states along a nuclear coor-
dinate Q . The two states are described by adiabatic wavefunctions

% (r, Q)
and the wavefunction

Ui, Q1 (Q) + 954 (r, Qx2(Q)

will be also written in matrix notation as
ad r ad r, ( Xl(Q) )
(v @) vs'rnQ) ) (XN
From the adiabatic energies
/dT wgd(Tel + V) g’d = 55,S/Egd(Q)

and the nonadibatic interaction matrix elements

K2 ad 0 u 0
7% /dT 1/Js (Tv Q) (%) ’l/)s’d(rv Q)%
_ hQ nad a
=5 Ve (Q)%
we construct the Hamiltonian for the nuclear wavefunction
2 02 K2 0
H(Q) = _%TQQ + Ead(Q) - %Vﬂad(Q)%
with the matrices
od B Ead(Q) nad B nad(Q) Vnad(Q)
BQ) = [ BRCe) ] )= { Q) VE(Q)

and the nuclear part of the wavefunction is determined by the Eigenvalue

T ()1

We want to define a new basis of so called diabatic electronic states for which
the nonadiabatic interaction vanishes. Therefore we introduce a transformation
with a unitary matrix

and form the linear combinations
v = (0 (rQ) v(nQ) ) = (U3 Q) ¥l Q) ) C = uie

The nonadibatic interaction in the new basis is
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/d?" wdzaT(r, Q)@wdza(@) _

Opd oC
_ toadt [ 27 ad” ™~
f/drC’w <6Q C+y 6@)
+9C
oQ

which vanishes if we chose C to be a solution of

80 . nad
90 —ViQ)C

which can be formally solved by

O = exp { [ V"“d(Q)dQ}

Q

ctvredQ)C + ¢

Now generally we have

iad

na _ ad
Vi@ = [ darusitr Qg5

_i ad ad _ (i ad) ad
= 8Q/drws (T,Q) s (T,Q) /d?‘ 8Qw5 s’

=0 —ViIQ)

and therefore the matrix V"¢ is antisymmetric

nad __ 0 Vlgad
s ( Vgt o

end the exponential function can be easily evaluated to give

_ COSC(Q) SIHC(Q) _ > nad
¢= ( —sin¢(Q) cos¢(Q) ) §(Q)/Q Vi5"(Q)d@Q

The matrix elements of the electronic hamiltonian are

/ dr TN (T + V) = / dr Ty 1 (T + V)yiC

H=CtE“(Q)C

~( cos?CE? +sin® CES?  sin( cos (B! — E$Y)
 \ sinCcos (B¢ — E$Y)  cos? CES? + sin? (B

At the crossing point

(cos2 Co — sin® CO)(Efd — Egd) =0
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which implies
1
cos? (o =sin? (= 3

Expanding the sine and cosine functions around the crossing point we have

§%<%+(E2E1)KCO)+'“ (E1E2)(%+(CC0>2+"'))
(Br = B2)(5+(C =) +-) BB — (B — B)(¢—Co) + -

and expanding also the matrix elements
ad n A
EQ)=E+ 5 +u(Q- Qo)+

- A
EgdZE—§+U2(Q—Q0)+“'

¢— G =-V5Q — Qo)

where Ais the splitting of the adiabatic energies at the crossing point, the
interaction matrix then becomes

V1 + v2 —Vi5*(Qo)A(Q — Qo) 3 ) .
5 @ ( 2 Vf%’ld(Qo)QA(Q —Qu )"

We see that in the diabatic basis the interaction is given by half the splitting of
the adiabatic energies at the crossing.

H=F+

Figure 92: curve crossing

19.2 Semiclassical treatment

Landau and Zener investigated the curve crossing process treating the nuclear
motion classically by introducing a trajectory

Q(t) = Qo+t
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where they assumed a constant velocity in the vicinity of the crossing point.
They investigated the time dependent model Hamiltonian

o= (O e )= (T )

and solved the time dependent Schrédinger equation

ih%< g)H(t)<2>

which reads explicitely

., Oc

’Lha—tl = E1 (t)Cl + WCQ
. Oc

ma—f = Fs(t) + Wey

Substituting
¢ = ale#fEl(t)dt

Co = GQe% fE2(t)dt
the equations simplify

3}
zh% — Wein J(B2)-Er(t)dt

ih% = We & J(B2()—Ea(t)dt

Let us consider the limit of small W and calculate the transition probability
in lowest order. From the initial condition a;(—o00) =1, az(—00) = 0 we get

¢ , ., OAEt?
/O(EQ(t)—El(t))dt =5

1 i 1 9AE t2 w 21h
GQ(OO) ~ —W/ e inat 2dt = — — A
ih o ih —ﬁ%—tE
and the transition probability is
21 W2
Py = |a2(oo)|2 = FL|6AE
ot

Landau and Zener calculated the transition probability for arbitrary coupling

strength
2?2
PlléZ =1- exp (W)
ot
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Figure 93: velocity dependence of the transition rate
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19.3 application to diabatic ET

If we describe the diabatic potentials as displaced harmonic oscillators

mw? mw?
B (Q) = TQQ Ey(Q) = AG + 5 (Q— Q1)
the energy gap is with

2\

Q= —

mw

mw?
EQ—EleG+ B (Ql—QQlQ):AG—i—)\—vam)\Q

the time derivative of the energy gap is

0(E2(Q) — Er(Q)) oQ
En = —wV 2m)\g

and the average velocity is

_0Q [ el [T
ot - ffooo e—mvz/QkT - m
The probability of curve crossing during one period of the oscillation is given
by 2Pj5 (see figure).

Figure 94: multiple crossing
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Together this gives a transmission coefficient

2?2 - 2nW?2 21 1
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and a rate of

k . 27TW2 1 e*AGa/kT
b \Ar\ET

19.4 crossing in more dimensions

The definition of a diabatic basis is not so straightforward in more dimensions.
The reason is essentially that the gradient aiQiC has a longitudinal as well as
a transversal component (in three dimensions these are the components with
div = 0 and rot = 0 . Therefore only part of the nonadiabatic coupling can be
eliminated. Often a crude diabatic is used which refers to a fixed configuration
near the crossing point and does not depend on the nuclear coordinates at all. In
a diabatic representation the Hamiltonian of a two-state system has the general

form
_( Hu(Qi) Hi2(Q)
i = ( Hi2(Qi)"  H2(Q:) )

A crossing of the corresponding adiabatic curves (the Eigenvalues of H) is very
unlikely in one dimension since it occurrs only if simultaneously the two condi-
tions

Hi1(Q) — Ha2(Q) = Hi12(Q) =0

are fullfilled.#® In two dimensions this is generally the case in a single point
which leads to a so called conical intersection. This type of curve crossing is
very important for ultrafast transitions. In more than two dimensions crossings
appear at higher dimensional surfaces. The terminology of conical intersections
is also used here.

Figure 95: conical intersection

20 Dynamics of an excited state

We want to describe the dynamics of an excited state |s > which is prepared e.g.
by electronic excitation due to absorption of radiation. This state is an Eigen-
state of the diabatic Hamiltonian with energy E?. Close in energy to |s > there

48if the two states are of different symmetry then Hi2 = 0 and a crossing is possible in one
dimension.
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is a manifold of other states {|/ >} which are not populated during the short
time excitation since from the ground state only the transition |0 >— |s > is op-
tically allowed. The states I are weakly coupled to a continuum of bath states*®
and therefore have a finite lifetime. The bath states will not be considered ex-
plicitely. Instead we use a non hermitian Hamiltonian for the subspace spanned
by |s > and {|l >}. We assume that the Hamiltonian is already diagonal®® with
respect to the manifold {|/ >} which has complex energies 5!

Yy
Elo =¢ —23

This describes the exponential decay ~ e 1'? of the l-states into the continuum
states.

Figure 96: Dynamics of an excited state
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The model Hamiltonian thus has the form

E) Va - Vi
. Vie EY
H=H"+V = .
VLS EL

20.1 Green’s formalism
The corresponding Greens operator or resolvent °2 is defined as

1

T L. < n|

GE)=(E-H)7"=>"|n>

For a hermitian Hamiltonian the poles of the Greens operator are on the real
axis and the time evolution operator (the so called propagator) is defined by

G(t) = G4 () - G-(1)

49for instance the field of electromagnetic radiation

50for non Hermitian oerators we have to distinguish left- and right Eigenvectors
51This is also known as the damping approximation

52gee for instance E.N.Economou , Green’s functions in quantum physics, Springer
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ocotie
Gat) = — / e F1G(E)

2mi ocotie

Figure 97: integration contour
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For times ¢t < 0 (¢t > 0)the integration path can be closed in the upper (lower)
half of the complex plane and therefore

G+ (t) =0 for t<0

G_(t)=0 for t>0

and we can express

We use the relation

1 1
i =P iw5(E — E,,
Ly — E—En+l7r( )
to find
5 1 * T S(E_E,)e-EtiE
G(t):Q—m,Z|n>P N EE_En<nI+ZIn> N (E—Ey)e <nl

i t
= Z [n > e < n| = exp (—H)
ih

Hence G is the time evolution operator for ¢ > 0 . For times ¢ < 0 there
are additional interactions which prepare the initial state

Pt =0)=ls >
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For a non hermitian Hamiltonian the integration contour can be chosen as the
real axis for G (t) which now becomes the Fourier transform of the resolvent.
Dividing the Hamiltonian in the diagonal part H° and the interaction V we
have
G '=E-H°
Gl'=E-H=G" -V
Multiplication from left with G° and from right with G gives the socalled Dyson
equation
G=G"+Gva
We iterate that once more
G=G"+GV(G"+GVG) =G* + GVG° + GVGv @
and project on the state |s >
< 5|Gls >=< 5|G s > + < s|G°VGO|s > + < s|G'VGVGs >
Now G° is diagonal and V is non diagonal. Therefore
< 5|GVGOs >=< 5|Gs >< 5|V]s >< 5|G%s >=0
and

< s|GVGOVG|s >=< 5|Gs >< s|V|l >< I|G°|l >< I|V]s >< s|G|s >

Gss = Ggs + Z Ggs‘/slGlOl‘/lsGss
l

GO, _ 1
GO >, VuGYVis  E—E°— R

S

Gss =
1
with the level shift operator
[Va|?
Rs = _—
; E—¢+ill

The poles of the Green’s function G, are given by the implicit equation

0 [Va|?
E _E +ZE EO

Generally the Green’s function is meromorphic and can be represented as

> E—-E,
where the residuals are defined by
Ap = Jlim Gss(E)(E — Ep)
The probability to find the system still in the state |s > at time ¢ > 0 is
Py(t) = | < slG(t)]s > |* = |Gus(t)]

where the propagator is the Fourier transform of the Green’s function

~ 1 * B Ep
Grst) = —./ HG(B)E = 0(t) Y Ay Ft

2m J_ o -
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20.2 Bixon Jorner model

We want now to study a simplified model which can be solved analytically. The
energy of |s > is set to zero. The manifold {|l >} consists of infinitely equally
spaced states with equal width

r
E?:a—i—lAe—zE

and the interaction V; = V is taken independent on [. With this simplifica-
tions the poles are solutions of

1= e

OoEpfa—lAe+ig

E, =
l

which can be written using the identity %°

> 1

cot(z) = Z Py

l=—0c0

V2 T
E, = A—:cot (é (Epa+i§))

For the following discussion it is convenient to measure all energy quantities
in units of 7/Ae and define

as

a=ar/Ae T =Tar/Ac
E, = E,ar/Ae 'V =Var/Ae
to have _ _
~ ~. il ~ ~ T
Ep:Ep — TP VQCOt{EpO[+Z§}
which can be split into real and imaginary part

Er sin(2(E} — &))
V2 cosh(I, —T) — cos(Z(EI’; —a))

r, sinh(fp -T)

Cav2 cosh(f‘; -I) - cos(2(E; —a))

We have to distinguish now two limiting cases.

53The cotangens has single poles at z = I7 with residues lim,_,;, cot(z)(z — Im) = 1
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The small molecule limit

For small molecules the density of state 1/Ae is small. If we keep the lifetime

of the l-states fixed then I is small in this limit. The poles are close to the real
o 54
axis.

Figure 98: small molecule limit

graphical solution of x = cot(x — 1)

We approximate the real part by solving the real equation

EI(DO) = V2 cot (EI(DO) - &)

and consider first the solution which is closest to zero. Expanding around
EI(DO) we find

- . ~ _ T
B 4 ¢ =72 cot <E§30)+£—a+%>

~ ~ ~ ~ 2 1)
— 72 cot (E§£> _ a) ~ V2(1 + cot (E§3> — a) )€ + %)
which simplifies to

£E= —‘72(1 + cot (EI(DO) — &)2)( s

and has the solution

which in the case V small but V > EI(DO) gives
T, ~ 72T

~ 2
prﬂ' A—€2F

54we assume that o # 0



158

20 DYNAMICS OF AN EXCITED STATE

The other poles are approximately undisturbed

r

—

I

r2

2
Er2
V2

a+
E
V2

14+ V24

V24

and the residuum of the Green’s function follows from

)

i
2

—a+

E, + dE) — V2cot(E, + dE

(

1

+E,

S
dE 2

—a+

(14 V?2(1+ cot(E,

dE

shows that only the contributions from poles close to zero are impor-

which

tant.

This condition is usually fullfilled

4
e
su..u. o0
s

Figure 99: complex cotangens
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Consider now the limit I') > 1 and V > 1.

The statistical 1
in biomolecules.
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Real and imaginary part of cot(z + 3i) are shown
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If the poles are far away enough from the real axis, then on the real axis the
cotangens is very close to —1 and

Ver T r V2r
= — | E, — ) — ~ —1
Re="x COt(Ae( v O‘“z)) "Ae

and thus .
Gss E)= ———F—
(&) E+iZx
and the initail state decays as
P@) =| %:Jtﬁ — ¢kt
with the rate
2V2 2V?2
k = — = p
hAe h

20.3 A more general ladder model

We consider now a more general model where the spacing of the states is not
constant and the matrix elements are different. The Hamiltonian now has the
form

Ey Vg - Vo
Vis Ex

H= )
VLS EL

We take the energies relative to the lowest l-state

Es:E0+AE El:EO+€l

Figure 100: more general ladder model

We start from the Golden rule expression

21V3 212
k=Y Tél(s(Es —EB)=Y_ Tla(AE —a)
l l

where the density of final states is given by

p(Es) = 0(Es—E) =) 6(AE—¢)
l l

We represent the delta function by a Fourier integral we  should
check the
sign in the
exponent
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1 [ _
O(w) = —/ e it

21 J_ o
E 1 .
=~ L (E) = — Ft
w=g OB =g | e
2 poo .
k= % ety

We introduce

and write the rate as -
k= / dt efi,ilAE t+In(z)

o]
This integral will now be evaluated approximately with the saddle point
method®.

20.3.1 The saddle point method

The saddle point method is an asymptotic method to calculate integrals of the

type
/ o) gop

for large n. If the function ¢(z) has a maximum at z( then the integrand
also has a maximum there which becomes very sharp for large n. Then the
integral can be approximated by expanding the exponent around xg

1 d?(n¢(x))
né(z) = né(zo) + 3@ e (z —m0)® +
as a Gaussian integral
e 21
@) dr ~ ne(x _
e = wsteo [

The method can be extended to integrals in the complex plane
/ 1) gy — / R(9(2)) inS(6(2)) g,
c c

If the integration contour is deformed such that the imaginary part is con-
stant, then the Laplace method is applicable and gives

/ () gy — ginS(6(z0)) / R(6(2)) g
C ’

55also known as method of steepest descent or Laplace method
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The contour C’ and the expansion point are determined from
¢'(20) =0
d(2) = u(z) +iv(z) = u(z) + iv(zp)

Now consider the imaginary part as a function in R2. The gradient is

v Ov
vu(z,y) = (%a 6_y)
now for an analytic function ¢(z + iy) we have
u(z+dz+iy+idy)+iv(x+de+iy+idy) — (u(z+iy)+iv(z+iy)) = a(ua—; ) dz+ 8(ua—|?; w)

which can be written as

do .~ do ‘
7 dz = 7 (dz + idy)
only if
i@(u +iv)  O0(u+iv)
ox N dy
or

ou Ov Ov ou

or oy or 0y
Hence the gradient of the imaginary part
Ju Ou
vv(m,y) - (_a_ya %)
which is perpendicular on the gradient of the real part

ou Ou
)

VU(%Z/) = (%a a_y

which gives the direction of steepest descent.
The method is known as saddle point method since a maximum of the real
part always is a saddle point which can be seen from the expansion

B(2) = 0(z0) + 50 (20)(z — 20)" + -

now
dz? = dz? — dy® + 2idx dy

and for the real part we find

R(4(2)) = R(e(20)) — % (R(9" (20))(d2® — dy?) — 23(¢" (20))d dy)

e A% 1) (4)

The Eigenvalues of the matrix are

£V/R(@7)? +3(97)? = £|¢|

dy
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20.3.2 Application to the ladder model

The saddle point equation for the ladder model becomes

; 1
—lAE—kan

=0
h dt

and calculating the derivative

dlnzi ZV | b€ oy

we find

Since AF is real, we look for a saddle point on the imaginary axis and write

its
e —-p

where the new variable § is real. The saddle point equation now has a
quasi-thermodynamic meaning

V2
AE =~ 72 Gle_ﬁel =< € >

where 3 plays the role of 1/kT and g, = V3 /h? that of a degeneracy factor. The
second derivative relates to the width of the energy distribution

2
Plnz d [z dzgz dlnz i€
_ — _ e Ba_ _— 2 —Be
at? dt< 2 2 ( ) Zgl 2 zl:glhe

= <62>+<€>2
- h? h

We approximate now the integral by the contribution around the saddle point.

. /oo dt e~ #AEt+In(z) _ Z(ts)eﬁAE\/ 2mh?2
<e2>—<e>?

oo

2
- &eﬂmAE)\/ 27
— h <e>—<e>?

For comparison let us consider the simplified model with Vi =V ¢ = A€

. Then
1

V2 & V2
_ 7 —plAe _ ¥
Z‘mge T h21- e PAc

The saddle point equation is

0
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which determines the 'temperature’

1 Ae 1
=—h(l+-—)~ —
f= R+ 35~ 35
if Ae < AE . Then
Ae ~ A
SO >= RJAE _1 E
2 Ae2eAe/AE
<g>—-<e>’=_—Inz= € > ~ AE?
op (ede/AE 1)
v:ooo _V2AE

) = 7 T —&e/aE ¥ 77 Ac

and the rate becomes

o VEZAE | [2xh2  27V? | |1
T A S VAEZ T A ¢ Von
where the numerical value of e/v/27 = 1.08

20.4 The displaced oscillator model

We want now to discuss a more specific model for the transition between the
vibrational manifolds of two electronic states. We assume that the Born Oppen-
heimer separation of nuclear and electronic motion is applicable. Furthermore
we use the Condon and the parallel mode approximations to write the rate ex-
pression as a product of an electronic matrix element and Franck-Condon factors
of the independent normal modes®®

VG =V2[[FCr(ni,ni)

€ = Zni?‘wr € = anﬁwr
T T

Figure 101: displaced oscillator model

56The zero point energies are included in AE
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The rate expression follows from averaging over the possible initial states
and summing over the possible final states

27V2 . . ,
_ 7 1 f ? f
b= T 20 PUnEITFC i n])AR + () —nfhr)

i S
ny,Ny

In the following we assume a canonical distribution of initial states
—n’ hw, /KT

Zy

Py =] ¢

T

The Franck Condon factors are the overlaps of oscillator functions
FC.(ni,nl) =] <nilnf > > =<ni|nf ><nf|nt >

Let us first consider the zero temperature limit.
Replacing again the delta function by a Fourier integral we have

V2 [ _iap ; itnd ;
k:F/ dte 2PN " < 0i[nf > efmrer < nfl0] >
o -
i

V2 o —1 . it : V2 o —1
= ﬁ/ dte ™ AF < 0 Hr|0f >= ﬁ/ dtem AER(t)

where Hy is the Hamiltonian of the nuclear vibrations in the final state.

20.4.1 The time correlation function F(t)
maybe we re-
In the approximation of independent displaced oscillators we have place A\, by

gr ?
Hy =Y hwblb, Hy =Y hwe(bl — A)(byr — Ar)

Consider the following unitary transformation

A— eA(btb)bTbefA(btb)

and make a series expansion

dA
A=A A= 4.
(0) + d}\+

where the derivatives are
A
O |ao = 16— b,518] = BT, ] + [ b, b1

=—(b+0b")
d’A
e h=0= [b" — b, [b" — b, b70]]

= —[bf —b,b" +b] =2
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drA
WlAZOZO fOI"I’LZS
and finally
A=bTb—AbT+b) + 2= (b = N\)(b— N
Hence

Hy = XA 0l=br) f o= ZAr(0L=br) — Z A (01— iy bl e~ A (01 =br)

and

F(t) =[] F(t)
with
Fo (1) =< 0l Gl Ao bip, b e Ae(bl=b,)
() =< 0]e 7P exp %thbrbT e =)0 >

Now consider
A = P bpe =BT 0 = —iwt

Making again a series expansion

dA

Tyt —
T [bT b, b] b
d?A N
d—ﬁQ_[b b,—bl=b etc.
2 N9
A:b(1*5+ﬂ2 f~~-):b(lJrithr@jL...):beiwt

and taking the hermitian conjugate we have also

e iwtb bbJrezwtb b _ bTe wt
and therefore

” _ _
F.(t) =< 0] exp {%m}rbibr} exp { A (b et — b,eit)} e MOt |g >

=< 0]exp { A, (b e ™" — b.e™")} e"\r(bl—bﬂm >

since the first exponential gives one.
As the commutator |b,bT] = 1 is a constant we can write the exponentials
as products according to the rule

A+B A

= eAeBe2(A.B]

€

exp {)\T(b;refm - brei‘”t)} = exp {/\Tb;refi“’t} exp {—/\Tbrei‘”t} e N/2

(bl bt a2
o~ Ar(bl=br) _ p=Acbl Arby ,—2?/2
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and we find 2 B +
Fr(t) = 67A < 0|67Arbr6 eiArbr |0 S
and from
eAeB = BeAe—[B:A]
Fr(t) = e_/\ < O|e T e /\Tbreiwtekzeiwtlo S
Fr(t) — e*)\ZeAZeiwt _ egr(t)
with

gr(t) = N*(e™ — 1)
Expansion of F,.(t) gives
A2(eiwt 1 27 A2 it
et e 7)12—6 e’

!
R

which corresponds to a progression of overtones niw with Franck-Condon
factors

FC(0,5) = —e~
At finite temperatures the correlation function generalizes to
ZP ) < nilemhe _"f)|n >< nf|n® >
which can be written as

1 —it it
F.(t) = Z—Tr(efﬁH’;eTHie?Hf)

T

which after some more operator algebra can be evaluated as®”
F(t) = exp {N* [(m+ 1)(e™" — 1) +m(e ™" —1)] }
with the average phonon number

1
efhw — 1

n =

Finally considering a large number of displaced oscillators the rate expression
becomes

2 poo _
k:%/ dten A eXp{Z)\ (M + 1)(e™r" 1)+ﬁr(e“"rt1)}}

For discussion let us first apply

571n the literature sometimes a different sign convention for the Fourier transform of the
delta function is used which leads to a sign change of the frequency here.
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20.4.2 the short time approximation

expanding the oscillating functions
w2t?

et =1 + jw,t — —7"2

we have the approximation

vz o= SUAE 2, 20 wyt?
kzﬁ/ dte™ 2% exp ;)\Tzwrt—g)\r@nr—i—l) 5

— 00

— V_2 2 B (A_hE — Zr )‘12"wr)2
TR\ T A2w2@a, + 1) P T 2(%, AW (20, + 1))

T T

and with the definition of reorganization energy

E, = Ahw, =< hw, >

and width

A% =" N (hw, ) (20, + 1) =< (hw)? >

LV [ (AE — E,)?
“ 2\ ar P 2A2

Figure 103: Gaussian envelope

this takes the form

Er AE

If all modes can be treated clasically Aw, < kT the phonon number is
i, = kT /hw, and

A? ~ 2/<:TZ Nhw, = 2kTE,

which gives the rate in the classical limit the Marcus expression

L2V’ 1 (AE — E,)?
= —— —_— X e ————,
n \ axkTE, P AE kT
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20.4.3 Application of the saddle point method

We want now to apply the saddle point. The saddle point equation is

—%AE = Z A7 [iwr (T + 1)e™r" — iw, e "]

= ’LZ Nw, [(ﬁr +1)e Mrt - ﬁre“‘”t]
which we solve approximately by linearization
—iAE =ih Y ANw, [1 - (20, + 1)iw,t + -] =

t
=iFE, — A%< +...
7 th

_AE—E,
tszilhT

At the saddle point we have

ts s — . _ .
D AE+ g(ts) = —%AE + Z N (7, + 1) (iwpts) — Tpiwpts + - -]

h
it A? 2 its —(E, — AE)?
=—ZAE+iY Nut,——2=-"T(AE-FE,)-A*—~—" """
BT lzrj s = Ty T T ) A
_ (AE-E)?
N 2A2
the second derivative is
. . A2
=D Nw! (A + Ve 4 mert] = —m

and finally the rate is again

RGN Pl (AE — E,)?
e\ A P 2A?

At low temperatures kT < hw the saddlepoint equation simplifies to
AE =Y ANhwer!
T

To solve this equation we introduce an average frequency (major accepting
modes) @ with

> Nhw, =Y Nhis = Shi

which after insertion into the saddle point equation gives the approximation

AE = Shie'ts®
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with the solution

The second erivative is

= Nwlerts n — SR AE/SIE) - —%AE&

and the rate is

FL2 A—E@ exp = In + S

V2 2mh 7&1 AFE AFE _g
h w Shw Shw

V2 21 AFE AFE
b= AEmeXP{S% [lnsm 1”

which is known as the energy gap law



