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6.8.2 reaction controlled limit

If on the other hand ks < k41 an equilibrium between reactands and reactive
complex will be established
C{AB} _ k1

K=—

A+B={AB
+ { } cACB k_1

Now the overall reaction rate is
éc = kQC{AB} = kgKCACB

determined by the reaction rate ko and the constant of the diffusion equilibrium

7 kinetic theory - Fokker-Planck equation

We consider a model system (protein) interacting with a surrounding medium
which is only taken implicitly into account. We are interested in the dynamics
on a slower time scale than the medium fluctuations. Then the interaction with
the medium can be approximately substituted by the sum of an average force
and a stochastic force.

7.1 stochastic differential equation for Brownian motion

The simplest example describes 1-dimensional Brownian motion of a big particle
in a sea of small particles. The average interaction leads to damping of the
motion which is described in terms of a velocity dependent damping term

dz—g) = —7v(t)

This equation alone leads to exponential relaxation v = v(0)e™7* which is not
compatible with thermodynamics, since the average kinetic energy should be
2y? = EL in equilibrium. Therefore we add a randomly fluctuating force which
represents the collisions with many solvent molecules during a finite time interval

7 . The result is the Langevin equation

du(t)
dt

= —yv(t) + F(t)
with the formal solution
t
v(t) = voe "t + / IR dt!
0

The average of the stochatic force has to be zero to because the equation of
motion for the average velocity should be

d<wv(t) >
dt

We assume that during 7 many collisions occur and therefore forces at dif-
ferent times are not correlated

=—y <o(t) >

< F@)F(t') >=C4(t —t')
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The velocity correlation function is
, t t’
< v(t)(t') >= eI [ 2 +/ dtl/ dty e’ Ft2) < P(t)F(ty) >
0 0
without loosing generality we assume t' > t and substitute to = t; + s

t t'—t1
= Uge—v(tﬂ/) 4 e+t / dtl/ ds eV (2tits) F(t,)F(t, + s) >
0 —t1

t
= U%eiﬁY(Ht,) + eiﬁY(Ht,)/ dt, e Cdt
0

2t
et | e=rer) 1

2y
The exponential terms vanish very quickly and we find
=4 &

<o(t)v(t') >—e 5

Now C can be determined from the average kinetic energy as

m<v:> kI mC 2vkT
a2 72 2 N2 o2
2 2 2 2y m

The mean square displacement of a particle starting at zo with velocity v
is

< (2(t) — 2(0))? >=< </Ot dtlv(t1)>2 >= /Ot /Ot < v(ty)v(ts) > dtydts

t t
— / / (vgeﬂtlﬂz) + ge'ﬂtltﬂ) dt
0 Jo m
t ot o 2
/ / o=/ gp gy — <£)
o Jo v

and
t t t t1 2 2
/ / e Mttt dry = 2/ dtl/ e 1ty = 2 — —(1—e™")
0o Jo 0 0 Y Y

we obtain

and since

KT (1—e ") 2kT . 2kT
H—z(0))2 >= @2 - =) —— 2 4 2 2 (1—e
< (a(t) = () >= (0 — L) Lt (e
If we started with an initial velocity distribution for the stationary state <
v >= kT /m and the first term vanishes. For very large times the leading term
10
kT
=

is
< (z(t) —x(0))>>=2Dt D

10T his is the well known Einstein result for the diffusion constant D
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7.2 probability distribution

We discuss now the probability distribution W (v). The time evolution can be
described as

W(o,t+7) = /P(U,t Ll W, D) do

To derive an expression for the differential OW (v,t)/0t we need the transition
probability P(v, ¢+ 7|v',t) for small 7 . Introducing A = v — v’ we expand the
integrand in a Taylor series

P, t + 7", )W (V' t) = P(v,t + 7v — A, )W (v — A t)

n! v

700(,1)71”2”1} T|lv v
7;} A <a> P(v+ At + 7|, )W (v,1)

Inserting this into the integral gives

W(v,t+7) = nio HR” (a%)n </ A"P(v+ At + T|U,t)dA> W (v,t)

n:

and assuming that the moments exist which are defined by
Mo (0, £,7) =< (0(t+7) = 0(£)" >}o(p)mer= / (v — /)" Po,t + ]0/, )dv
we find
="
!

n!

W(v,t+7) = 2 <a%>nMn(v,t, )W (v,1)

Expanding the moments into a Taylor series

1 1
— (n)
n!Mn(v,t,T) = n!Mn(v,t, 0) + D" (v, t)T +
we have finally!'!
W, t+71) - W(v,t) = EOO: _9 nD(")(v,t)W(v,t)T+-~-
’ ’ T v

which gives the equation of motion for the probability distribution'?

o0

% = ; ((%) D™ (v, )W (v, t)

If this expansion stops after the second term!® the general form of the 1-
dimensionsal Fokker-Planck equation results, written now with the more con-
ventional argument x

OW (z,t) 0

0?
Py (2 p@ = _p®
5 ( 893D (x,t) + agg2D (:C,t)) W (z,t)

1 The zero order moment doe not depend on 7
12This is knwon as the Kramers-Moyal expansion
131t can be shown that this is the case for all Markov processes
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7.3 Diffusion

Consider a particle performing a random walk in one dimension due to collisions.
We use the stochastic differential equation!*

dx

EZUO‘Ff(t)

where the velocity has a drift component vy and a fluctuating part f(¢) with
<f)>=0 < fOFF)>=qb(t =)
The formal solution is simply
t
z(t) — z(0) = u0t+/ f(@Hat
0
The first moment is

Mi(xo,t,7) =< x(t + 7) — 2(t) >|2(t)=20= V0T + / < f(t") > dt'o
0

D(l) = Vo

The second moment is
Mg(l‘o,t, T) = U§T2 + ’UQT/ < f(tl) > dt’ +/ / < f(tl)f(tg) > dt1dts
0 o Jo

The second term vanishes and the only linear term in T7comesfrom the double

integral
T T T T—11
/ / < f(t) f(t2) > dtrdts :/ dtl/ qd(t)dt' = qr
0 Jo 0 —t
hence
DA — q
2

and the corresponding Fokker-Planck equation is the diffusion equation

2
OW(at) oW t) | 0PW (1)

ot oz 0x?

with the diffusion constant D = D).
We can easily find the solution for a sharp initial distribution W (x,0) =
d(z — o) by taking the Fourier transform

W (k,t) :/ dz W (z,t) e "
We obtain
8W§f,t) = (= D> +ivgh)W (k. t) — W (k,t) = Wo exp { (—Dk? + ivoh)t + ikzo )

14This is a so called Wiener process
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and the Fourier back transformation gives'®

1 (x — z0 — vot)?
expy ————————
Var Dt 4Dt

which is a Gaussian distribution centered at x. = xg + vot with a variance of
< (z—wx)? >=4Dt

W(x,t) =

Figure 58: solution of the diffusion equation for sharp initial conditions
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example: absorbing boundary

Consider a particle from species A which can undergo a chemical reaction with
a particle from species B at position 4 = 0

A+B — AB

If the reaction rate is very fast, then the concentration of A vanishes at © = 0
which gives an additional boundry condition

W(x=0,t)=0

Starting again with a localized particle at time zero with W(x,0) = 6(z —
xo) wo = 0 the probability distribution

1 z—aq)? z+zg)?
W(;p,t) = m (6( 4D(tj) — 67( ID(tJ) >

is a solution which fullfills the boundary conditions. This solution is similar
to the mirror principle known from electrostatics. The total concentration of
species A in solution is then given by

/OoodacW(a:,t) = erf (%)

15with the proper normalization factor




7 KINETIC THEORY - FOKKER-PLANCK EQUATION 82

Figure 59: solution from the mirror principle

7.4 Fokker-Planck equation for Brownian motion

For Brownian motion we have from the formal solution
o(r) = vo(1 — 47 4 --) + / (14t — )+ - ) F(t)dta
0

The first moment is'®

M (vo,t,7) =< v(1) —v(0) >= —yTV0 + - - -

DW(v,t) = —yw

The second moment follows from
< (v(1) —0)? >= (voy7)? + / / (L+~(t1 +to — 27+ ) F(t1)F (t2)dt1dts
o Jo

The double integral gives

2vkT
m

T T—11
0 —t1

T 2vkT
0 m

2vkT
m
and we have
p@ _ kT
m

The higher moments have no contributions linear in 7 and the resulting Fokker-
Planck equation is

W(ent) 0 W 5
T*’yav(vw(lht))‘i» m 6U2W(’U7t)

16here and in the following we use < F'(t) >=0
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7.5 stationary solution of the FP equation

The Fokker-Planck equation can be written in the form of a continuity equation

oW(v,t) 0
ot N 81}5(1}’75)

with the probability current

kT
m

S(u,t) = (@W(v,t) + 2W(v,t))

kT v
For a stationary solution (with open boundaries —oo < v < o) the probability
current has to vanish

0 muv
%I/I/(’U7 t) = —ﬁW(U, t)

which has as its solution the Maxwell distribution

m 7’!71712
Witat (v, t) = \ 25T € /2kT

Therefore we conclude that the Fokker-Planck equation describes systems, that
reach thermal equilibrium starting from a non equilibrium distribution. We
want to look at the relaxation process itself in the following.We start with

W (v, )

OW (v,t) kT 0*W (v,t)
ot -

= 4
,}/W(/U? ) + ’YU av m a,UQ

and introduce the new variables
p=ve’  ylp,t)=W(pe 1)

which transforms the differentials
dy

oW _0y0p _ .0y
v Opdv  Op

PW _ 2%
Ov? 0p?
6_W Oy ay@ Oy dy

ot — ot Tapor ot TP,
This leads to the new differential equation

Jy 2 >y
7 — De2rt <2
ot ~ WP g

To solve this equation we introduce new variables again
y = xe”’

which results in )
8_)( = De?t _3 X

ot 0p?
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Now we introduce a new time scale
1
0=—("-1)
2y
df = e?tdt
satisfying the initial condition 6(¢t = 0) = 0. Now we have to solve a diffusion
equation

2
I _ Da_x
00 0p?
which gives
1 (p = po)®
0 = —
X(pa 7/00) 1D eXp( 41 D0 )

After backsubstitution of all variables we find

B m m (v —wvpe )2
Wvt) = \/27TkT(1 — ety P {QkT (1—e27)

This solution shows that the system behaves for small times like

1 v —1p)?
W(v,t) = D exp{i( 4Dt0) }

and relaxes to the Maxwell distribution with a time constant At = 1/2+.

7.6 Diffusion in an external potential - Kramers equation

We consider motion of a particle under the influence of an external (mean) force
K(z) = —£U(x) . The stochastic differential euation for position and velocity
is

T=v

O:—WU—&—%K(x)—i-F(t)

We will calculate the moments for the Kramers-Moyal expansion. For small 7
we have

M, =< z(1) — z(0) >= /OT v(t)dt = vor 4 - - -
M, =<v(r)-v(0) >= /T( ~u(t)+— ! K( )+ < F(t) >)dt = (—yvo+— 1 K(xo)) T

M., =< (:ZZ( ) / / tl tQ dtldtg = ’UOT + -

Mm, =< (’U(T)*U(O))2 ( ’}/Uo+ K 1'0 / / tl tQ dtldtg =

hence the drift and diffusion coefficients are
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D) =0
plov) _ 1T
m

which leads to the Klein-Kramers equation

T\ x) Y v —D VU
ot [ (%SD 81}D * ov? Wiz,v.?)
OW (z,v,t) d 0 K(z), ~kT 0?
T\ ) | - _ S = t
ot [ 22" " o (o )+ m Ov? Wiz, v.t)
This equation can be divided into a reversible and an irreversible part
ow
W - ('Qrev + 'Qirrev)W
e _[,0, rou0y [0~ kO
v =\ "V T m 9z ow rrev = gy m  Ov?

The reversible part corresponds to the Liouville operator for a particle mov-
ing in the potential without friction

09 0 0% 0 - p?
2{6366])8])836] 572m+U(I)
obviously
£9=0
and
. N AN, e kT mu,  m
i:W?"evexp{ kT}_eXp{ kT} |:’7 ’Vva + m ((kT) kT) _0

Therefore the Klein-Kramers equation has the stationary solution

Witat (2, v,t) = Z~ e (mv*/24+U (@) /AT

Z://dvdl’e_(mvz/2+U(I))/kT

The Klein-Kramers equation can be written in the form of a continuity equation

0 0 0
FTA e

with the probability current

Sy



7 KINETIC THEORY - FOKKER-PLANCK EQUATION 86

7.7 large friction limit - Smoluchowski equation

For large friction constant v we may neglect the second derivative with time
and obtain the stochastic differential equation

R U |
:cfva( )+7F(t)

and the corresponding Fokker-Planck equation is the Smoluchowski equation

5 ———K(x)+

oW (x,t) 1 9 kKT 0?2
| myozx

W_V@} W (z,t)

which can be written with the mean force potential U(z)as

ot myox

OW (z, 1) 1 0 0 Jr8_U
ox Ox

[ Wi

7.8 Master equation

A very general linear equation for the probability density is the master equation.
If the variable x takes on only integer values, it has the form

oW,

m

where W, is the probability to find the integer value n and w,,_,,is the tran-
sition probability. For a continuous variable summation has to be replaced by
integration

OW (z,t)

T - /(’LUI/HIW(IQt) - wI"I/W(Z"t)) d;z;l

The Fokker-Planck equation is a special form of the master equation with

We! oz = —QD(l)(,T) + a—2D(2)(Jc) Sz — ')
o Ox ox?
So far we only discussed Markov processes where the change of probability at
time t only depends on the probability at time t. If memory effects are included
the generalized Master equation results.

7.9 Kramers theory

The model undelying Kramers theory for the description of chemical activation
is shown in the following figure.



