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Part III

Reaction kinetics

6 formal kinetics

6.1 elementary chemical reactions

Figure 54: different types of elementary chemical reactions
A-H + B——= A + B-H'
proton transfer
bimolecular
H-C1 H-----Cl H-Br
+ — P +
Br-Br Br---- Br Br—ClI bonds are
acivated broken or
complex formed
CH,
— = CH;CH=CH unimolecular
CH,—CH, 3 2
Cyclopropane isomerisation
A+ hv —— A* A*+B —= A +B*
absorption energy transfer bonds are
conserved
reorganization

+ - + - + of bond lengths

D*A —= D A DAB —= DAB and angles

charge separation charge transfer

All elementary reactions are reversible. There is a dynamical equilibrium be-
tween forward and back reaction, which are independent, for instance

Ho+ Jy = 2HJ
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6.2 reaction variable and reaction rate

We consider a general stoichiometric equation for the reaction of several species’

ZViAi =0
i

and define a reaction variable x based on the concentration of the species A; by

Ci = ¢i0 + vk

as

Ci — Ci,0

r=—2>

Vi
and the reaction rate as

dx 1 dc;
r=—=——
dt V; dt

6.3 reaction order

Frequently the progress of a chemical reaction can be described by a simple rate
expression such as
r=keltey? - =k H o
i€educts
with the rate constant k. For such a system the exponent® of the i-th term is
called the order of the reaction with respect to this substance and the sum of
all the exponents is called the overall reaction order.

6.3.1 zero-order reactions

these are reactions which proceed at the same rate regardless of concentration.
The rate expression for a reaction of this type is

de
2k
a0

which can be integrated
C=Cy— kot

zero order reactions appear when the determining factor is an outside source of
energy (light) or when the reaction occurs on the surface of a catalyst.

6.3.2 first order reactions

describe the decay of an excited state, for instance a radioactive decay
A — A

The rate expression is
de Asx de A k
= — = K1C
dt dt
"The stochiometric coefficients v; are postive for products and negative for educts.
8For more complicated reactions the exponents need not to be integers. For simple reactions
they are given by the stochiometric coefficients n; = |v;]
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which gives an exponential decay

Cax = Cax(0)e M

with a constant half-period
In(2)
T1/2 = L

6.3.3 second order reactions

A second order reaction between two different substances obeys the eqations

A+B — .-
_dea  _des o
a — at AR

which can be written using the reaction variable x and the initial concentrations
a,b as
ca=a—= cg=b—=x

d
d—f =ko(a—x)(b—x)
which can be integrated to give

1 lnb(a—ac)
a—b  a(b—2)

= kot

if two molecules of the same type react with each other we have instead

dcy
T T R
which gives an algebraic decay
1
)= ———
ca(t) kot + 1

where the half-period now depends on the initial concentration

1

T1/2 = kg—a

An example is the exciton-exciton annihilation in the light harvesting complex

A+ A* - A+ A

6.4 dynamical equilibrium
We consider a first order reaction together with the back reaction
k1
A B
«—
k—1
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The reaction variable of the back reaction will be denoted by y.

calt)=a—xz+y

cg(t)=b+ax—y

d
d—f:kch:k;l(a—x—l—y)

d
Y sy = ka2

defining an overall reaction variable

z=x—y
and the equilibrium value
kia —k_1b
T Rtk
we have
Z—j =kia—k_1b— (k1 —k_1)z= (k1 + k_1)(s — 2)

which for z(0) = 0 has teh solution
5= 5(1 o e—(k1+k71)t)

The reaction approaches the equilibrium with a rate constant k1 + k_;. In
equilibrium z = s and % = 0. The equilibrium concentrations are

k_1
=a—8=(a+b)——--
ca=a—s=(a )k1+k—1

k1
=bt+s=(a+b)—"r
cB s=(a )k1+k,1

and the equilibrium constant is

CA k,1
K="= —
CB k‘1

6.5 competing reactions

If one species decays via seperate independent channels (fluorescence,electron
transfer, radiationless transitions - - -) the rates are additive

dCA

= — _(k k
o (k1 + ko +--)ca
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6.6 consecutive reactions

We consider a chain consisting of two first order reactions®

ko

Afipgh g
— —
The reaction variables are denoted by x and y, the initial concentrations by

a,b,c.

ca=a—1x
cp=b+xz—y
cc=c+y
and the time derivatives are
dca dz
A 2 kiea = —ki(a—
dt dt Lea i(a—2)
dc der d
d—f =—- d—‘z = kyca — kocy = kia — kab + (ks — k1) — kay
dec  dy
— ===k = ka(b —
@~ s =kbrr-oy)
The first equation gives an exponential decay
ca = ae k1t
Integration of
dCB kqt

W + kocp = k1ae™

gives the concentration of the intermediate state

_ _Fka
ko — k1

kla

- " —kqt b
o T

cB )e*k’ﬁ

if at time zero only the species A is present the concentration of B has a maxi-

mum at
1 k1

tmax = kl _ k2 n k_g

with the value

6.7 enzymatic catalysis

is very important for biochemical reactions. It can be described schematically
by formation of a enzyme-substrate complex followed by decomposition into
enzyme and product

k1 ko
F+S = ES = E+P
k_1 k_o

9with negligible back reactions
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We consider the limiting case of negligible k_, < ko and large concentration of
substrate cg > cg. Then we have to solve the equations

. 0
¢s ~ —kicgcg +k_1ces

CEp ~ —k:lcEc% + (k—l + k2>CES

CEs = k‘1CECOS — (k—1+ ko)crs

¢p = kacgs

First we solve the equations for ¢g and ¢gg:

d (cps \ _ [ —k-1—ky kicy CES
dt CE N k_1+ ks —k‘1005 CE

The matrix has one Eigenvalue A = 0 corresponding to a stationary solution

ko —ky kacd L A
k_1+ ko —k‘1C% 1 o 0

The stationary concentration of the ES complex is

Cstg't o kl csCyp = CSCE
= =
k_1+ ko Ky

with the Michaelis constant

k_1+ ks

Ky —
M "

The second eigenvalue relates to the time constant for reaching the stationary

state
7](?,1 — kg klcg 1 _ 0 1
( bt ke kel )\ o1 )T e Hhat k) {0

For the initial conditions

we find
_ g o (k1t+k_1+k2)t
cps(t) = = Iié” (I—e )
S
C% 2 ki+k_1+k
cu(t) = — (1 4+ ek
L+ & Kum

The stationary state is stable since any deviation will decrease exponentially.
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The overall rate of the enzyme catalysed reaction is given by the rate of product
formation
r = ¢p = —Cs = kocEs

and with the total concentration of enzyme

CE.tot = CE + CES

we have
c CECS (CE,tot - CES)CS
ES = =
Ky Ky
and hence
c CE totCS
ES = — 7> —
cs + Ky

and the overall reaction rate is given by the Michaelis-Menten equation

o kacg totCs
Ky +cs

r Ccs

Tmax cs + K

Tmax = k2 CE tot

S5k Ky 7

reaction rate r

6.8 Reactions in Solutions

In solutions the reacting molecules approach each other by diffusive motion
forming a reactive complex within a solvent cage which has a lifetime of typically
100 ps. Formally this can be described by an equilibrium between the free
reactands A and B and a reactive complex {AB}

k1 ko
A+B = {AB} - C
k_1
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Figure 56: formation of a reactive complex

@A) iK
solvent cage

® ®)

ca =c¢p = —kicacp +k_1ciapy

¢c = kacpapy

¢rapy = (kicacp — (k-1 + k2)ciapy

Figure 57: transition from reaction controlled to diffusion controlled limit

r= kgc{AB} is calculated numerically for ko =1, k; = k_1 =0.1,1,10

consider the following two limiting cases:

6.8.1 diffusion controlled limit
If the reaction rate ks is large compared to k41 we find for the stationary solution

approximately
kacgapy & kicacp

and hence for the overall reaction rate
¢c = kacpapy = kicacp

and formation of the reactive complex determines the reaction rate
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6.8.2 reaction controlled limit

If on the other hand ks < k41 an equilibrium between reactands and reactive
complex will be established

CABY _ e _ k1

A+B={AB
+ { } CACB k_1
Now the overall reaction rate is

éc = kQC{AB} = kQKCACB

determined by the reaction rate ks and the constant of the diffusion equilibrium
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11 Ion transport through a membrane

11.1 Nernst potential

In the rest state of a neuron the potassium concentration is higher in the interior
whereas there are more sodium and chlorine ions outside. Example data are

shown in the following table.
28

Table 1: ion concentrations for the squid giant axon

| Ton | inside(mM) | outside(mM) |
K+ 400 20
Na* 50 440
cl~ 52 560
A~ (organic anions) 385 -

Let us first consider only one type of ions and constant temperature. The
thermodynamic force is

—

1- B 1.
Ky = =V (e + Zye®) = ~kvIneg — v (Ze®)

This force and the corresponding ion current vanish if the contributions from
concentration gradient and potential difference compensate each other

kT
$ + —— Incp = const
Zke

Usually the potential is defined as zero on the outer side and

kT Ck,outside
Vk = q)inside =——In——
Zke Ck,inside

is the so called Nernst potential. For the example concentrations we find

Vit = =T5mV
Vicat = +54mV
VCZ— = —59mV

The concentration gradient has to be produced by (energy consuming) ion
pumps.

28F.Kandel,J.Schwartz,T.Jessel, Neurowissenschaften-Eine Einfiihrung.
Spektrum Akademischer Verlag 1996
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11.2 Hodgkin-Huxley model

In 1952 Hodgkin and Huxley won the Nobel prize for their quantitative descrip-
tion of the squid giant axon dynamics. They thought of the axon membrane as

an electrical circuit

Figure 67: Hodgkin-Huxley model

They assumed independent currents of sodium and potassium , a capacitive
current and a catch-all leak current. The total current is the sum of these

Iapp :IC+INa +IK +IL

The capacitive current is

dv
Ic = Chpi—-
© dt
For the ionic currents we have
I = QS(V - VS)

where gi is the channel conductance which depends on the membrane po-
tential and on time and Vj, is the specific Nernst potential

11.3 Nernst-Planck model
We consider the thermodynamic force in one dimension

- 1 kT - 1

1- o
K = 7fV(,uk + Zke<I>) = 7favck — ?V (Zke<I>)

as a force acting upon a particle with mass my, given by

. kT - .
F = ——VC —VV (Zk(i@)

The phenomenological equation for the corresponding particle flux is

. - G -
Jk = Ck’l)_]; = —DVC — —V@
Zke
This can be interpreted as the compensation of the driving force F by a
frictional force
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mk’Yj;C _ mk7D§ mpyG ~

ﬁfr = 7mk’)/l_)‘k = — Cr +
Ck Ck kLECEK
with LT
D=—
mgy
a_ Z,feQCk. _ Z]362CkD
Y kT
which leads to the Nernst-Planck-equation
g dc  ZecD dP
B dx kT dzx

The electric potential obeys the Poisson-Boltzmann equation

d d
%6%@ = — ZZkGCk

11.4 Goldman-Hodgkin-Katz model

We now want to calculate the potential for a steady state with more than one
ionic species present. If we take the ionic species Na*, KT, Cl~ which are most
important in nerve excitation that will define the so called Goldman-Hodgkin-
Katz model.

Figure 68: coupled ionic fluxes

Membrane

outside inside

J
Na+
_IRe
Ja-

_—

potential

charge density

o fom===—
P
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We may specify at will the chemical potentials or alternatively the concen-
trations of n-1 species on both sides of the membrane. The concentration of the
n-th species is then given by electroneutrality

p:ZZkSCkZO

Tp proceed we have to calculate the dependence of the fluxes Jj, on the concen-
trations cj i and cg,out-To that end we multiply the Nernst-Planck equation by
e¥* with

o
— Zpe—
Y = 2repr

to get

de dyk d
Ye — __ Yk J—— Yk
Jre Dre < dr + Ck dr > Dy, dr (cke )

This can be integrated over the thickness d of the membrane

d

d

d

/ JeeVede = —D = (ere¥)dx = —D (Ck’ineZkSCPm/kT B Ck,out)
0 o d

We assume a linear variation of the potential across the membrane

x
> (I)m

O(z) = pi

This is an approximation which is consistent with electroneutrality. In the
bulk solution on either side of the membrane the potential will be constant,
again in accordance with electroneutrality. On the boundary between liquid
and membrane the first derivative of ® will be discontinous corresponding to a
surface charge distribution. 2° Assuming a stationary state with 9.J/0x = 0 we
can evaluate the second integral

kTd Zyedp, /KT ) _ ( Zye®m /KT )
oD (e 1) =-D (ck(d)e cx(0)

ZxePn, /KT
72 Zke(bm Ck,in€ ke / — Ck,out
d kT Zre®n /KT _ |

In a stationary state the total charge current has to vanish

I:ZZkeJk:O
k

Ji =

and we find
e(bm QCk:,inezkeq)m/kT — Ck,out _
ETd ZDka oZke®n /KT _ | =0
with Zne+ = Zxy+ =1, Z¢ci— = —1 and
b,
Ym = ekT by = e¥m
we have

29We do not consider a possible variation of ¢ here.
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-1
CNa,inbm — CNa,out CK+inbm — CK+,out cclinby, — cCiout
a,inYm a,ou +DK +wnUm +,0u —I—D B aanYm ,ou

D
Not b — 1 * b — 1 ¢ b! — 1
Multiplication with (b,, — 1) gives

DNa+ (CNa,inb7n_cNa,out)+DK+ (CK+inbm_CK,out>_meCl— (CCl,inb;zl_cCl,out>

and we find
_— DNaJrCNa,out + DK+CK,0ut + DlecCl,in
=
DyatCNa,in + Dryck in + Dcoi—cciout
anf finally
o — kT In DNaJrCNa,out + DK+CK,out + DlecCl,in
= —
e DyatCNa,in + Dryck in + Doi—cciout

This formula has to be compared with the Nernst equation. The ionic contri-
butions appear weighted with their mobilities. The Nernst equation is obtained
if the membrane is permeable for only one ionic species.

11.5 Cooperative transport and membrane excitations:

Adam’s model
Adam’s model for membranes explains the different permeabilities of the mem-

brane in the ground and excited state.

Figure 69: Adam’s model

OO0 ® O

© ¢ @
0=+0 ® O

0

We assume that in the ground state the membrane-pore proteins form prefer-
ably complexes with Calcium ions Ca®?*while in the excited state the binding
of potassium is preferred. The different affinities of the pore proteins- which
we will call active centers in the following in the ground and ecited state are

=0
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explained as a cooperative phenomenon. The system of active centers is mod-
elled as a lattice with interactions between adjacent sites wg and w; respectively
very much like in the lattice gas models which we studied in the first chapter.
An active center in the ground state receives an additional stabilization wq for
each neighbouring center in the ground state. Similarly an active center having
bound KT is stabilized by w; by every excited center in the neighbourhood. In
Adam’s model cooperativity is treated in a mean field approximation. We do
not want to reproduce the details of the statistical calculations. A change of
potential will trigger a phase transition. In biological membranes the interac-
tions w are mediated by direct protein-protein contacts. A similarly well stud-
ied cooperative phenomenon occurs in the binding of oxagen by Hemoglobine.
Hemoglobine consists of four sub-units. The binding of oxygen to one or more
sub-units enhances the affinity for oxygen of the remaining sub-units.

Let P be the probability to find an active center in the excited state and
1 — P the probability to find it in the groundstate. We assume the temporal
development to obey the Master equation

dpP ,
pri E'P+k(1-P)

In Adam’s model the rate constants k and k' are found to be functions of P
itself and of the interactions w

120058
k' = kfex (——P)
0P T
where v is the average number of adjacent sites. ko and k{, are functions of the
concentrations on both sides of the membrane and the trans-membrane potential
difference ®,,. In a steady state P = P will not change in time and we get

ﬁ k k()(q)m) o I/F( T+ w ) VW
— = — = xp [ —=(w - —
1-P K k(@) TP\ T T T

which we rewrite as

P vP ko(®m) vwo
_ = — 2 m/ —— | =~ F(®,,
1—p P ( w1 “"0)) K (@) P (-7 ) = F@m)
In a certain range of parameters more than one solution for P as a function of

®,,, exists. Let us consider the implicit function

P
17Pe_wp -t

in more detail. for small values of P we find
t—P+(1—-w)P>+---as P —0

and in the opposite limit
—w

P—1+”’ as P—1
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The function P(z) becomes multiple valued if z(P) has extremal values. There-
fore we solve

d —wp [(1—wP +wP?
0= d—P:E(P) =e <—(1—P)2 )
to find
1 1 1
Pe:cr:_:t - - —
"9 4w

A solution with 0 < P <1 is obtained for w > 4 .

Figure 70: Bistability in Adam’s model
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By variation of the membrane potential difference it is possible to switch
between the ground and excited state.



