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3.3 Abnormal titration curves of coupled residues

Let us consider a simple example of a model protein with only two titrable sites
of the same type. The free enthalpies of the four possible states are

AG(AH,AH) = AGY + AGY + By — BV
AG(A—,AH) — AG(AH,AH) = —AG1 ins
AG(AH,A-) — AG(AH,AH) = —AG2, int
AG(A—,A-) — AG(AH,AH) = —=AG1,int — AG2,int + Wiz =
= —AG) — AG) + B}
The grand partition function is
==14+ e—ﬁ(—AGl,q‘,nr‘rH) + 6—5(—AG2,M¢+M) + e—ﬁ(—AGz,mt—AG1,7‘,m+2lt+W)

The average protonation values are
1+ e~ B(=AG2 int+pu)
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Figure 40: abnormal titration curves
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Part 11
Protein Electrostatics and
Solvation

Biological macromolecules contain chemical compounds with certain electro-
static properties. These are often modelled using localized electric multipoles
(partial charges, dipoles ...) and polarizabilities.
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Figure 41: charged,polar and polarizable groups in proteins
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Figure 42: Mulliken charge analysis for Aspartate
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4 TImplicit continuum solvent models

Since an explicit treatment of all solvent atoms and ions is not possible in most
cases the effect of the solvent on the protein has to be approximated by implicit
models. In solution a protein occupies a conformation ¥ with the Boltzmann
probability
e U(X,Y)
PX.Y) = [dXdYe-UXY)

where X stands for the coordinates of the protein (including the protonation
state) and Y for the coordinates of thesolvent. The potential energy can be
formally split into three terms

U(X7 Y) = Uprot(X) + Usol'u (Y) + Uprot,solv (X7 Y)

The mean value of a physical quantity which depends only on the protein
coordinates Q(X) is

Q= /dXdY QX)P(X,Y) = /dX Q(X)P(X)
where we define a reduced probability distribution for the protein
P(X) = /dY P(X,Y)

which is represented by introducing a potential of mean force
o—W(X)/kT

P(X) = TdX e WX)/iT
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€7W(X)/kT _ 6*Uprot(X)/kT/dY 67(USOL17(Y)+UT)T0t,SOl'U(X1Y))/kT
— o~ WUprot(X)+AW (X)) /kT

where AW accounts implicitly but exactly for the solvents effect on the protein.
In the following we discuss implicit solvent models which treat the solvent as
a dielectric continuum. In response to the partial charges of the protein g;
polarization of the medium produces an electrostatic reaction potential ¢%.

If the medium behaves linearly (no dielectric saturation) the reaction poten-
tial is proportional to the charges

o7t = Z fij4q
J
Let us now switch on the charges adiabatically by introducing a factor
@G — QA 0<A<l1
The change of the free energy is
I o NI e L1120
dF = ; QitidA = ; dmer;; M ; figdsaiAd)

and thermodynamic integration gives the change of free energy due to Coulombic
interactions

1
qiq;

AF e = AdA E — E 11050

! /0 = dmers; + . fijaiq

1 qiq; 1
=3 Z Trer T3 qu%qz
i£] ij

The first part is a property of the protein and hence included in Up,o;. The
second part is the mean force potential

1
AWepee = 3 E fij2iq;
ij

4.1 Example: Charges in a protein

An important example is an ion pair within a protein (¢, = 2) which is sur-
rounded by water (¢, = 80). We study an idealized model where the protein is
represented by a sphere.

Figure 43: Ion pair in a protein
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We will first treat a single charge within the sphere. A system of charges
can then be treated by superposition of the individual contributions.

Using polar coordinates (r, 8, ¢) the potential of a system with axial symme-
try ( no dependence on ¢)can be written with the help of Legendre polynomials
as

¢ = Z(Anrn + B,r~ (1) P, (cos )
n=0

The general solution can be written as the sum of a special solution and a
harmonic function. The special solution is given by the multipole expansion

oo

q g 1 (S)”
= - =] P,(cosf
dreq|F— 54|  dmerr Zo r (cos )

n=

Since the potential has to be finite at large distances, outside it has the form

Oy = Z Bnr_("H)Pn(cos 0)

n=0
and inside the potential is given by

o0

qs"  _
_ An n 42 —(n+1) P, 0
1 ;0( R ) )P, (cos 0)

At the boundary we have two conditions
$1(R) = ¢2(R) — B,R~"1) = A, R" 4+ L2 p=(n+D)
4mey
9 )
61E¢1(R) = EQE@(R) =0

— 76_2(71 + I)BnR_("+2) —nA,R"! — (n+1) qs R-(n+2)
“ 4meq

from which the coefficients can be easily determined

An _ qsn R7172n (61 - 62)(” + 1)
47eq ner + (n+ 1)ey

g™ (2n41)e

B, =
4mer ner + (n+ 1)eg

The potential inside the sphere is

q

_ R
 dme |7 — 5y +é

b1

with the reaction potential

RoN= 05" o onla—e)(n+1)
— B > - r"P, 0
¢ nZO 47eq nep + (n+ 1)ea " (cos0)

and the electrostatic energy is given (without the infinite self energy) by
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%q¢)(s, cosf =1)

— g = an R*l*Qn (61 - 62)(” + 1)Sn
2 4eq ner + (n+ 1)ey

n=1

which for e; >> €;is approximately

qlllz()%i(flll 1

2 47Res € R  247R‘e; e’ 1—s2/R2
Consider now two charges +¢ at symmetric positions +s . The reaction poten-
tials of the two charges add up to

¢t = ¢f + ¢ff
and the electrostatic free energy is given by

—q?

4me1(2s) * %q¢f(8) T %q¢}—:{(5) + %(_Q)Qﬁ(—s) + %(—q)q’)}f(—s)

from comparison we find

2 2
e, _lorg o e 1 1 1 1
PR 2q¢+(s) 2 47TR(61 €2’ 1 — s2/R?
(—q)? 1 @? 1,1 1 1
foo =g aeRs = L
2 2 247Re1  e’1—82/R

R—l 2n (61 _62)(n+1) —s5)"

S = gl = R

4d7eq ner + (n+ 1)eg
B/ SR S B o PRI S G/ B SR S SN S
~ 2 i 2 (R S mRE SR
— 1 —
(2q)f+—=§qq5§(5):—( 2q)qf_+

and finally solvation energy

o 2.n _ 1
Welec _ q-s R—l—Qn (61 62)(” + )(Sn _ (_S)n)

B — 4eq ner + (n+ 1)eg
9
W gl L LU )11 1
7R e1  €'1—s2/R? 2 47R‘e; e s2/R*+1

¢ 1 12

~ 4R € €'1—s*/R*
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If the extension of the system of charges in the protein is small compared to
the radius s << R the multipole expansion of the reaction potential converges
rapidly. Since the total charge of the ion pair is zero the monopole contribution
(n=0)

(1)7Q2 1 1

TR a €1

w.

elec

vanishes and the leading term is the dipole contribution (n=1)

(2) P2 (61 - 62)

elec ™ Ame1 R3 €1 + 2¢9

5 Debye-Hiickel theory

5.1 electrostatic shielding by mobile charges

We consider a fully dissociated (strong) electrolyte containing N; mobile ions of
the sort ¢ = 1--- with charges Z;e per unit Volume. The charge density of the
mobile charges is given by the average numbers of ions per volume

Pmob (77) - Z Zieﬁi (F)
i
The electrostatic potential is given by solution of the Poisson equation

eAG(F) = —p(1) = —pmon(7) — pria(r)

Debye and Hiickel used Boltzmann’s theorem to determine the mobile charge
density. Without the presence of fixed charges the system is neutral

0= p’ronob = ZZZeNzO

and the constant value of the potential can be chosen to be zero.
¢ =0

The fixed charges produce a change of the potential. The electrostatic energy
of an ions of sort i is

-

Wi = Zi€¢)(7‘)

and the density of such ions is given by a Boltzmann distribution

NZ(F) e—Z¢e¢>(Tq)/kT
NO — o—Zied"/kT

or
N; (,F-‘) _ Nioe—Zieqﬁ(F)/kT

The total mobile charge density is

pmob('F‘) = Z ZieNiOe_Zi&#(;)/kT
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and we obtain the Poisson-Boltzmann equation

—

€A¢ ZZ@NO —Zie(7)/ kT — Pfix ( )

If the solution is very dilute we can expect that the ion-ion interaction is
much smaller than thermal energy

and linearize the Poisson-Boltzmann equation

Z;e
EAQZ/)(F) = 7pf’L:E ZZQNO T¢( )+)

The first summand vanishes due to electroneutrality and we find finally

DY) ~ K0(7) =~ pra(7)

with the inverse Debye length

-1 — / 0772
)\Debye - €kTZN Z

5.2 1-1 electrolytes

If there are only two types of ions with charges Z; 5 = £1 (also in semiconductor
physics) the Poisson-Boltzmann equation can be written as

2
- Ao A0 —ed(R) /KT _ jed(P)/kTy _ __© 3
e A0 + N (e ¢ ) == gprelr)

which after substitution

takes the form .

AG(F) — K sinh(6(F)) = = ——pyia ()

and with the scaled radius vector 7 = k7 — ¢(7) = f(7) = f(kF)

€

- X —1=
w2k (% )

Af() = sinh(f (7)) = -

5.3 Charged sphere

We consider a spherical protein (radius R ) with a charged sphere (radius a) in
its center.
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Figure 44: simple model of a charged protein

For a spherical problem we only have to consider the radial part of the
Laplacian and the linearized Poisson-Boltzmann equation becomes outsides the
protein

1d?
r dr?

(ré(r)) — K%¢(r) = 0

which has the solution
cle—ﬁr + cze'”

$2(r) =

Since the potential should vanish at large distances we have co = 0. Inside the
protein (a < r < R) solution of the Poisson equation gives

r

P1(r) = c3 +

dmeir

At the boundary we have the conditions

cle—ﬁR Q

91(R) = 62(R) = 5 = R 4raR

0 0 Q e*I{R —kR
15 ) = e (B) = o = e (=S —n
which gives the constants
QenR
Q=
4mea(1 + KR)

and

Q Q
- +
dre1R - 4meaR(1 + KR)

together we find the potential inside the sphere

_ Q@ (r_1y, Q@
91(r) = 47req <r R) + 4dmeaR(1 4 kR)

C3 =

and outside
Q e~ k(r—R)

- dmes(1 + KR) r

p2(r)
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Figure 45: charged sphere in an Electrolyte
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The ion charge density is given by
Pmob(r) = €20y = €267y

hence the ion charge at distances between r and r + dr is given by

Q _rr—R)
K(T d
"0 +rR) ¢ "

This function has a maximum at 7., = 1/k and decays exponentially at
larger distances.

Figure 46: charge density around the charged sphere

\ kappa=0.5,1,2 a=0.1 R=1
0.6 PP

° °
= n

charge density
e

0.2

Let the charge be concentrated on the surface of the inner sphere. Then we

have 0 ) . 0
d1(a) = 4ey (5 B E) + drea R(1 4+ KR)
Without the medium (e2 = €1,k = 0) the potential would be
Q
% (a)

dmera
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hence the solvation energy is

1 a1 @ 1 1
W = 306" = 300610 - o%0) = oo (= — o)

which for k = 0 becomes the well known Born formula

_ e/
 8tR \e; e

and for a — R ,e; = €2 gives the solvation energy of an ion in solution

Q> K

AGgoy =W =—"——""—
: 8me (14 KkR)

5.4 Charged cylinder

Next we discuss a cylinder of radius a and length ! < a carrying the net charge
Ne uniformly distributed on its surface .
Ne
g =
27mal

Outside the cylinder this charge distribution is equivalent to a linear distribution
of charges along the axis of the cylinder with a 1-d density

Ne 9 e
— =2mac = -
l b

Figure 47: charged cylinder model
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Outside the cylinder the linear BPE becomes using cylindrical coordinates
1d d 9
o (T%) o(r) = Kp(r)

Substitution r — x = kr gives the equation

d? 1d
23 0(@) + — = d(z) — 6(z) =0
The solution of this equation are the modified Bessel functions of order zero
denoted as Ip(x) and Koy(x). For large values of x
lim Ip(z) = o0 lim Ko(z) =0

r—00 xr—00
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and hence the potential in the outer region has the form
o(r) = C1Ko(kr)
Inside the cylinder surface the electric field is given by Gauss’ theorem

2nrley E(r) = Ne

=Csy — 1
¢(r) = C2 = 3 o
The boundary conditions are
Ne
@d(a) = C1Kp(ka) = Cy — el Ina

_dola) __ Ne __doa)
Yar 2mal 2 ar

from which we find

= e2C1(—kK1(ka))

Cr — Ne
te 2raleak Ky (Ka)
and

Ne Ky(ka) Ne

- 2maleak Kq(ka) + 27meql

The potential then is outside

Co

Ina

~ Ne Ky(xr)
- 2malear Ki(ka)

(r)

and inside
Ne Ky(ka) Ne

= 1 -
2maleak Kq(ka) + 2meql na 27meql

Inr

o(r)
For small ka — 0 we can use the asymptotic behaviour of the Bessel functions
2
Ko(z) = In— —~vy+--- v=0.577---
x

1
1(£E)—>x+

to have approximately

Cr ~ Ne _ Ne
te 27mlegf<alw © 27les
N 2
Co = c (In——~v)+ Ina

- 27mlen Ka 2meql
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The potential outside is

Ne K
o(r) 2rles (v +1ng +lnr)
and inside N 5 N
e e
= In— — — 1
o(r) 27Tl€2(n Ka 7+ 2meql na 2meql nr

N 1 1 1 1
= =c ,l,_lanr — — — )Jlna——Inr
2l €2 € 2 €1 €2 €1
Outside the potential consists of the potential of the charged line (Inr ) and
an additional contribution from the screening of the ions.

Figure 48: Potential of a charged cylinder with unit radius a=1
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The function Ko(xr)/(xK1(x)) and its approximation by —In§ — Inr — v is
shown for x = 0.05
5.5 Charged membrane (Goiiy-Chapman double layer)

We approximate the surface charge of a membrane by a thin layer charged with
a homogeneous charge distribution.

Figure 49: Gouy-Chapman double layer
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Gouy (1910) and Chapman (1913) derived the potential similar to Debye-
Hiickel theory. For a 1-1 electrolyte (NaCl for example) the 1-dimensional
Poisson-Boltzmann equation has the form (with transformed variables as above)

d? .
A T ) — sinh(f(x)) = 9(2)
where the source term g(x) = ——=%=5p(x/k) has the character of a Delta-

function centered at x = 0. Consider an area A of the membrane and integrate

along the x-axis:
+0
/dA/ plx)dr = opA
-0

+0 e +0 , ,
/dA/O dx g(a:)m/d/l/o kdx'p(x")

e
- A
rkekT 70

Hence we identify

€0
rekT

5()

The PB equation can be solved analytically. But first we study the linearised
homogeneous equation

p(a) = ood(z)  g(z) =

d2
dz?

f(x) = f(x) =0

with the solution
f(x) = foe™*
or going back to the potential

k
Ba) = L foc T = ot

The membrane potential is related to the surface charge density. Let us
assume that on the left side (x<0) the medium has a dielectric constant of €;
and on the right side €. Since in one dimension the field in a dielectric medium
does not decay we introduce a shielding constant x; on the left side and take
the limit x; — 0 to remove contributions not related to the membrane charge.
The potential then is given by

() = { poe™ " x>0

poe*  x<0

and ¢ is determined from the b.c.
e—(4+0) — e1—(—0) = —0y

which gives
—€Rpy — €1K1¢P9 = —00
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In the limit k; — 0 we find

0o
G0 = —
ER
For x < 0 the potential is constant and for > 0 the charge density is
d2
plx) = —¢ d(i(f) = —opke "

which adds up to a total net charge per unit area of

/ R —

hence the system is neutral and behaves like a capacity of
O'0A A

=exkA=c¢
¢0 LDebye

per area

Figure 50: electrolytic double layer

O(x)
o

p(x)

——

Figure 51: charge density of counter- and co-ions
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The solution of the nonlinear homogeneous equation can be found multiply-
ing the equation with %

df d? d
éd_zé = sinh(f)é

d (df\> d
%E (é) :Ecosh(f)

and rewriting this as

which can be integrated

(%)2 — 2[cosh(f) + C]

The constant C is determined by the asymptotic behaviour

lim f(z) = lim ﬁ:()

—00 z—oo dx

and obviously has the value C' = —1.
Making use of the relation

cosh(f)—1= 2sinh(§)2
we find

%f(a:) = +2sinh (%x))

Separation of variables then gives

daf
2sinh(f/2)

flz)=2In <j:tanh (g + %))

For = > 0 only the plus sign gives a physically meaningful result. The
constant can be related to the potential at the membrane surface via

L /14 ef )2
B FO/2) Z 2 (22
C = arctanh (e ) = 2111 (1_ef(0)/2)

= +dz

with the solution

to give

_ ,—z—C
f(z)=2In <tanh (g + %)) =2In <1+Zﬁ)

The integration constant is again connected to the surface charge density by
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d o
o=
and from
d kT d
(@) = = f(x) = —rf (i)
we find o T
- - o £(0)

Now the derivative is

, 1 — (tanh(% + £))?
fi(x) = z . C
tanh(§ + 5)
and especially
£(0) = 1 — tanh($)?
tanh(<)

and we have to solve the equation

1—1¢2 _ €esy
t  kTke
which yields®
L B VB%+4
2 2
B +B?24+4
C' = 2arctanh (5 — %)

Figure 52: Comparison of full and linearized 1-dim PB equation for fixed surface
charge o
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Linearisation can be applied roughly if |f(0)| < 1 or |e¢(0)| < kT

6the second root leads to imaginary values



