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The last part vanishes due to the definition of N, ; . Now using Stirling’s formula
we find

Figure 15: force-length relation for the interacting 2-component model
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and substituting v we have finally
/@(la — lﬁ) 1 Zﬁe_wﬁﬁ/kT 6(6) +1-20

KT zae—waa/RT U E(S) —1+20
For negative w a small force may lead to much larger changes in length than
without interaction. This explains, for example, how in proteins huge channels
may open although the acting forces are quite small. In the case of Myoglobine,
that is how the penetration of oxygen in the protein becomes possible.

2 Flory-Huggins Theory for Biopolymer solutions

In the early 1940s, Paul Flory and Maurice Huggins, working independently,
developed a theory based upon a simple lattice model that could be used to
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understand the nonideal nature of polymer solutions. We consider a lattice
model where the lattice sites are chosen to be of the size of a solvent molecule
and where all lattice sites are occupied by one molecule.

2.1 monomeric solution

As the simplest example , consider the mixing of a low-molecular -weight solvent
(component «) with a low-molecular-weight solute (component ). The solute
molecule is assumed to have the same size as a solvent molecule and therefore
every lattice site is occupied by one solvent molecule or by one solute molecule
at a given time.

Figure 16: two-dimensional Flory-Huggins lattice
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The increase in entropy AS,,due to mixing of solvent and solute is given by

)

where N = N, + Ng is the total number of lattice sites. Using Stirling’s
approximation leads to

N!

AS,, =k(NInN =N — NyIn N, + N, — Ngln Ng + Ng)

=k(NInN — N,In N, — N3ln Np)

Na Ns
—kNyln =2 — kNgIn =2
o In 7 N

Inserting the volume fractions

Pa

ASy,

No

" Na+ Ng

bp

__ s
~ No+Np

the mixing entropy can be written in the well known form

—Nk(¢a In¢o + ¢p1ngp)

2

Neglecting boundary effects (or using periodic b.c.) the number of nearest
neighbour pairs is (c is the coordination number )
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These are divided into

Naa = N;C¢ a = Nd)ic

Nge N¢Ze
Ngg = ¢y = —2-
5 88 2¢a 5

Nop = Noodge
The average interaction energy is
1, 1.,
w = §Nc<bawaa + §Nc<bﬁw53 + Ncopapsgwag
which after the substitution
1
Wag = 5(Waa + wsp —w)
becomes
_ 1 1 1
w = *§Nc¢a¢ﬂw + ENCQSa (¢awaa + ¢ﬁwaa> + §NC¢ﬁ(¢ﬁwﬁﬂ + Qsawﬂﬁ)
and since ¢, + ¢g =1
_ 1 1
w = _§Nc¢a¢ﬁw + §NC(¢ozwaa + ¢Bwﬁﬁ)

Now the partition function is

N!
7 — »Na Zévﬁe—Nacwaa/2kT€—Nﬁchﬁ/2kTeNaNgcw/2NkT :
[e3

Ny!Ng!
_ (Z e—cwaa/QkT)Na(z e_cwﬁﬁ/QkT)NﬁeNaNgc’w/QNkT N!
) ’ NoIN5!
The free energy is
NyN,
F=—-kTlhZ =—-N,kTnz, nglenz'ngNagwaa JrNﬂgwﬁB _ 2]5010

+NET (o In oy + ¢ 10 ¢3)

for the pure solvent the free energy is
F(Na=N,N 3=0)=—N,kTInz, + Nagwm
and for the pure solute
F(Ny=0,N3=N)=—NgkTlnzs + Nﬁgwﬁg

hence the change in free energy is

NoNgcw

AF,, =
2N

+ NET(¢o In ¢ + ¢ In ¢3)

with the energy change (van Laar heat of mixing)

NoNgcw

AE,, =
2N

cw
= 7N?¢a¢ﬂ = NkTXQSad)ﬁ
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cw
2kT °

The last equation defines the Flory interaction parameter y = —

Figure 17: Free energy change AF/NET of a binary mixture with interaction

For x > 2 the free energy has two minima and two stable phases exist. This
is seen from solution of

_ OAF )

0= a¢a = NkT% (X¢a(1 - (ba) + ¢aln¢a + (1 - d)a)ln(l - ¢a))
= NET(x(1 — 2¢q) + ln1 fa(ba)

This equation has as one solution ¢, = 1/2 . This solution becomes instable
for x > 2 as can be seen from the sign change of the second derivative

O2AF - 1—2x¢q + 2)((;53
A S .

) = NET (4 — 2)

2.2 Polymeric solution

Now consider Ng polymer molecules which consist of M units and hence occupy
a total of M Ny lattice sites. The volume fractions are now

N, MNj

P = No + MNj %:Na—i-MNB

and the number of lattice sites is

N =N, +MNj;
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Figure 18: lattice model for a polymer
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The entropy is given by
AS = AS,, + ASqg = kEInQ(N,, Ng)

It consists of the mixing entropy and a contribution due to the different con-
formations of the polymers (disordering entropy). The latter can be eliminated
by subtracting the entropy for N, = 0.

In Q(Ny, Ng)

AS,, =AS—-AS; =k 0, Ny)

In the following we will calculate Q(N,, N3) in an approximate way. We use
a mean-field method where one polymer after the other is distributed over the
lattice, taking into account only the available volume but not the configuration
of all the other polymers. Under that conditions ) factorizes

where v; counts the number of possibilities to put the i-th polymer onto the
lattice. It will be calculated by adding one segment after the other and counting
the number of possible ways.

M
Vi1 = H ngt!
s=1
The first segment of the (i+1)-th polymer molecule can be placed onto
nitt = N —iM

lattice sites.

The second segment has to be placed on a neighbouring position. Depending
on the coordination number of the lattice there are ¢ possible neighbouring sites.
But only a fraction of

iM
= 1 _
/ N

of these is unoccupied. Hence for the second segment we have

. i M
n§+1 =c (1 - ZW)
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For the third segment only ¢ — 1 neighbouring positions are available

ngtt = (c—1) (1 - %)

Figure 19: available positions
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For the following segments r = 4 ... M we assume that the number of pos-
sible sites is the same as for the third segment. This introduces some error
since for some configurations the number is reduced due to the excluded vol-
ume. This error, however is small compared with the crudeness of the whole
model. Multiplying all the factors we have

%)Mfl

Vis1 = (N —iM)c(c —1)M=2(1 — ~

~ (Nfuw)M(C;[l)M—1

and the entropy is

1 M C— i
AS =kln N—H(Nsz) (=)

c—1

= —kNgInNg + kNg + kNg(M — 1) In( N

Np
)+ kMY In(N —iM)
1=1
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The sum will be approximated by an integral

Ng

Ng . Ng N
;m(N —iM) ~ /O (N = Ma)dz = (= 22)(In(N = Mz) =1) | "

N, N
Finally we get

—1
AS = —kNyIn Ng+kNs+kNg(M—1) ln(CN

)+k(NIn N—N+Ny—N, In N,)

The disorder entropy is obtained by substituting N, =0 and N = M Ng

~1
ASy = AS(Ny = 0) = —kNgIn Ng-+kNs+kNs(M—1) In(~
MNg

)+k(MNg 1DMN5—MN5)

and the difference gives the mixing entropy
ASy, =AS—AS; =k(NInN — N+ Ny — NoIn N, — MNgln MNg+ MNg)
+kNg(M —1)(In MNg —In N)

— k(NIn N=N4In No—MN gln MNs+MNgIn MNg—MNgIn N—NzIn MNg+NzIn N

N, MN
= —k(NoIn == + Nyln By = —kNaIn¢o — kNglngs
— Nk(faIndo + L nsg)

M

Figure 20: mixing entropy
AS,,/Nk is shown as a function of ¢g for M=1,2,10,100
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In comparison with the expression for a solution of molecules without inter-
nal flexibility we obtain an extra contribution to the entropy of

MN, N,
—N gkln Nﬁ +Nﬁk:1nwﬁ — —Ngkln M

Next we calculate the change of energy due to mixing AFE,,. wquais the
interaction energy between nearest-neighbour solvent molecules, wgg between
nearest-neighbour polymer units (not chemically bonded) and w,g between one
solvent molecule and one polymer unit. The probability that any site is occupied
by a solvent molecule is ¢, and by a polymer unit is ¢g. We introduce an effec-
tive coordination number ¢ which takes into account that a solvent molecule has
¢ neighbours whereas a polymer segment interacts only with c-2 other molecules.

Then

_ . Ng _. N
Naa:Cd)ozT NBB:MCQSﬁTﬁ

N,lg = ng)aNﬁ

In the pure polymer ¢3 = 1 and Ngg = M¢ENg/2 whereas in the pure solvent
Noa = E]Vaz/2-
The energy change is

N, N,
AE,, = Ewaa‘ba? + ’LUQQMEQ%TB + wagME(baNﬁ

Ny N,
= 7Ewaa7¢g — EMwﬁgTBd)a + wagME(baNﬁ

Waa + Wgg

2 )EN bady

= (Wap —
w_
= 7ECN¢G¢¢Q

= NkT'x¢adp

with the Flory interaction parameter
_wc
X= kT

For the change in free energy we find

AF, AE, AS,
NET = NkKT Nk

= ba G+ 2 In gy + x0udy
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2.3 phase transitions

In equilibrium the free energy (if volume is constant) has a minimum value.
Hence a homogeneous system becomes unstable and separates into two phases
if the free energy of the two-phase system is lower, i.e. the following equation
can be fullfilled

stability criterion
A phase separation is energetically favourable if
AFy(¢5,N) > AFp (65, N') + AF(é5, N — N')
But since AF,,, = NAf,,(¢g) is proportional to N, this condition becomes
NAfm(¢p) > N'Afin(d5) + (N = N')A fr(3)
Since the total numbers N,,Ng are conserved we have
Ngg = N'¢js + (N — N')dj

or
¢ﬁ — ¢ % ol
T N, o

But since N as well as (N-N’) should be positive numbers there are two
possible cases:

N' = (N-N')=

by —¢5>0  dp—¢5>0 P —d5>0

b =05 <0  dp—d3<0  ¢5—d3<0

which means that one of ¢j;and ¢ must be larger than ¢35 and one smaller. By
renaming we always can choose the order

P < ¢p < ¢
The stability criterion becomes

¢// ¢ﬁ
o — s

or with the abbreviation

Wo=ds—dy W =l

‘bﬁ*‘bﬁ Af

i (¢3)

Afm(¢ﬁ) fm(¢lﬁ)

as
Af(ds = 1) = Af(dp) | Af(ds+1") = 6f(ds) _
hl hll
but that means the curvature has to be negative or locally
A f(¢s)

<0
%
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Figure 21: stability criterion for the free energy
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Figure 22: Free energy as a function of solute concentration

\.

AF,,/NkTis shown for M=1000 and x = 0.1,0.5,1.0,2.0

Figure 23: Free energy as a function of solute concentration

AF,,/NkTis shown for x = 1.0 and M=1,2,10,1000
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Figure 24: Free energy as a function of solute concentration

AF,,/NkTis shown for x = 2.0 and M=1,2,10,1000

critical coupling

Above a certain value of x = x.(M) instabilities appear. To find this critical
value we have to look for the metastable case with

0? 1 1
= S Af(f) = T—— + T — 2

9%y (@) L—¢p Moy

In principle the critical x value can be found from solving this quadratic
equation for ¢, and looking for real roots in the range 0 < ¢g < 1 . Here,
however a simpler strategy can be applied. At the boundaries of the interval
[0, 1] of possible ¢p-values the second derivative is positive

0

0? 1
—A - —>0 for —0
52 M () = 3= >0 for o
T AH@) — > 0for ¢y 1
—— — or —
02y ’ 1— ¢y ’
Hence we look for a minimum of the second derivative, i.e. we solve
03 1 1
0 = —(S = —
7 M =T ayr MR
this gives immediately
1
e TV

Above the critical point the minimum of the second derivative is negative.
Hence we are looking for a solution of
0? o3
—A =—=—A =0
Ers f(on) Py f(on)

Inserting ¢p. into the second derivative gives

1 2
0=1+—+4+—-2
M /M X



2 FLORY-HUGGINS THEORY FOR BIOPOLYMER SOLUTIONS 34

which gives the critical value of x

1+VM)? 1 1 1

= - = — —+

Xe oM 2 " AL 2M

chemical potential and vapor pressure

From dF = —SdT' + podNy + pgdNg we obtain the change of the chemical
potential as

OAF ON 0 ¢z 0
— 0 f = — = _— _—

1
= Af(dp) — dpAf (¢5) = kT <1H(1 = ¢p) + (1= 57)¢s + X@%)
Now the derivatives of Ay, are

8 "
aTSBAMa = —¢ﬁAf (¢B)

2
O Ao = — A" () — S50 (05)
ad)ﬁ

Hence the critical point can be also found by solving
02 0

—Aa:—Aa:
95 e = gy e =0

employing the ideal gas approximation this this gives for the vapor pressure

Pa _ toghs (g _ g o (x+(1-1/0))0y

24
and since the exponential is a monotonous function another condition for

the critical point is
9 pa 0 pa

Dbs 10 2ol

Figure 25: ideal gas approximation for the vapor pressure

liquid gas

B = Hg const + kT In(p)
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Figure 26: vapor pressure of a binary mixture with interaction (M=1)

Y = 0.5,0.532,0.55

phase diagram

In the simple Flory-Huggins theory the interaction parameter is proportional to

+ . Hence we can write it as

_ Toxo
T
and discuss the free energy change as a function of ¢g and T.
AF = NET ((1 — ¢p)In(1 — é5) + % In ¢ﬁ) + NkToxods(1 — ¢p)

The turning points follow from

02 < T T
% 1—¢s Mog
as
N 1 T(1— M)+ /T2(M — 1)2 + 4ToxoM (ToxoM — T — 4MT)
BT =9 AToxoM
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This defines the spinodal curve which seperates the instable from the metastable
region

Figure 28: Spinodal for M=1

Figure 29: Spinodal for M=100

Which is the minimum free energy of a two-phase system? The free energy
has the form

AF = AF' + AF? = N'KTAf(¢5) + N°KTA f(¢5)

with )
I

The minimum free energy can be found from the condition that exchange

of solvent or solute molecules between the two phases does not change the free

energy, i.e. the chemical potentials in the two phases are the same

AF1 AF? AF1 AF?
e VA 081 N,

—dar= (8 _ gor
0=dAF =381~ onz ON} N

0= po — Ho = Hp — Hp
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or
0 0
_ I NS 2 2 O 9
0 0
_ sl 1y 9 1 2 2y O o
0= + (1= SRzl - (AF + (1= )5 AL
From the difference of these two equations we find
OAfL  OAf?
8@5}3 8¢%

and hence the slope of the free energy has to be the same for both phases.
Inserting into the first equation then gives

Aft = Af? = (o5 — dB)AS

which shows that the concentrations of the two phases can be found by the
wellknown “common tangent” construction

Figure 30: common tangent construction

9,

These so called binodal points give the border to the stable one-phase region.
Between spinodal and binodal the system is metastable. It is stable against small
fluctuations since the curvature of the free energy is positive. It is, however
instable against larger scale fluctuations.

Figure 31: phase diagram

stable one—phase

spinodal ~ binodal
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