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Part 1
Statistical Mechanics of
Biopolymers

1 Random walk models for the conformation

In this chapter we study statistical models for polymers which have in com-
mon that the polymer is considered as a chain of rigid links which are oriented
randomly.

1.1 The freely jointed chain

We consider a chain consisting of segments which all have the length b. This is
not necessarily a monomer length, depending on the polymer type it can be 4
or 5 monomers long.

Figure 1: freely jointed chain model

¥

1.1.1 Random walk in one dimension

Let us start with the simple model of a 1-dimensional chain. For example
consider the possible configurations of a chain with only three segments:

Figure 2: configurations of a 1-dimensional chain
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A chain with M segments has a total of 2™ different configurations which

will be denoted by the sequence of distance vectors.
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1 RANDOM WALK MODELS FOR THE CONFORMATION

(b1,b2,---bn) b =+b

If the random walk choses with equal probability of % steps to the left or right
side, every configuration appears with a probability of

P(bl7b25“'bN) :27M

Now consider the end-to-end distance

M
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The probability to find a certain value of L can be determined from the binomial
distribution
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where % has to be an even integer for M even and an odd integer for odd M.
The maximum of this distribution is at M, =

% for even M and at M, =
%ﬂ for odd M. This can be easily seen for even M from
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Let us calculate the first two moments of the distribution of lengths
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The second moment follows from
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and the standard deviation is given by
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example for M = 1000 the standard deviation is AM =~ 16 and the relative
uncertainty AM/M = 1/VM =~ 3%

For the end-to end length we have
L2 =V’ (2M, — M)2 = b (4M2—AM M, +M?) = b*(M?+M —2M>*+M?) = Mb>

ds02005-01-14.avi.001

1.1.2 Entropic elasticity

We consider L as a macroscopic variable. The number of configurations with
length L is given by

M!
(55 ()

The free energy is (no internal degrees of freedom, F = 0)

QL) =

F=-TS=—-kTlhQ
which using Stirling’s approximation for large number M gives
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F=—-kTMInM+ kT
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M L? L Mb+ L
= -MKTIn2 - MEKTIn M + —kTIn(M? — = )+ —kT'1
" nM ot SR = 5 )+ kT g —T
If the system is close to its most probable state (L = 0) we can apply a Taylor
series expansion to have

1
2M b2
The quadratic dependence on L is very similar to a Hookean spring. For a
potential energy

F=—-MkTln2+kT L+ ...

ks
V= ?‘x2

the probability distribution of the coordinate is

% .
Plx) — s _k.x®/2k,T
@) =\ e, 7°

which gives a free energy of

2
F = —kTInP = const + kTm

From comparison the apparent spring constant is

kT
ks = ——
Mb?
1.1.3 force extension relationship

Consider now an external force « trying to stretch the polymer

Figure 3: external force acting on the polymer

....... >

K

The differential of the free energy is now given by

dF = —=SdT + kdL
from which we find (an Algebra program is very helpful here)
oF kT | (M b+ L>

=orr = In

For a highly stretched polymer the maximum value of L,,,, = Mb cannot
be exceeded. Close to the equilibrium we have the linear relationship

_OF _ T
S YA Vi
and the length as a function of the force is
Mb?
L=

kT
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Figure 4: force-extension relation
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1.1.4 3-dimensional freely jointed chain

We consider now a 3-dimensional chain consisting of M units. The configuration
can be described by a point in a 3(M+1)-dimensional space
(0,72 Tar)
The M bond vectors .
by =7 —Ti—1
have a fixed length |b;| = b and are oriented randomly. This can be described
by a distribution function

- 1
P(b;) = il —
(B) = 000l D)
Since the different units are independent the joint probability distribution
factorizes

M
P(by---by) =[] P(b:)
i=1

There is no excluded volume interaction between any two monomers. Obvi-
ously the end to end distance



1 RANDOM WALK MODELS FOR THE CONFORMATION 12

—ZbQ—i—be = Mb?

i#j

The distribution of the end to end vector is
P(é) = /P(gl "'EM)(S <I§* ZE’) d3by - by

This integral can be evaluated by replacing the delta function by the Fourier
integral

8 = ¢ 271r)3 / —FR g,

which gives

M
B 3. —ikR ikb; 337
P(R)_/dke H(/4b2 (5:] — b)e d@)

The inner integral can be evaluated in polar coordinates

1 - o
——6(|bs] — b)e*iady; =
/4”26(\ | —b)e
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The integral over 6 gives

2 sin kbl
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and hence
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and finally we have

51 3. kB [ sinkb M
P(R) = (27r)3/d ke ( b

sinkb\ ™
kb

has a very sharp maximum at kb = 0. For large M it can be approximated quite

accurately by a Gaussian
sin kb M —M%k2b2
_— ~ e
kb

The function
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which gives

= 1 72»*“ _ M 3.2;2
P(R) =~ e /d3ke kR ,— kb
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2% M

13

similar to the 1-dimensional case. The apparent spring constant follows from

the comparison
67%332/1@ — o3R?/(20°M)

and is
_3kT

T Mb?

ks

1.1.5 force-extension relation for the 3-d chain

We consider now a 3-dimensional chain with one fixed end and an external force

acting in x-direction at the other end.

Figure 5: 3-d chain with external force

The projection of the i-th segment onto the x-axis has a length of

bj = —bcosf € [—b,b]

Figure 6: projection of the bond vector
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We discretize the continuous range of b; by dividing the interval [—b, b]into
n bins of width Ab = 2% corresponding to the discrete values I; i = 1---n. The

n
chain members are divided into n groups according to their bond projections
bj. The number of units in each group is denoted by M; so that

OITRY
i=1
and the end to end length is

i: liM; =L
i=1

The probability distribution is
sin(#)dfd¢
4
Since we are only interested in the probability of the I; , we integrate over ¢
sin(6)dé
2

P(0,¢)dfd¢ =

P(6)do =
and transform variables to have
P(l)dl = P(—bcosf)d(—bcos ) = %d(—bcos 0) = %dl

The canonical partition function is

! M
zwan= 3 BT = Y]]y

{M;} S Mil;=L {M;} i

The z; = 2 are the independent partition functions of the single units which
we assume as independent of i. The degeneracy factor %counts the number
of microstates for a certain configuration {M;}. The summation is only over
configurations with a fixed end to end length. This makes the evaluation rather
complicated. Instead we introduce a new partition function by considering an
ensemble with fixed force and fluctuating length

Ak, M,T) =Y Z(L, M, T)et*
L

Approximating the logarithm of the sum by the logarithm of the maximum
term we see that

—kTInA=—-kTInZ — kL
(—~L corresponds to +pV ) gives the (Gibbs) free enthalpy
G(k,M,T)=F — kL
In this new ensemble the summation over L simplifies the partition function

K5 Ml 2 M (zez_?)M"

_ =T | — | A

A=> e F M'HMi! = M o
{M;} {M;}



1 RANDOM WALK MODELS FOR THE CONFORMATION 15

wiy \ M
-(5e)

= &(r, THYM
Now returning to a continuous distribution of [; = —bcos 6 we have to eval-
uate b
. inht
€= / Pyl zetr =22
b t
with
o
kT
From
dG = —SdT — Ldk
we find 0
L=——
ok Ir

= 9 (k70 | 2 sinh 22
K = kT
1 b Kb Kb

with the Langevin function

£(x) = coth(z) — i

Figure 7: Force - extension relation for the 3-dim chain

1
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1.2 two component model

The 1-dimensional random walk model can be also applied to a polymer chain
which is composed of two types of units (named « and ) , which may inter-
convert. An example would be DNA, which may be in a-configuration and
Z-configuration, respectively.

We assume that of the overall M units M, are in the a-configuration and
M — M, are in the [-configuration. The lengths of the two conformers are [,
and [g , respectively.

Figure 8: two component model

L
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The total length is given by
L=Mulo+ (M—My)lg=M(lo —1g)+ Mlg
The number of configurations with length L is given by
o TR ()
a—lp L-Mlg\) (Mla—LY)

To—Ip To—1Ig

QL) = (M, =

From the partition function

L-Mlg a1
I—M Ta=lg la—1
7 = zyazgj Moy = z,27'0 Zg 2 Q

application of Stirling’s approximation gives for the free energy

F=—-kI'lnZ=
L— Ml Ml, — L
a 3 a i3

e d (Mg (L-Mlg\ (L Mg\ (Mo~ L\, (Mo~ L\ (M, ~ L
lo— 13 lo — 13 lo— 13 lo — I3 lo— I3 lo — 13

The derivative of the free energy gives the force extension relation

OF kT (Mlﬁ—L> kT 2z
o= OF _
lo

_ o In 22
0L la—1g "\IL-Ml, 5 e
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this can be written as a function of the fraction of segments in the a-

configuration
s= Mo _ L—Miy
M M(ly—1p)

in the somewhat simpler form

lo =1 0
K A lnz—ﬂ

A e

Figure 9: force-extension relation for the 2-component model
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The mean extension for zero force is obtained by solving «(L) = 0

Zala + Zgl@)

=1 (
Za t+ 23

(5 _ .Z/()—Mlﬁ _ Za
OiM(la—lg)iza-I—Zﬂ

Taylor series expansion around Ly gives the linearized force-extension relation

oF kT (20 + 25)? = kT (20 + 25)°
=2 _ -1 o=t e T ER) s
RSP T ML) ez, Ll L=l sz 0%

1.3 two component model with interactions

We consider now additional interaction between neighbouring units. We intro-
duce the interaction energies wqq, Wag, wgg for the different pairs of neighbours
and the numbers N, No g, Ngg of such interaction terms. The total interac-

tion energy is then

W = NaaWaa + Naﬁwaﬁ + Nﬁﬁwﬁﬁ
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The numbers of pair interactions are not independent from the numbers of
units M, M. Consider insertion of an additional a-segment into a chain. The
following figure counts the possible changes in interaction terms. In any case by
insertion of an a-segments the expression 2N,, + Nag increases by 2.

Figure 10: insertion of an a-segment
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Similarly, insertion of an extra [-segment increases 2Ngg + Ny by 2.

Figure 11: insertion of an (3-segment
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This shows that there are linear relationships of the form
2Nqa + Nag =2M, + ¢,

2N5/@ + Naﬁ = 2M5 + co

The two constants depend on the boundary conditions as can be seen from
an inspection of the shortest possible chains with 2 segments. They are zero
for periodic boundaries and will be neglected in the following since the numbers
M, Mg are much bigger.
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Figure 12: determination of the constants
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We substitute

1
Naa = ]\/Ia - ENaﬁ

1
Nop = Mp = 5Nag

W = Waa + WG — 2Wag
to have the interaction energy

1 1
W = waa(Ma = 5Nag) +wps(Mp — 5 Nag) + wapNap

= WaaMe +wsg(M — M) — %Nag
The canonical partition function is

y W(Nqg)
Z(Ma, T) = 2220 3" g(Ma, Nag)e™
Naog

M, (M—M,) Nggw
= (zae_“"m/kT> (de_wﬁd/kT) Z g(My, Na@)e%
Nag

The degeneracy factor g will be evaluated in the following. The figure shows
an example.
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Figure 14: distribution of 3 segments over 3 blocks is equivalent to arrange 3
segments and 2 border lines
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Figure 13: degeneracy g
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The chain can be divided into blocks containing only a-segments (a-blocks)
or only [-segments (3-blocks). The number of boundaries between a-blocks and
B-blocks obviously is given by N.3. Let N,g be an odd number. Then there
are (Nag + 1)/2 blocks of each type (We assume that Nog, Mq, Mg are large
numbers and neglect small differences of order 1 for even N,3). In each a-block
there is at least one a-segment. The remaining M, — (Nog + 1)/2 a-segments
have to be distributed over the (N5 + 1)/2 a-blocks .

Therefore we need the number of possible ways to arrange M, — (Nag +
1)/2 segments and (Nos — 1)/2 walls which is given by the number of ways to
distribute the (N,g — 1)/2 walls over the total of M, — 1 objects which is given

—
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by
(M, —1)! N M,!
Nop— Nosg+1y, 7 /Na Na
(B0 — Rog i (B, — N1

The same consideration for the 3-segments gives another factor of

(M — M,)!
(B22)(M — M, — Fg2)1

Finally there is an additional factor of 2 because the first block can be of
either type. Hence for large numbers we find
(My)! (M — M,)!

(Be2 (Mo — o2 (Be2) (M — M, — F52)!

(J(Mm Naﬁ) =2

We look for the maximum summand of Z as a function of N,g. The corre-
sponding number will be denoted as N ; and is determined fromthe condition

0 wNyp w 0
0=——1 My, Npgle 71 | = —— + ——Ing(Ma, Na
N n<g( ple ) T N ng( 3)
Stirlings approximation gives
w1 Nig 1 N Nas
= —+ -In(M, — —22) 4 “In(M — M, — -1
0= 557 T3 5 )Ty y ) (=57
or
0

w (Mo — o2y = M, — Zo2)
+In N
af )2

KT (=~

Taking the exponential gives

NZg NZg - 2
(Ma——2 WM — M, — 5 y=e#r [ 2

which can be btw rewritten as a mass-action law

N(xaNﬁﬁ - 67w/kT

NZ, 1

for the chemical reaction
203 = aa + (B0

Introducing the relative quantities

Ma N;ﬁ
=71 T3

we have to solve the quadratic equation

(=N =0-7)=727r

The solutions are

=14 /(1—26)2 + de~w/FT§(1 — §)
7= Q(efw/kT _ 1)
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Series expansion around w=0 gives

kT 1 w kT 1
’Y—%ﬂ-z—mﬁ-"'i(—%4-5(1—5)—1)4-"'

The - alternative diverges for w — 0 whereas the + alternative approaches
the value

Yo =6 — 6
which is the only solution of the interactionless case
(6 =)L =0-70) =15 —1—-08)—y=0
The physically correct solution can be written as

_ . 1-¢
= A e wTy

with

€= /(1202 + dew/KT5(1 - 5)
We easily find

1=6)1+&) =1—(1-28)2—4e W/ 51 —0) =451 — 8) — 4e~/*T(1 - 6)s

=45(1 = 8)(1 — e w/*T)

and hence we can write
Y= 20(1 —9)
(148

The physically correct value of Nj; is

. M4 /(M —2M,)? + 4e=w/*T M (M — M,)
af = e—w/kT _

Let us now apply the maximum term method which approximates the loga-
rithm of a sum by the logarithm of the maximum summand.

F=—-kTmZ(M,,T)~ —kTMyInzq—kT(M—Mgy)In zg+Mowaa+(M—My)wss
whNys

2
The force-length relation is now obtained from

_leng(Maa N(:[i) -

L—MI
(bt

oF  oF 95 = 1 9F
K= —— = =

0L oM, OL lo — 1 OM,

0
(fkT Inzo + kT Inzg + waa —wgg — kTm lng)

lo — g



