Part I Statistical Mechanics of Biopolymers

1 Random walk models for the conformation

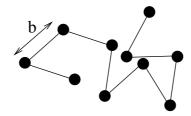
In this chapter we study statistical models for polymers which have in common that the polymer is considered as a chain of rigid links which are oriented randomly.

7

1.1 The freely jointed chain

We consider a chain consisting of segments which all have the length b. This is not necessarily a monomer length, depending on the polymer type it can be 4 or 5 monomers long.

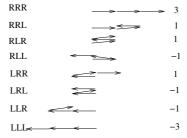
Figure 1: freely jointed chain model



1.1.1 Random walk in one dimension

Let us start with the simple model of a 1-dimensional chain. For example consider the possible configurations of a chain with only three segments:

Figure 2: configurations of a 1-dimensional chain



A chain with M segments has a total of 2^M different configurations which will be denoted by the sequence of distance vectors.

$$(b_1, b_2, \cdots b_N)$$
 $b_i = \pm b$

If the random walk choses with equal probability of $\frac{1}{2}$ steps to the left or right side, every configuration appears with a probability of

$$P(b_1, b_2, \cdots b_N) = 2^{-M}$$

Now consider the end-to-end distance

$$L = \sum_{j=1}^{M} b_j$$

The probability to find a certain value of L can be determined from the binomial distribution

$$\left(\frac{1}{2} + \frac{1}{2}\right)^M = \sum_{M_r=0}^M \frac{1}{2}^{M_r} \frac{1}{2}^{M-M_r} \frac{M!}{M_r!(M-M_r)!}$$

$$P(L = M_r b + (M - M_r)(-b)) = P(L = (2M_r - M)b) = 2^{-M} \frac{M!}{M_r!(M - M_r)!}$$

$$P(L) = 2^{-M} \frac{M!}{\left(\frac{L+M}{2}\right)! \left(\frac{M-\frac{L}{b}}{2}\right)!}$$

where $\frac{L}{b}$ has to be an even integer for M even and an odd integer for odd M. The maximum of this distribution is at $M_r=\frac{M}{2}$ for even M and at $M_r=\frac{M\pm 1}{2}$ for odd M. This can be easily seen for even M from

$$(\frac{M}{2} - 1)!(M - \frac{M}{2} + 1)! = (\frac{M}{2} + 1)!(M - \frac{M}{2} - 1)! =$$

$$= \left(\frac{M}{2} + 1\right)! \left(\frac{M}{2} - 1\right)! = 1 \cdot 2 \cdot \dots \cdot \left(\frac{M}{2}\right) \left(\frac{M}{2} + 1\right) \cdot 1 \cdot 2 \cdot \dots \cdot \left(\frac{M}{2} - 2\right) \left(\frac{M}{2} - 1\right)$$

$$=(\frac{M}{2})!(\frac{M}{2}+1)(\frac{M}{2})!(\frac{M}{2})^{-1}=(\frac{M}{2})!(M-\frac{M}{2})!\frac{M+2}{M}>(\frac{M}{2})!(M-\frac{M}{2})!$$

and for odd M from

$$(\frac{M-1}{2}-1)!(M-\frac{M-1}{2}+1)! = (\frac{M+1}{2}+1)!(M-\frac{M+1}{2}-1)! = (\frac{M+3}{2})!(\frac{M-3}{2})! = 1 \cdot 2 \cdot \cdot \cdot \frac{M+1}{2} \cdot \frac{M+3}{2} \cdot 1 \cdot 2 \cdot \cdot \cdot \frac{M-3}{2} = (\frac{M+1}{2})!\frac{M+3}{2}(\frac{M-1}{2})!(\frac{M-1}{2})^{-1} = (\frac{M-1}{2})!(M-\frac{M-1}{2})!\frac{M+3}{M-1} > (\frac{M-1}{2})!(M-\frac{M-1}{2})!$$

Let us calculate the first two moments of the distribution of lengths

$$\overline{M_r} = \sum_{M_r=0}^{M} p^{M_r} q^{M-M_r} M_r \frac{M!}{M_r! (M-M_r)!} = p \frac{\partial}{\partial p} \sum_{M_r=0}^{M} p^{M_r} q^{M-M_r} \frac{M!}{M_r! (M-M_r)!} = p \frac{\partial}{\partial p} (p+q)^M$$
$$= p M (p+q)^{M-1} = \frac{M}{2}$$

and hence

$$\overline{L} = (2\overline{M_r} - M)b = 0$$

The second moment follows from

$$\begin{split} \overline{M_r^2} &= \sum_{M_r=0}^M p^{M_r} q^{M-M_r} M_r^2 \frac{M!}{M!(M-M_r)!} = (p \frac{\partial}{\partial p}) (p \frac{\partial}{\partial p}) \sum_{M_r=0}^M p^{M_r} q^{M-M_r} \frac{M!}{M_r!(M-M_r)!} \\ &= (p \frac{\partial}{\partial p}) (p M (p+q)^{M-1}) = p M ((p+q)^{M-1} + p^2 M (M-1) (p+q)^{M-2}) \\ &\qquad \qquad \frac{M}{2} + \frac{M (M-1)}{4}) = \frac{M^2}{4} + \frac{M}{4} \end{split}$$

and the standard deviation is given by

$$(\Delta M)^2 = \overline{M_r^2} - \overline{M_r^2}^2 = \frac{M}{4}$$

example for M=1000 the standard deviation is $\Delta M\approx 16$ and the relative uncertainty $\Delta M/\overline{M}=1/\sqrt{\overline{M}}\approx 3\%$

For the end-to end length we have

$$\overline{L^2} = b^2 \overline{(2M_r - M)^2} = b^2 (4 \overline{M_r^2} - 4 M \overline{M_r} + M^2) = b^2 (M^2 + M - 2M^2 + M^2) = Mb^2$$
dso2005-01-14.avi.001

1.1.2 Entropic elasticity

We consider L as a macroscopic variable. The number of configurations with length L is given by

$$\Omega(L) = \frac{M!}{\left(\frac{\frac{L}{b} + M}{2}\right)! \left(\frac{M - \frac{L}{b}}{2}\right)!}$$

The free energy is (no internal degrees of freedom, E=0)

$$F = -TS = -kT\ln\Omega$$

which using Stirling's approximation for large number M gives

$$F = -kTM \ln M + kT \frac{M + \frac{L}{b}}{2} \ln \frac{M + \frac{L}{b}}{2} + kT \frac{M - \frac{L}{b}}{2} \ln \frac{M - \frac{L}{b}}{2}$$

$$= -MkT \ln 2 - MkT \ln M + \frac{M}{2}kT \ln(M^2 - \frac{L^2}{b^2}) + \frac{L}{2b}kT \ln \frac{Mb + L}{Mb - L}$$

If the system is close to its most probable state (L=0) we can apply a Taylor series expansion to have

$$F = -MkT \ln 2 + kT \frac{1}{2Mb^2} L^2 + \cdots$$

The quadratic dependence on L is very similar to a Hookean spring. For a potential energy

$$V = \frac{k_s}{2}x^2$$

the probability distribution of the coordinate is

$$P(x) = \sqrt{\frac{k_s}{2\pi k_b T}} e^{-k_s x^2/2k_b T}$$

which gives a free energy of

$$F = -kT \ln P = \text{const} + \frac{k_s x^2}{2}$$

From comparison the apparent spring constant is

$$k_s = \frac{kT}{Mb^2}$$

1.1.3 force extension relationship

Consider now an external force κ trying to stretch the polymer

Figure 3: external force acting on the polymer

The differential of the free energy is now given by

$$dF = -SdT + \kappa dL$$

from which we find (an Algebra program is very helpful here)

$$\kappa = \frac{\partial F}{\partial L}|_{T} = \frac{kT}{2b} \ln \left(\frac{Mb + L}{Mb - L}\right)$$

For a highly stretched polymer the maximum value of $L_{max}=Mb$ cannot be exceeded. Close to the equilibrium we have the linear relationship

$$\kappa = \frac{\partial F}{\partial L}|_T = \frac{kT}{Mb^2}L$$

and the length as a function of the force is

$$L = \frac{Mb^2}{kT}\kappa$$

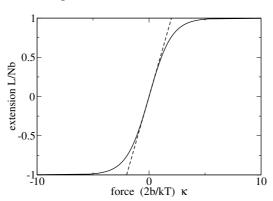


Figure 4: force-extension relation

1.1.4 3-dimensional freely jointed chain

We consider now a 3-dimensional chain consisting of M units. The configuration can be described by a point in a 3(M+1)-dimensional space

$$(\vec{r}_0, \vec{r}_2 \cdots \vec{r}_M)$$

The M bond vectors

$$\vec{b}_i = \vec{r}_i - \vec{r}_{i-1}$$

have a fixed length $|\vec{b}_i| = b$ and are oriented randomly. This can be described by a distribution function

$$P(\vec{b}_i) = \frac{1}{4\pi b^2} \delta(|b_i| - b)$$

Since the different units are independent the joint probability distribution factorizes

$$P(\vec{b}_1 \cdots \vec{b}_M) = \prod_{i=1}^M P(\vec{b_i})$$

There is no excluded volume interaction between any two monomers. Obviously the end to end distance

$$\vec{R} = \sum_{i=1}^{N} \vec{b}_i$$

has an average value of $\overline{\vec{R}}=0$ since

$$\overline{\vec{R}} = \sum \overline{\vec{b}_i} = M \int \vec{b_i} P(\vec{b}_i) = 0$$

The second moment is

$$\overline{R^2} = \overline{\left(\sum_i \vec{b}_i \sum_j \vec{b}_j\right)} = \sum_{i,j} \overline{\vec{b}_i \vec{b}_j}$$

$$= \sum_{i} \overline{b_i^2} + \sum_{i \neq j} \vec{b}_i \vec{b}_j = Mb^2$$

The distribution of the end to end vector is

$$P(\vec{R}) = \int P(\vec{b}_1 \cdots \vec{b}_M) \delta\left(\vec{R} - \sum \vec{b}_i\right) d^3b_1 \cdots d^3b_M$$

This integral can be evaluated by replacing the delta function by the Fourier integral $\,$

$$\delta(\vec{R}) = \frac{1}{(2\pi)^3} \int e^{-i\vec{k}\vec{R}} d^3k$$

which gives

$$P(\vec{R}) = \int d^3k e^{-i\vec{k}\vec{R}} \prod_{i=1}^M \left(\int \frac{1}{4\pi b^2} \delta(|\vec{b}_i| - b) e^{i\vec{k}\vec{b}_i} d^3b_i \right)$$

The inner integral can be evaluated in polar coordinates

$$\begin{split} &\int \frac{1}{4\pi b^2} \delta(|\vec{b}_i| - b) e^{i\vec{k}\vec{b}_i} d^3b_i = \\ &= \int_0^{2\pi} d\phi \int_0^\infty b_i^2 db_i \frac{1}{4\pi b^2} \delta(|b_i| - b) \int_0^\pi \sin\theta d\theta e^{ikb_i \cos\theta} \end{split}$$

The integral over θ gives

$$\int_0^{\pi} \sin\theta d\theta e^{ikb_i\cos\theta} = \frac{2\sin kb_i}{kb_i}$$

and hence

$$\int \frac{1}{4\pi b^2} \delta(|\vec{b}_i| - b) e^{i\vec{k}\vec{b}_i} d^3b_i = 2\pi \int_0^\infty db_i \frac{1}{4\pi b^2} \delta(b_i - b) b_i^2 \frac{2\sin kb_i}{kb_i}$$
$$= \frac{\sin kb}{kb}$$

and finally we have

$$P(\vec{R}) = \frac{1}{(2\pi)^3} \int d^3k e^{-i\vec{k}\vec{R}} \left(\frac{\sin kb}{kb}\right)^M$$

The function

$$\left(\frac{\sin kb}{kb}\right)^M$$

has a very sharp maximum at kb=0. For large M it can be approximated quite accurately by a Gaussian

$$\left(\frac{\sin kb}{kb}\right)^M \approx e^{-M\frac{1}{6}k^2b^2}$$

which gives

$$\begin{split} P(\vec{R}) &\approx \frac{1}{(2\pi)^3} \int d^3k e^{-i\vec{k}\vec{R}} e^{-\frac{M}{6}k^2b^2} \\ &= \left(\frac{3}{2\pi b^2 M}\right)^{3/2} e^{-3R^2/(2b^2 M)} \end{split}$$

similar to the 1-dimensional case. The apparent spring constant follows from the comparison $\,$

$$e^{-\frac{k_s}{2}R^2/kT} = e^{-3R^2/(2b^2M)}$$

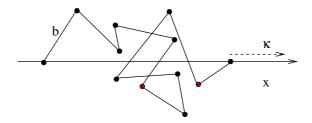
and is

$$k_s = \frac{3kT}{Mb^2}$$

1.1.5 force-extension relation for the 3-d chain

We consider now a 3-dimensional chain with one fixed end and an external force acting in x-direction at the other end.

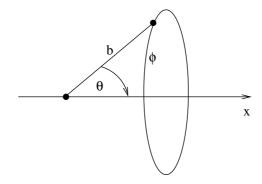
Figure 5: 3-d chain with external force



The projection of the i-th segment onto the x-axis has a length of

$$b_j = -b\cos\theta \in [-b, b]$$

Figure 6: projection of the bond vector



We discretize the continuous range of b_j by dividing the interval [-b, b] into n bins of width $\Delta b = \frac{2b}{n}$ corresponding to the discrete values l_i $i = 1 \cdots n$. The chain members are divided into n groups according to their bond projections b_j . The number of units in each group is denoted by M_i so that

$$\sum_{i=1}^{n} M_i = M$$

and the end to end length is

$$\sum_{i=1}^{n} l_i M_i = L$$

The probability distribution is

$$P(\theta, \phi)d\theta d\phi = \frac{\sin(\theta)d\theta d\phi}{4\pi}$$

Since we are only interested in the probability of the l_i , we integrate over ϕ

$$P(\theta)d\theta = \frac{\sin(\theta)d\theta}{2}$$

and transform variables to have

$$P(l)dl = P(-b\cos\theta)d(-b\cos\theta) = \frac{1}{2b}d(-b\cos\theta) = \frac{1}{2b}dl$$

The canonical partition function is

$$Z(L, M, T) = \sum_{\{M_i\} \sum M_i l_i = L} \frac{M!}{\prod_j M_j!} \prod_i z_i^{M_i} = \sum_{\{M_i\}} M! \prod_i \frac{z_i^{M_i}}{M_i!}$$

The $z_i=z$ are the independent partition functions of the single units which we assume as independent of i. The degeneracy factor $\frac{M!}{\prod M_i!}$ counts the number of microstates for a certain configuration $\{M_i\}$. The summation is only over configurations with a fixed end to end length. This makes the evaluation rather complicated. Instead we introduce a new partition function by considering an ensemble with fixed force and fluctuating length

$$\Delta(\kappa,M,T) = \sum_L Z(L,M,T) e^{\frac{\kappa L}{kT}}$$

Approximating the logarithm of the sum by the logarithm of the maximum term we see that

$$-kT\ln\Delta = -kT\ln Z - \kappa L$$

 $(-\kappa L \text{ corresponds to } + pV)$ gives the (Gibbs) free enthalpy

$$G(\kappa, M, T) = F - \kappa L$$

In this new ensemble the summation over L simplifies the partition function

$$\Delta = \sum_{\{M_i\}} e^{\frac{\kappa \sum M_i l_i}{kT}} M! \prod \frac{z^{M_i}}{M_i!} = \sum_{\{M_i\}} M! \prod \frac{(ze^{\frac{\kappa l_i}{kT}})^{M_i}}{M_i!}$$

$$= \left(\sum z e^{\frac{\kappa l_i}{kT}}\right)^M$$
$$= \xi(\kappa, T)^M$$

Now returning to a continuous distribution of $l_i = -b\cos\theta$ we have to evaluate

$$\xi = \int_{-b}^{b} P(l)dl \quad ze^{\frac{l\kappa}{kT}} = z \frac{\sinh t}{t}$$
$$t = \frac{\kappa b}{kT}$$
$$dG = -SdT - Ld\kappa$$

we find

From

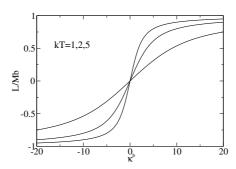
with

$$\begin{split} L &= -\frac{\partial G}{\partial \kappa}|_T \\ &= \frac{\partial}{\partial \kappa} \left(MkT \ln \left(\frac{z}{\frac{\kappa b}{kT}} \sinh \frac{\kappa b}{kT} \right) \right) \\ &= MkT \left(-\frac{1}{\kappa} + \frac{b}{kT} \coth \left(\frac{\kappa b}{kT} \right) \right) = Mb\mathfrak{L} \left(\frac{\kappa b}{kT} \right) \end{split}$$

with the Langevin function

$$\mathfrak{L}(x) = \coth(x) - \frac{1}{x}$$

Figure 7: Force - extension relation for the 3-dim chain

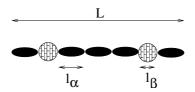


1.2 two component model

The 1-dimensional random walk model can be also applied to a polymer chain which is composed of two types of units (named α and β), which may interconvert. An example would be DNA, which may be in α -configuration and Z-configuration, respectively.

We assume that of the overall M units M_{α} are in the α -configuration and $M-M_{\alpha}$ are in the β -configuration. The lengths of the two conformers are l_{α} and l_{β} , respectively.

Figure 8: two component model



The total length is given by

$$L = M_{\alpha}l_{\alpha} + (M - M_{\alpha})l_{\beta} = M_{\alpha}(l_{\alpha} - l_{\beta}) + Ml_{\beta}$$

The number of configurations with length L is given by

$$\Omega(L) = \Omega(M_{\alpha} = \frac{L - M l_{\beta}}{l_{\alpha} - l_{\beta}}) = \frac{M!}{\left(\frac{L - M l_{\beta}}{l_{\alpha} - l_{\beta}}\right)! \left(\frac{M l_{\alpha} - L}{l_{\alpha} - l_{\beta}}\right)!}$$

From the partition function

$$Z=z_{\alpha}^{M_{\alpha}}z_{\beta}^{M-M_{\alpha}}\Omega=z_{\alpha}^{\frac{L-Ml_{\beta}}{l_{\alpha}-l_{\beta}}}z_{\beta}^{\frac{Ml_{\alpha}-L}{l_{\alpha}-l_{\beta}}}\Omega$$

application of Stirling's approximation gives for the free energy

$$F = -kT \ln Z =$$

$$=-kT\frac{L-Ml_{\beta}}{l_{\alpha}-l_{\beta}}\ln z_{\alpha}-kT\frac{Ml_{\alpha}-L}{l_{\alpha}-l_{\beta}}\ln z_{\beta}-kT\left(M\ln M-M\right)$$

$$-kT\left\{-\left(\frac{L-Ml_{\beta}}{l_{\alpha}-l_{\beta}}\right)\ln\left(\frac{L-Ml_{\beta}}{l_{\alpha}-l_{\beta}}\right)+\left(\frac{L-Ml_{\beta}}{l_{\alpha}-l_{\beta}}\right)-\left(\frac{Ml_{\alpha}-L}{l_{\alpha}-l_{\beta}}\right)\ln\left(\frac{Ml_{\alpha}-L}{l_{\alpha}-l_{\beta}}\right)+\left(\frac{Ml_{\alpha}-L}{l_{\alpha}-l_{\beta}}\right)\right\}$$

The derivative of the free energy gives the force extension relation

$$\kappa = \frac{\partial F}{\partial L} = \frac{kT}{l_{\alpha} - l_{\beta}} \ln \left(\frac{Ml_{\beta} - L}{L - Ml_{\alpha}} \right) + \frac{kT}{l_{\alpha} - l_{\beta}} \ln \frac{z_{\beta}}{z_{\alpha}}$$

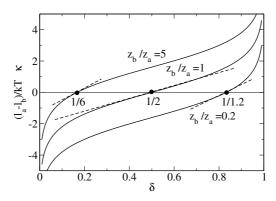
this can be written as a function of the fraction of segments in the $\alpha\text{-}$ configuration

$$\delta = \frac{M_{\alpha}}{M} = \frac{L - M l_{\beta}}{M(l_{\alpha} - l_{\beta})}$$

in the somewhat simpler form

$$\kappa \frac{l_{\alpha} - l_{\beta}}{kT} = \ln \frac{\delta}{1 - \delta} + \ln \frac{z_{\beta}}{z_{\alpha}}$$

Figure 9: force-extension relation for the 2-component model



The mean extension for zero force is obtained by solving $\kappa(L)=0$

$$\overline{L}_0 = M \left(\frac{z_{\alpha} l_{\alpha} + z_{\beta} l_{\beta}}{z_{\alpha} + z_{\beta}} \right)$$

$$\delta_0 = \frac{\bar{L}_0 - M l_\beta}{M(l_\alpha - l_\beta)} = \frac{z_\alpha}{z_\alpha + z_\beta}$$

Taylor series expansion around \overline{L}_0 gives the linearized force-extension relation

$$\kappa = \frac{\partial F}{\partial L} = \frac{kT}{M(l_{\alpha} - l_{\beta})^2} \frac{(z_{\alpha} + z_{\beta})^2}{z_{\alpha} z_{\beta}} (L - \bar{L}_0) + \dots = \frac{kT}{l_{\alpha} - l_{\beta}} \frac{(z_{\alpha} + z_{\beta})^2}{z_{\alpha} z_{\beta}} (\delta - \delta_0)$$

1.3 two component model with interactions

We consider now additional interaction between neighbouring units. We introduce the interaction energies $w_{\alpha\alpha}, w_{\alpha\beta}, w_{\beta\beta}$ for the different pairs of neighbours and the numbers $N_{\alpha\alpha}, N_{\alpha,\beta}, N_{\beta\beta}$ of such interaction terms. The total interaction energy is then

$$W = N_{\alpha\alpha} w_{\alpha\alpha} + N_{\alpha\beta} w_{\alpha\beta} + N_{\beta\beta} w_{\beta\beta}$$

The numbers of pair interactions are not independent from the numbers of units M_{α}, M_{β} . Consider insertion of an additional α -segment into a chain. The following figure counts the possible changes in interaction terms. In any case by insertion of an α -segments the expression $2N_{\alpha\alpha} + N_{\alpha\beta}$ increases by 2.

Figure 10: insertion of an α -segment

α	$\boldsymbol{M}_{\!\alpha}$	\boldsymbol{M}_{β}	$N_{\!$	$\underset{\alpha\beta}{N}$	$N_{\beta\beta}$	$2N_{\alpha\alpha}^{+}N_{\alpha\beta}^{-}$
***\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			+1			+2
αβ	+1		+1			+2
βα	+1		+1			+2
BB	+1			+2	-1	+2

Similarly, insertion of an extra $\beta\text{-segment}$ increases $2N_{\beta\beta}+N_{\alpha\beta}$ by 2.

Figure 11: insertion of an β -segment

β	$\boldsymbol{M}_{\!\alpha}$	\boldsymbol{M}_{β}	$N_{\!$	$N_{\!\alpha\beta}$	$N_{\beta\beta}$	$2N_{\beta\beta} + N_{\alpha\beta}$
***\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		+1	-1	+2		+2
αβ		+1			+1	+2
βα		+1			+1	+2
BB		+1			+1	+2

This shows that there are linear relationships of the form

$$2N_{\alpha\alpha} + N_{\alpha\beta} = 2M_{\alpha} + c_1$$
$$2N_{\beta\beta} + N_{\alpha\beta} = 2M_{\beta} + c_2$$

The two constants depend on the boundary conditions as can be seen from an inspection of the shortest possible chains with 2 segments. They are zero for periodic boundaries and will be neglected in the following since the numbers M_{α}, M_{β} are much bigger.

Figure 12: determination of the constants

We substitute

$$N_{\alpha\alpha} = M_{\alpha} - \frac{1}{2}N_{\alpha\beta}$$

$$N_{\beta\beta} = M_{\beta} - \frac{1}{2}N_{\alpha\beta}$$

$$w = w_{\alpha\alpha} + w_{\beta\beta} - 2w_{\alpha\beta}$$

to have the interaction energy

$$W = w_{\alpha\alpha}(M_{\alpha} - \frac{1}{2}N_{\alpha\beta}) + w_{\beta\beta}(M_{\beta} - \frac{1}{2}N_{\alpha\beta}) + w_{\alpha\beta}N_{\alpha\beta}$$
$$= w_{\alpha\alpha}M_{\alpha} + w_{\beta\beta}(M - M_{\alpha}) - \frac{w}{2}N_{\alpha\beta}$$

The canonical partition function is

$$Z(M_{\alpha},T) = z_{\alpha}^{M_{\alpha}} z_{\beta}^{M_{\beta}} \sum_{N_{\alpha\beta}} g(M_{\alpha},N_{\alpha\beta}) e^{-\frac{W(N_{\alpha\beta})}{kT}}$$

$$= \left(z_{\alpha}e^{-w_{\alpha\alpha}/kT}\right)^{M_{\alpha}} \left(z_{\beta}e^{-w_{\beta\beta}/kT}\right)^{(M-M_{\alpha})} \sum_{N_{\alpha\beta}} g(M_{\alpha}, N_{\alpha\beta}) e^{\frac{N_{\alpha\beta}w}{2kT}}$$

The degeneracy factor g will be evaluated in the following. The figure shows an example.

Figure 14: distribution of 3 segments over 3 blocks is equivalent to arrange 3 segments and 2 border lines

α α α			ααα
$ \alpha \alpha \alpha$		α	αα
$ \alpha \alpha \alpha$		αα	α
$ \alpha \alpha \alpha $		ααα	
$\alpha \alpha \alpha$	α		αα
$\alpha \alpha \alpha$	α	α	α
$\alpha \alpha \alpha $	α	αα	
$\alpha \alpha \alpha$	αα		α
$\alpha \alpha \alpha $	αα	α	
ααα	ααα		

Figure 13: degeneracy g

$ \begin{array}{c ccccc} \alpha\alpha & \beta\beta & \alpha & \beta \\ \hline \alpha\alpha & \beta & \alpha & \beta\beta \\ \hline \alpha & \beta\beta & \alpha\alpha & \beta \end{array} $	
α β αα ββ	M=4 M =2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M_{\beta} = 2$ $N_{\alpha\beta} = 3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

The chain can be divided into blocks containing only α -segments (α -blocks) or only β -segments (β -blocks). The number of boundaries between α -blocks and β -blocks obviously is given by $N_{\alpha\beta}$. Let $N_{\alpha\beta}$ be an odd number. Then there are $(N_{\alpha\beta}+1)/2$ blocks of each type (We assume that $N_{\alpha\beta},M_{\alpha},M_{\beta}$ are large numbers and neglect small differences of order 1 for even $N_{\alpha\beta}$). In each α -block there is at least one α -segment. The remaining $M_{\alpha}-(N_{\alpha\beta}+1)/2$ α -segments have to be distributed over the $(N_{\alpha\beta}+1)/2$ α -blocks .

Therefore we need the number of possible ways to arrange $M_{\alpha}-(N_{\alpha\beta}+1)/2$ segments and $(N_{\alpha\beta}-1)/2$ walls which is given by the number of ways to distribute the $(N_{\alpha\beta}-1)/2$ walls over the total of $M_{\alpha}-1$ objects which is given

by

$$\frac{(M_{\alpha}-1)!}{(\frac{N_{\alpha\beta}-1}{2})!(M_{\alpha}-\frac{N_{\alpha\beta}+1}{2})!} \approx \frac{M_{\alpha}!}{(\frac{N_{\alpha\beta}}{2})!(M_{\alpha}-\frac{N_{\alpha\beta}}{2})!}$$

The same consideration for the β -segments gives another factor of

$$\frac{(M-M_{\alpha})!}{(\frac{N_{\alpha\beta}}{2})!(M-M_{\alpha}-\frac{N_{\alpha\beta}}{2})!}$$

Finally there is an additional factor of 2 because the first block can be of either type. Hence for large numbers we find

$$g(M_{\alpha},N_{\alpha\beta}) = 2\frac{(M_{\alpha})!}{(\frac{N_{\alpha\beta}}{2})!(M_{\alpha} - \frac{N_{\alpha\beta}}{2})!} \frac{(M - M_{\alpha})!}{(\frac{N_{\alpha\beta}}{2})!(M - M_{\alpha} - \frac{N_{\alpha\beta}}{2})!}$$

We look for the maximum summand of Z as a function of $N_{\alpha\beta}$. The corresponding number will be denoted as $N_{\alpha\beta}^*$ and is determined from the condition

$$0 = \frac{\partial}{\partial N_{\alpha\beta}} \ln \left(g(M_{\alpha}, N_{\alpha\beta}) e^{\frac{wN_{\alpha\beta}}{2kT}} \right) = \frac{w}{2kT} + \frac{\partial}{\partial N_{\alpha\beta}} \ln g(M_{\alpha}, N_{\alpha\beta})$$

Stirlings approximation gives

$$0 = \frac{w}{2kT} + \frac{1}{2}\ln(M_{\alpha} - \frac{N_{\alpha\beta}^*}{2}) + \frac{1}{2}\ln(M - M_{\alpha} - \frac{N_{\alpha\beta}^*}{2}) - \ln(\frac{N_{\alpha\beta}^*}{2})$$

or

$$0 = \frac{w}{kT} + \ln\left(\frac{\left(M_{\alpha} - \frac{N_{\alpha\beta}^*}{2}\right)\left(M - M_{\alpha} - \frac{N_{\alpha\beta}^*}{2}\right)}{\left(\frac{N_{\alpha\beta}^*}{2}\right)^2}\right)$$

Taking the exponential gives

$$(M_{\alpha} - \frac{N_{\alpha\beta}^*}{2})(M - M_{\alpha} - \frac{N_{\alpha\beta}^*}{2}) = e^{-\frac{w}{kT}} \left(\frac{N_{\alpha\beta}}{2}\right)^2$$

which can be btw rewritten as a mass-action law

$$\frac{N_{\alpha\alpha}N_{\beta\beta}}{N_{\alpha\beta}^2} = \frac{e^{-w/kT}}{4}$$

for the chemical reaction

$$2\alpha\beta \rightleftharpoons \alpha\alpha + \beta\beta$$

Introducing the relative quantities

$$\delta = \frac{M_{\alpha}}{M} \qquad \gamma = \frac{N_{\alpha\beta}^*}{2M}$$

we have to solve the quadratic equation

$$(\delta - \gamma)(1 - \delta - \gamma) = \gamma^2 e^{-\frac{w}{kT}}$$

The solutions are

$$\gamma = \frac{-1 \pm \sqrt{(1 - 2\delta)^2 + 4e^{-w/kT}\delta(1 - \delta)}}{2(e^{-w/kT} - 1)}$$

Series expansion around w=0 gives

$$\gamma = \frac{kT}{2w} + \frac{1}{4} - \frac{w}{24kT} + \dots \pm \left(-\frac{kT}{2w} + \delta(1-\delta) - \frac{1}{4}\right) + \dots$$

The - alternative diverges for $w \to 0$ whereas the + alternative approaches the value

$$\gamma_0 = \delta - \delta^2$$

which is the only solution of the interactionless case

$$(\delta - \gamma_0)(1 - \delta - \gamma_0) = \gamma_0^2 \to \delta(1 - \delta) - \gamma = 0$$

The physically correct solution can be written as

$$\gamma = \frac{1 - \xi}{2(1 - e^{-w/kT})}$$

with

$$\xi = \sqrt{(1 - 2\delta)^2 + 4e^{-w/kT}\delta(1 - \delta)}$$

We easily find

$$(1-\xi)(1+\xi) = 1 - (1-2\delta)^2 - 4e^{-w/kT}\delta(1-\delta) = 4\delta(1-\delta) - 4e^{-w/kT}(1-\delta)\delta$$

$$= 4\delta(1-\delta)(1-e^{-w/kT})$$

and hence we can write

$$\gamma = \frac{2\delta(1-\delta)}{(1+\xi)}$$

The physically correct value of $N_{\alpha\beta}^*$ is

$$N_{\alpha\beta}^* = \frac{-M + \sqrt{(M - 2M_{\alpha})^2 + 4e^{-w/kT}M_{\alpha}(M - M_{\alpha})}}{e^{-w/kT} - 1}$$

Let us now apply the maximum term method which approximates the logarithm of a sum by the logarithm of the maximum summand.

$$F = -kT \ln Z(M_\alpha,T) \approx -kT M_\alpha \ln z_\alpha - kT (M-M_\alpha) \ln z_\beta + M_\alpha w_{\alpha\alpha} + (M-M_\alpha) w_{\beta\beta}$$

$$-kT \ln g(M_{\alpha}, N_{\alpha\beta}^*) - \frac{wN_{\alpha\beta}^*}{2}$$

The force-length relation is now obtained from

$$\kappa = \frac{\partial F}{\partial L} = \frac{\partial F}{\partial M_{\alpha}} \frac{\partial \left(\frac{L - M l_{\beta}}{l_{\alpha} - l_{\beta}}\right)}{\partial L} = \frac{1}{l_{\alpha} - l_{\beta}} \frac{\partial F}{\partial M_{\alpha}}$$
$$= \frac{1}{l_{\alpha} - l_{\beta}} \left(-kT \ln z_{\alpha} + kT \ln z_{\beta} + w_{\alpha\alpha} - w_{\beta\beta} - kT \frac{\partial}{\partial M_{\alpha}} \ln g\right)$$