l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0000	00000	0000	0000

Hopf algebroids over quantum projective spaces

Jacopo Zanchettin (SISSA) Joint work with L. Dabrowski (SISSA) and G. Landi (UniTS) Noncommutative geometry: metric and spectral aspects

September 2022

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0000	00000	0000	0000

3 Hopf algebroids

4 Extensions over projective spaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
•				

Hopf-Galois extensions are the (noncommutative) algebraic version of principal bundles. In the classical theory one associates to a them a groupoid known as the gauge groupoid, which allows one to characterize connections.

lntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
●	0000	00000	0000	0000

Hopf-Galois extensions are the (noncommutative) algebraic version of principal bundles. In the classical theory one associates to a them a groupoid known as the gauge groupoid, which allows one to characterize connections.

Its algebraic counterpart is known as the Ehresmann-Schauenburg bialgebroid and recently has been proven to be a Hopf algebroid (in the sense of Schauenburg). It is not clear yet if this Hopf algebroid is always full, i.e. if it posses an antipode map. In my project I am studying conditions under which this map exists and also the concept of twist of an antipode.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	●000	00000	0000	0000

Recall that a **bialgebra** over a field \mathbb{K} is the datum of an algebra (H, m, ν) together with two maps $\Delta : H \otimes H \longrightarrow H$ and $\epsilon : H \longrightarrow \mathbb{K}$ satisfying

 $(\mathrm{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathrm{id})\circ\Delta,\quad(\mathrm{id}\otimes\epsilon)\circ\Delta=\mathrm{id}=(\epsilon\otimes\mathrm{id})\circ\Delta$

called coproduct and counit such that are algebra morphism.

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
⊙	●000	00000	0000	0000

Recall that a **bialgebra** over a field \mathbb{K} is the datum of an algebra (H, m, ν) together with two maps $\Delta : H \otimes H \longrightarrow H$ and $\epsilon : H \longrightarrow \mathbb{K}$ satisfying

 $(\mathrm{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathrm{id})\circ\Delta,\quad(\mathrm{id}\otimes\epsilon)\circ\Delta=\mathrm{id}=(\epsilon\otimes\mathrm{id})\circ\Delta$

called **coproduct** and **counit** such that are algebra morphism. A **Hopf algebra** is a bialgebra H as above endowed with a linear endomorphism $S : H \longrightarrow H$ satisfying

$$m \circ (S \otimes id) \circ \Delta = \nu \circ \epsilon = m \circ (id \circ S) \circ \Delta$$

such a map is called the antipode.

lntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0●00	00000	0000	0000

Example (Coordinate algebra of a group)

Let G be a finite group and O(G) the K-linear space of functions $f: G \longrightarrow K$. The latter is a unital algebra if equipped with

(ff')(g) = f(g)f'(g)

where $f, f' \in O(G)$ and $g \in G$, unit is the constant function 1.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0●00	00000	0000	0000

Example (Coordinate algebra of a group)

Let G be a finite group and O(G) the K-linear space of functions $f: G \longrightarrow K$. The latter is a unital algebra if equipped with

(ff')(g) = f(g)f'(g)

where $f, f' \in O(G)$ and $g \in G$, unit is the constant function 1. It becomes a Hopf algebra with the K-linear extensions of

$$\Delta(f)(g,g') = f(gg'), \quad \epsilon(f) = f(e), \quad S(f)(g) = f(g^{-1})$$

where e is the identity in G, here we identify $O(G \times G)$ with $O(G) \otimes O(G)$ for the coproduct.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	00●0	00000	0000	0000

Let now V be a K-linear space. We say that is a (right) H-comodule when there is a linear map $\rho_V : V \longrightarrow V \otimes H$ such that

$$(\mathrm{id}\otimes\Delta)\circ\rho=(\rho\otimes\mathrm{id})\circ\rho,\quad(\mathrm{id}\otimes\epsilon)\circ\rho=\mathrm{id}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We adopt the Sweedler notation $\rho_V(v) = v_{(0)} \otimes v_{(1)}$.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	00●0	00000	0000	0000

Let now V be a K-linear space. We say that is a (right) H-comodule when there is a linear map $\rho_V : V \longrightarrow V \otimes H$ such that

$$(\mathrm{id}\otimes\Delta)\circ\rho=(\rho\otimes\mathrm{id})\circ\rho,\quad(\mathrm{id}\otimes\epsilon)\circ\rho=\mathrm{id}$$

We adopt the Sweedler notation $\rho_V(v) = v_{(0)} \otimes v_{(1)}$. An algebra A that is also a H-comodule is said to be a H-comodule algebra if the coaction is an algebra morphism.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	00●0	00000	0000	0000

Let now V be a K-linear space. We say that is a (right) H-comodule when there is a linear map $\rho_V : V \longrightarrow V \otimes H$ such that

$$(\mathrm{id}\otimes\Delta)\circ\rho=(\rho\otimes\mathrm{id})\circ\rho,\quad(\mathrm{id}\otimes\epsilon)\circ\rho=\mathrm{id}$$

We adopt the Sweedler notation $\rho_V(v) = v_{(0)} \otimes v_{(1)}$. An algebra A that is also a H-comodule is said to be a H-comodule algebra if the coaction is an algebra morphism. The space of coinvariant elements in a H-comodule algebra

$$A^{coH} := \{b \in A |
ho_A(b) = b \otimes 1_H\}$$

is a sub-algebra of A.

Denote by $B = A^{coH}$. The algebra inclusion $B \subseteq A$ is called a *H*-Hopf-Galois extension if the canonical map

$$\chi: A \otimes_B A \longrightarrow A \otimes H, \quad a \otimes_B a' \longmapsto (a \otimes 1_H) \rho_A(a')$$

is bijective.

Denote by $B = A^{coH}$. The algebra inclusion $B \subseteq A$ is called a *H*-Hopf-Galois extension if the canonical map

$$\chi: A \otimes_B A \longrightarrow A \otimes H, \quad a \otimes_B a' \longmapsto (a \otimes 1_H) \rho_A(a')$$

is bijective.

Hopf-Galois extension are non-commutative principal bundles in the following sense: consider a G-space P and a projection $\pi: P \longrightarrow X$, we say that this set of data is a principal G-bundle if and only if the following map is bijective

$$\alpha: P \times G \longrightarrow P \times_X P, \quad (p,g) \longmapsto (p,p \cdot g)$$

Denote by $B = A^{coH}$. The algebra inclusion $B \subseteq A$ is called a *H*-Hopf-Galois extension if the canonical map

$$\chi: A \otimes_B A \longrightarrow A \otimes H, \quad a \otimes_B a' \longmapsto (a \otimes 1_H) \rho_A(a')$$

is bijective.

Hopf-Galois extension are non-commutative principal bundles in the following sense: consider a G-space P and a projection $\pi: P \longrightarrow X$, we say that this set of data is a principal G-bundle if and only if the following map is bijective

$$\alpha: P \times G \longrightarrow P \times_X P, \quad (p,g) \longmapsto (p,p \cdot g)$$

If Now we take A = O(P), B = O(X) and H = O(G) we have that H coacts on A and $A^{coH} = B$. One checks that χ is the pull-back of α , so principality of the bundle is equivalent to the Hopf-Galois condition.

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0000	●0000	0000	0000

Let now *B* be an algebra. A *B*-coring is the datum of a *B*-bimodule *C* together with *B*-bimodule morphism $\underline{\Delta}: \mathcal{C} \longrightarrow \mathcal{C} \otimes_B \mathcal{C} \text{ and } \underline{\epsilon}: \mathcal{C} \longrightarrow B \text{ fulfilling the same axioms of coproduct and counit in a coalgebra.}$

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	●0000	0000	0000

Let now *B* be an algebra. A *B*-coring is the datum of a *B*-bimodule *C* together with *B*-bimodule morphism $\underline{\Delta} : \mathcal{C} \longrightarrow \mathcal{C} \otimes_B \mathcal{C}$ and $\underline{\epsilon} : \mathcal{C} \longrightarrow B$ fulfilling the same axioms of coproduct and counit in a coalgebra. If $B^e := B \otimes B^{op}$ is the enveloping algebra of *B* then we define a

 B^e -ring to be a triple (\mathcal{R}, s, t) where \mathcal{R} is an algebra and

$$s: B \longrightarrow \mathcal{R}, \quad t: B^{op} \longrightarrow \mathcal{R}$$

are algebra morphism with commuting images. The latter induce a B-bimodule structure on ${\cal R}$ via

$$brb' := s(b)t(b')r \quad b,b' \in B, r \in \mathcal{R}$$

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0000	0●000	0000	0000

Now a **bialgebroid** over *B* is the datum of $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon}, s, t)$ where (\mathcal{H}, s, t) is a B^e -ring and $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon})$ a *B*-coring with the *B*-bimodule structure given before, plus some compatibility conditions.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
	0000	0000	0000	0000

Now a **bialgebroid** over *B* is the datum of $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon}, s, t)$ where (\mathcal{H}, s, t) is a B^e -ring and $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon})$ a *B*-coring with the *B*-bimodule structure given before, plus some compatibility conditions.

Definition (Antipode)

An anti-algebra isomorphism $\underline{S}: \mathcal{H} \longrightarrow \mathcal{H}$ satisfying

$$\underline{\underline{S}} \circ t = s$$

$$(\underline{S}^{-1}(h_{(2)}))_{(1')} \otimes_B (\underline{S}^{-1}(h_{(2)}))_{(2')} h_{(1)} = \underline{S}^{-1}(h) \otimes_B 1_{\mathcal{H}}$$

$$(\underline{S}(h_{(1)}))_{(1')} h_{(2)} \otimes_B (\underline{S}(h_{(1)}))_{(2')} = 1_{\mathcal{H}} \otimes_B \underline{S}(h)$$

where $\underline{\Delta}(h) = h_{(1)} \otimes_B h_{(2)}$, is called an **antipode** for \mathcal{H} .

We refer to a bialgebroid with a (bijective) antipode as a **full Hopf** algebroid.

ntro ○	Basic tools 0000	Hopf algebroids 00●00	Extensions over projective spaces 0000	Twist of an antipode 0000
A S	A <i>B</i> -bialgebro Schauenburg	id H is a Hopf [7]) if	algebroid (in the sense of	-

 $\beta:\mathcal{H}\otimes_{B^{op}}\mathcal{H}\longrightarrow\mathcal{H}\otimes_B\mathcal{H},\quad h\otimes_{B^{op}}h'\longmapsto h_{(1)}\otimes_Bh_{(2)}h'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is bijective. Any full Hopf algebroid is a Hopf algebroid.

ntro D	Basic tools 0000	Hopf algebroids ००●००	Extensions over projective spaces 0000	Twist of an antipode 0000
A	<i>B</i> -bialgebro	id \mathcal{H} is a Hopf	algebroid (in the sense of	

Schauenburg [7]) if

 $\beta:\mathcal{H}\otimes_{B^{op}}\mathcal{H}\longrightarrow\mathcal{H}\otimes_B\mathcal{H},\quad h\otimes_{B^{op}}h'\longmapsto h_{(1)}\otimes_Bh_{(2)}h'$

is bijective. Any full Hopf algebroid is a Hopf algebroid.

Example (Erhesmann-Schauenburg bialgebroid)

Let $B \subseteq A$ be a *H*-Hopf-Galois extension, the algebra $C(A, H) := (A \otimes A)^{coH} \subseteq A^e$ is a bialgebroid over *B* if endowed with

$$egin{aligned} s(b) &= b \otimes 1, \quad t(b) = 1 \otimes b \ & \underline{\Delta}(a \otimes a') = a_{(0)} \otimes \chi^{-1}(1 \otimes a_{(1)}) \otimes a' \ & \underline{\epsilon}(a \otimes a') = aa' \end{aligned}$$

where $a, a' \in A$, $b \in B$. Recently has been proved that this is a Hopf algebroid [5], a natural question is: When is it full?

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	○○○●○	0000	0000

Let now $\pi: P \longrightarrow X$ be a principal *G*-bundle. The E.-S. bialgebroid is a quantization of the **gauge groupoid**.

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
⊙	0000	000●0	0000	0000

Let now $\pi: P \longrightarrow X$ be a principal *G*-bundle. The E.-S. bialgebroid is a quantization of the **gauge groupoid**. The latter is constructed taking Cartesian product $P \times P$ equipped with the diagonal *G*-action $(p_1, p_2) \longmapsto (p_1g, p_2g)$, with $g \in G$.

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0000	000●0	0000	0000

Let now $\pi: P \longrightarrow X$ be a principal *G*-bundle. The E.-S. bialgebroid is a quantization of the **gauge groupoid**. The latter is constructed taking Cartesian product $P \times P$ equipped with the diagonal *G*-action $(p_1, p_2) \longmapsto (p_1g, p_2g)$, with $g \in G$. Thus the quotient $\Omega := (P \times P)/G$ is a Lie groupoid over X with source and target

$$s([p_1, p_2]) = \pi(p_2), \quad t([p_1, p_2]) = \pi(p_1)$$

A D > 4 回 > 4 回 > 4 回 > 1 回

Where $[p,q] \in \Omega$.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	०००●०	0000	0000

Let now $\pi: P \longrightarrow X$ be a principal *G*-bundle. The E.-S. bialgebroid is a quantization of the **gauge groupoid**. The latter is constructed taking Cartesian product $P \times P$ equipped with the diagonal *G*-action $(p_1, p_2) \longmapsto (p_1g, p_2g)$, with $g \in G$. Thus the quotient $\Omega := (P \times P)/G$ is a Lie groupoid over X with source and target

$$s([p_1, p_2]) = \pi(p_2), \quad t([p_1, p_2]) = \pi(p_1)$$

Where $[p, q] \in \Omega$. While the composition is

$$[p,r]\circ[r,q]=[p,q]$$

A D > 4 回 > 4 回 > 4 回 > 1 回

where $p, r, q \in P$.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode

The inverse of the composition operation is

$$[p,q]^{-1} = [q,p]$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0000	0000●	0000	0000

The inverse of the composition operation is

$$[p,q]^{-1} = [q,p]$$

At the algebraic level, i.e. taking the coordinate algebras over Ω and X, this yields an antipode which is the flip map

$$\sigma: A \otimes A \longrightarrow A \otimes A, \quad a \otimes a' \longmapsto a' \otimes a$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
○	0000	0000●	0000	0000

The inverse of the composition operation is

$$[p,q]^{-1} = [q,p]$$

At the algebraic level, i.e. taking the coordinate algebras over Ω and X, this yields an antipode which is the flip map

$$\sigma: A \otimes A \longrightarrow A \otimes A, \quad a \otimes a' \longmapsto a' \otimes a$$

So in the classical case the E.-S. bialgebroid is actually a full Hopf algebroid. For a general noncommutative Hopf-Galois extension this is no longer true.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
			● 0 00	

We now study in details an example. Let *n* be a positive integer and $q \in (0, 1)$, we denote by $A(S_q^{2n-1})$ the *-algebra generated by $\{z_i, z_i^*\}$ for i = 1, ..., n with commutation relations

$$egin{aligned} & z_i z_j = q z_j z_i \quad orall i < j, \quad z_i^* z_j = q z_j z_i^* \quad orall i
eq j \ & [z_1^*, z_1] = 0, \quad [z_k^*, z_k] = (1 - q^2) \sum_{j=1}^{k-1} z_j z_j^* \quad orall 1 < k \leq n \ & \sum_{j=1}^n z_j z_j^* = 1 \end{aligned}$$

where $[\cdot, \cdot]$ is usual the commutator.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
			0000	

We now study in details an example. Let *n* be a positive integer and $q \in (0, 1)$, we denote by $A(S_q^{2n-1})$ the *-algebra generated by $\{z_i, z_i^*\}$ for i = 1, ..., n with commutation relations

$$egin{aligned} & z_i z_j = q z_j z_i \quad orall i < j, \quad z_i^* z_j = q z_j z_i^* \quad orall i
eq j \ & [z_1^*, z_1] = 0, \quad [z_k^*, z_k] = (1 - q^2) \sum_{j=1}^{k-1} z_j z_j^* \quad orall 1 < k \leq n \ & \sum_{j=1}^n z_j z_j^* = 1 \end{aligned}$$

where $[\cdot, \cdot]$ is usual the commutator. For q = 1 one gets back the algebra of functions on the sphere S_q^{2n-1} , so we refer to $A(S_q^{2n-1})$ as the quantum odd-dimensional spheres.

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
⊙	0000	00000	○●○○	0000

If one takes the sub-algebra $A(\mathbb{C}P_q^{n-1})$ generated by $P_{ij} = z_i^* z_j$ with i, j = 1, ..., n, finds a deformation of the function algebra of the projective space $\mathbb{C}P^{n-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	○●○○	0000

If one takes the sub-algebra $A(\mathbb{C}P_q^{n-1})$ generated by $P_{ij} = z_i^* z_j$ with $i, j = 1, \ldots, n$, finds a deformation of the function algebra of the projective space $\mathbb{C}P^{n-1}$. This sub-algebra can be realized as the coinvariants with respect to the O(U(1))-coaction

$$\rho: \mathcal{A}(S_q^{2n-1}) \longrightarrow \mathcal{A}(S_q^{2n-1}) \otimes \mathcal{O}(\mathcal{U}(1)), \quad z_i \longmapsto z_i \otimes t, \quad z_i^* \longmapsto z_i^* \otimes t^{-1}$$

I ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	○●○○	0000

If one takes the sub-algebra $A(\mathbb{C}P_q^{n-1})$ generated by $P_{ij} = z_i^* z_j$ with i, j = 1, ..., n, finds a deformation of the function algebra of the projective space $\mathbb{C}P^{n-1}$. This sub-algebra can be realized as the coinvariants with respect to the O(U(1))-coaction

$$\rho: \mathcal{A}(S_q^{2n-1}) \longrightarrow \mathcal{A}(S_q^{2n-1}) \otimes \mathcal{O}(U(1)), \quad z_i \longmapsto z_i \otimes t, \quad z_i^* \longmapsto z_i^* \otimes t^{-1}$$

It is proved that $A(S_q^{2n-1}) \subseteq A(\mathbb{C}P_q^{n-1})$ is a O(U(1))-Hopf-Galois extension.

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	00●0	

Now take the free module $A(S_q^{2n-1})^n \simeq A(S_q^{2n-1}) \otimes \mathbb{C}^n$ and the elements

$$\mathbf{v} = \begin{pmatrix} z_1^* \\ z_2^* \\ \vdots \\ z_n^* \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} q^{(n-1)}z_1 \\ q^{(n-2)}z_2 \\ \vdots \\ z_n \end{pmatrix}$$

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
			0000	

Now take the free module $A(S_q^{2n-1})^n \simeq A(S_q^{2n-1}) \otimes \mathbb{C}^n$ and the elements

$$v = \begin{pmatrix} z_1^* \\ z_2^* \\ \vdots \\ z_n^* \end{pmatrix}, \quad w = \begin{pmatrix} q^{(n-1)} z_1 \\ q^{(n-2)} z_2 \\ \vdots \\ z_n \end{pmatrix}$$

Using the commutation relations in $A(S_q^{2n-1})$ one proves that $v^{\dagger}v = 1 = w^{\dagger}w$, thus the two matrices

$$P = vv^{\dagger}, \quad Q = ww^{\dagger}$$

are projections that take value in $A(\mathbb{C}P_q^{n-1})$.

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
			0000	

Now take the free module $A(S_q^{2n-1})^n \simeq A(S_q^{2n-1}) \otimes \mathbb{C}^n$ and the elements

$$v = \begin{pmatrix} z_1^* \\ z_2^* \\ \vdots \\ z_n^* \end{pmatrix}, \quad w = \begin{pmatrix} q^{(n-1)} z_1 \\ q^{(n-2)} z_2 \\ \vdots \\ z_n \end{pmatrix}$$

Using the commutation relations in $A(S_q^{2n-1})$ one proves that $v^{\dagger}v = 1 = w^{\dagger}w$, thus the two matrices

$$P = vv^{\dagger}, \quad Q = ww^{\dagger}$$

are projections that take value in $A(\mathbb{C}P_q^{n-1})$. Then they define two elements in $K_0(A(\mathbb{C}P_q^{n-1}))$ with topological charges -1 and 1 respectively.

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	000●	0000

Proposition

The E.-S. bialgebroid associated to $A(\mathbb{C}P_q^{n-1}) \subseteq A(S_q^{2n-1})$ is generated by $V_{ij} = z_i^* \otimes z_j$, $W_{ij} = q^{(2n-i-j)}z_i \otimes z_j^*$ and moreover the map

$$\underline{S}: V_{ij}\longmapsto q^{(j-i)}W_{ji}, \quad W_{ij}\longmapsto q^{(i-j)}V_{ji}$$

is an antipode for $\mathcal{C}(A, H)$ with inverse

$$\underline{S}^{-1}: V_{ij}\longmapsto q^{(i-j)}W_{ji}, \quad W_{ij}\longmapsto q^{(j-i)}V_{ji}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	000●	0000

Proposition

The E.-S. bialgebroid associated to $A(\mathbb{C}P_q^{n-1}) \subseteq A(S_q^{2n-1})$ is generated by $V_{ij} = z_i^* \otimes z_j$, $W_{ij} = q^{(2n-i-j)}z_i \otimes z_j^*$ and moreover the map

$$\underline{S}: V_{ij}\longmapsto q^{(j-i)}W_{ji}, \quad W_{ij}\longmapsto q^{(i-j)}V_{ji}$$

is an antipode for $\mathcal{C}(A, H)$ with inverse

$$\underline{S}^{-1}: V_{ij} \longmapsto q^{(i-j)} W_{ji}, \quad W_{ij} \longmapsto q^{(j-i)} V_{ji}$$

Being the Hopf algebra O(U(1)) commutative, also the flip σ is an antipode. It is straightforward to see that they are different

$$\underline{S}(V_{11}) = W_{11}, \quad \sigma(V_{11}) = q^{2(1-n)}W_{11}$$

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
				0000

What is the relationship between different antipodes on a given (left) bialgebroid?

I ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	0000	●000

What is the relationship between different antipodes on a given (left) bialgebroid?

Let \mathcal{H} be a full B-Hopf algebroid and denote by \mathcal{H}_* the set of maps $\phi_*: \mathcal{H} \longrightarrow B$ that are right B-module morphism. They are a ring with respect to

$$(\phi_*\psi_*)(h) = \psi_*(s(\phi_*(h_{(1)}))h_{(2)}), \quad h \in \mathcal{H}, \quad \phi_*, \psi_* \in \mathcal{H}_*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

l ntro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	0000	●000

What is the relationship between different antipodes on a given (left) bialgebroid?

Let \mathcal{H} be a full *B*-Hopf algebroid and denote by \mathcal{H}_* the set of maps $\phi_*: \mathcal{H} \longrightarrow B$ that are right *B*-module morphism. They are a ring with respect to

$$(\phi_*\psi_*)(h) = \psi_*(s(\phi_*(h_{(1)}))h_{(2)}), \quad h \in \mathcal{H}, \quad \phi_*, \psi_* \in \mathcal{H}_*$$

Moreover $\mathcal H$ becomes a right $\mathcal H_*$ -module if endowed with

$$h \triangleleft \phi_* := s(\phi_*(h_{(1)}))h_{(2)}, \quad h \in \mathcal{H}, \quad \phi_* \in \mathcal{H}_*$$

l ntro ○	Basic tools 0000	Hopf algebroids 00000	Extensions over projective spaces 0000	Twist of an antipode 0●00
T sa	he group of atisfying	twists is the se	et of invertible elements ϕ_*	$\in \mathcal{H}_{\ast}$

$$\begin{split} & 1_{\mathcal{H}} \triangleleft \phi_* = 1_{\mathcal{H}}, \quad (h \triangleleft \phi_*)(h' \triangleleft \phi_*) = (hh') \triangleleft \phi_* \\ & \underline{S}(h_{(1)}) \triangleleft \phi_* \otimes h_{(2)} = \underline{S}(h_{(1)}) \otimes h_{(2)} \triangleleft \phi_*^{-1}, \quad h, h' \in \mathcal{H} \end{split}$$

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 国 ▶ ◆ □ ▶

Intro O	Basic tools 0000	Hopf algebroids 00000	Extensions over projective spaces 0000	Twist of an antipode 0●00
T	he group of atisfying	twists is the se	et of invertible elements ϕ_*	$\in \mathcal{H}_{\ast}$

$$1_{\mathcal{H}} \triangleleft \phi_* = 1_{\mathcal{H}}, \quad (h \triangleleft \phi_*)(h' \triangleleft \phi_*) = (hh') \triangleleft \phi_*$$
$$\underline{S}(h_{(1)}) \triangleleft \phi_* \otimes h_{(2)} = \underline{S}(h_{(1)}) \otimes h_{(2)} \triangleleft \phi_*^{-1}, \quad h, h' \in \mathcal{H}$$

Theorem ([1])

Let $(\mathcal{H}, \underline{S})$ be a full Hopf algebroid, then $(\mathcal{H}, \underline{S}')$ is a full Hopf algebroid iff there exists a twist ϕ_* such that

$$\underline{S}'(h) := \underline{S}(h \triangleleft \phi_*), \quad h \in \mathcal{H}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

l ntro ○	Basic tools 0000	Hopf algebroids 00000	Extensions over projective spaces 0000	Twist of an antipode 0●00
T	he group of atisfying	twists is the se	et of invertible elements ϕ_*	$\in \mathcal{H}_{\ast}$

$$1_{\mathcal{H}} \triangleleft \phi_* = 1_{\mathcal{H}}, \quad (h \triangleleft \phi_*)(h' \triangleleft \phi_*) = (hh') \triangleleft \phi_*$$
$$\underline{S}(h_{(1)}) \triangleleft \phi_* \otimes h_{(2)} = \underline{S}(h_{(1)}) \otimes h_{(2)} \triangleleft \phi_*^{-1}, \quad h, h' \in \mathcal{H}$$

Theorem ([1])

Let $(\mathcal{H}, \underline{S})$ be a full Hopf algebroid, then $(\mathcal{H}, \underline{S}')$ is a full Hopf algebroid iff there exists a twist ϕ_* such that

$$\underline{S}'(h) := \underline{S}(h \triangleleft \phi_*), \quad h \in \mathcal{H}$$

In our case where $\mathcal{H} = \mathcal{C}(A, H)$ for the O(U(1))-extension $A(\mathbb{C}P_q^{n-1}) \subseteq A(S_q^{2n-1})$, we are in the situation where both <u>S</u> and the flip σ are antipodes. The twist connecting them is given by

$$\phi_*: V_{ij} \longmapsto q^{2(i-n)} P_{ij}, \quad W_{ij} \longmapsto q^{2(n-j)} Q_{ij}$$

l ntro ○	Basic tools 0000	Hopf algebroids	Extensions over projective spaces	Twist of an antipode 00●0
	Böhm G., A <i>in Pure and</i>	n alternative no Appl. Math. 2.	otion of Hopf algebroid, <i>Leo</i> 39 (2004).	ct. Notes
	Böhm G., S antipodes: a	zlachanyi K., H axioms, integral	opf algebroids with bijectiv s and duals, <i>J. Algebra 27</i>	e 4 (2004).
	Brzezinski T CUP (2003)	⁻ ., Wisbauer R.).	, Corings and Comodules, L	_MS 309,
	Han X., Lan <i>Lett.Math.F</i>	ıdi G. Gauge gr Phys. 111 (2021	oups and bialgebroids,).	
	Han X., Ma algebroids, a	jid S., Hopf-Ga arXiv:2205.1149	lois extensions and twisted 94.	Hopf

- Rovi A., Hopf algebroids associated to Jacobi algebras, International Journal of Geometric Methods in Modern Physics Vol. 11 (2014).
- Schauenburg P., Duals and doubles of quantum groupoids (×_R-Hopf algebras), AMS Contemporary Mathematics 267 ≥ ∞∞

Intro	Basic tools	Hopf algebroids	Extensions over projective spaces	Twist of an antipode
O	0000	00000	0000	000●

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●