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Hopf-Galois extensions are the (noncommutative) algebraic version
of principal bundles. In the classical theory one associates to a
them a groupoid known as the gauge groupoid, which allows one to
characterize connections.

Its algebraic counterpart is known as the Ehresmann-Schauenburg
bialgebroid and recently has been proven to be a Hopf algebroid (in
the sense of Schauenburg). It is not clear yet if this Hopf algebroid
is always full, i.e. if it posses an antipode map. In my project I am
studying conditions under which this map exists and also the
concept of twist of an antipode.
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Recall that a bialgebra over a �eld K is the datum of an algebra
(H,m, ν) together with two maps ∆ : H ⊗ H −→ H and
ε : H −→ K satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆, (id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆

called coproduct and counit such that are algebra morphism.

A Hopf algebra is a bialgebra H as above endowed with a linear
endomorphism S : H −→ H satisfying

m ◦ (S ⊗ id) ◦∆ = ν ◦ ε = m ◦ (id ◦ S) ◦∆

such a map is called the antipode.



Intro Basic tools Hopf algebroids Extensions over projective spaces Twist of an antipode

Recall that a bialgebra over a �eld K is the datum of an algebra
(H,m, ν) together with two maps ∆ : H ⊗ H −→ H and
ε : H −→ K satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆, (id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆

called coproduct and counit such that are algebra morphism.
A Hopf algebra is a bialgebra H as above endowed with a linear
endomorphism S : H −→ H satisfying

m ◦ (S ⊗ id) ◦∆ = ν ◦ ε = m ◦ (id ◦ S) ◦∆

such a map is called the antipode.



Intro Basic tools Hopf algebroids Extensions over projective spaces Twist of an antipode

Example (Coordinate algebra of a group)

Let G be a �nite group and O(G ) the K-linear space of functions
f : G −→ K. The latter is a unital algebra if equipped with

(ff ′)(g) = f (g)f ′(g)

where f , f ′ ∈ O(G ) and g ∈ G , unit is the constant function 1.

It becomes a Hopf algebra with the K-linear extensions of

∆(f )(g , g ′) = f (gg ′), ε(f ) = f (e), S(f )(g) = f (g−1)

where e is the identity in G , here we identify O(G × G ) with
O(G )⊗ O(G ) for the coproduct.
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Let now V be a K-linear space. We say that is a (right)
H-comodule when there is a linear map ρV : V −→ V ⊗ H such
that

(id⊗∆) ◦ ρ = (ρ⊗ id) ◦ ρ, (id⊗ ε) ◦ ρ = id

We adopt the Sweedler notation ρV (v) = v(0) ⊗ v(1).

An algebra A that is also a H-comodule is said to be a
H-comodule algebra if the coaction is an algebra morphism.
The space of coinvariant elements in a H-comodule algebra

AcoH := {b ∈ A|ρA(b) = b ⊗ 1H}

is a sub-algebra of A.
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Denote by B = AcoH . The algebra inclusion B ⊆ A is called a
H-Hopf-Galois extension if the canonical map

χ : A⊗B A −→ A⊗ H, a⊗B a′ 7−→ (a⊗ 1H)ρA(a′)

is bijective.

Hopf-Galois extension are non-commutative principal bundles in the
following sense: consider a G -space P and a projection
π : P −→ X , we say that this set of data is a principal G -bundle if
and only if the following map is bijective

α : P × G −→ P ×X P, (p, g) 7−→ (p, p · g)

If Now we take A = O(P), B = O(X ) and H = O(G ) we have
that H coacts on A and AcoH = B . One checks that χ is the
pull-back of α, so principality of the bundle is equivalent to the
Hopf-Galois condition.
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Let now B be an algebra. A B-coring is the datum of a
B-bimodule C together with B-bimodule morphism
∆ : C −→ C ⊗B C and ε : C −→ B ful�lling the same axioms of
coproduct and counit in a coalgebra.

If Be := B ⊗ Bop is the enveloping algebra of B then we de�ne a
Be-ring to be a triple (R, s, t) where R is an algebra and

s : B −→ R, t : Bop −→ R

are algebra morphism with commuting images. The latter induce a
B-bimodule structure on R via

brb′ := s(b)t(b′)r b, b′ ∈ B, r ∈ R
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Now a bialgebroid over B is the datum of (H,∆, ε, s, t) where
(H, s, t) is a Be-ring and (H,∆, ε) a B-coring with the B-bimodule
structure given before, plus some compatibility conditions.

De�nition (Antipode)

An anti-algebra isomorphism S : H −→ H satisfying

S ◦ t = s

(S−1(h(2)))(1′) ⊗B (S−1(h(2)))(2′)h(1) = S−1(h)⊗B 1H

(S(h(1)))(1′)h(2) ⊗B (S(h(1)))(2′) = 1H ⊗B S(h)

where ∆(h) = h(1) ⊗B h(2), is called an antipode for H.

We refer to a bialgebroid with a (bijective) antipode as a full Hopf

algebroid.
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A B-bialgebroid H is a Hopf algebroid (in the sense of
Schauenburg [7]) if

β : H⊗Bop H −→ H⊗B H, h ⊗Bop h′ 7−→ h(1) ⊗B h(2)h
′

is bijective. Any full Hopf algebroid is a Hopf algebroid.

Example (Erhesmann-Schauenburg bialgebroid)

Let B ⊆ A be a H-Hopf-Galois extension, the algebra
C(A,H) := (A⊗ A)coH ⊆ Ae is a bialgebroid over B if endowed
with

s(b) = b ⊗ 1, t(b) = 1⊗ b

∆(a⊗ a′) = a(0) ⊗ χ−1(1⊗ a(1))⊗ a′

ε(a⊗ a′) = aa′

where a, a′ ∈ A, b ∈ B . Recently has been proved that this is a
Hopf algebroid [5], a natural question is: When is it full?
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Let now π : P −→ X be a principal G -bundle. The E.-S.
bialgebroid is a quantization of the gauge groupoid.

The latter is
constructed taking Cartesian product P × P equipped with the
diagonal G -action (p1, p2) 7−→ (p1g , p2g), with g ∈ G .
Thus the quotient Ω := (P × P)/G is a Lie groupoid over X with
source and target

s([p1, p2]) = π(p2), t([p1, p2]) = π(p1)

Where [p, q] ∈ Ω.
While the composition is

[p, r ] ◦ [r , q] = [p, q]

where p, r , q ∈ P .
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The inverse of the composition operation is

[p, q]−1 = [q, p]

At the algebraic level, i.e. taking the coordinate algebras over Ω
and X , this yields an antipode which is the �ip map

σ : A⊗ A −→ A⊗ A, a⊗ a′ 7−→ a′ ⊗ a

So in the classical case the E.-S. bialgebroid is actually a full Hopf
algebroid. For a general noncommutative Hopf-Galois extension
this is no longer true.
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We now study in details an example. Let n be a positive integer
and q ∈ (0, 1), we denote by A(S2n−1

q ) the ∗-algebra generated by
{zi , z∗i } for i = 1, . . . , n with commutation relations

zizj = qzjzi ∀i < j , z∗i zj = qzjz
∗
i ∀i 6= j

[z∗1 , z1] = 0, [z∗k ,zk ] = (1− q2)
k−1∑
j=1

zjz
∗
j ∀1 < k ≤ n

n∑
j=1

zjz
∗
j = 1

where [·, ·] is usual the commutator.

For q = 1 one gets back the algebra of functions on the sphere
S2n−1
q , so we refer to A(S2n−1

q ) as the quantum odd-dimensional
spheres.
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If one takes the sub-algebra A(CPn−1
q ) generated by Pij = z∗i zj

with i , j = 1, . . . , n, �nds a deformation of the function algebra of
the projective space CPn−1.

This sub-algebra can be realized as the coinvariants with respect to
the O(U(1))-coaction

ρ : A(S2n−1
q ) −→ A(S2n−1

q )⊗O(U(1)), zi 7−→ zi⊗t, z∗i 7−→ z∗i ⊗t−1

It is proved that A(S2n−1
q ) ⊆ A(CPn−1

q ) is a O(U(1))-Hopf-Galois
extension.
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Now take the free module A(S2n−1
q )n ' A(S2n−1

q )⊗ Cn and the
elements

v =


z∗
1

z∗
2

...
z∗n

 , w =


q(n−1)z1
q(n−2)z2

...
zn



Using the commutation relations in A(S2n−1
q ) one proves that

v †v = 1 = w †w , thus the two matrices

P = vv †, Q = ww †

are projections that take value in A(CPn−1
q ).

Then they de�ne two elements in K0(A(CPn−1
q )) with topological

charges −1 and 1 respectively.
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Proposition

The E.-S. bialgebroid associated to A(CPn−1
q ) ⊆ A(S2n−1

q ) is

generated by Vij = z∗i ⊗ zj , Wij = q(2n−i−j)zi ⊗ z∗j and moreover

the map

S : Vij 7−→ q(j−i)Wji , Wij 7−→ q(i−j)Vji

is an antipode for C(A,H) with inverse

S−1 : Vij 7−→ q(i−j)Wji , Wij 7−→ q(j−i)Vji

Being the Hopf algebra O(U(1)) commutative, also the �ip σ is an
antipode. It is straightforward to see that they are di�erent

S(V11) = W11, σ(V11) = q2(1−n)W11
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What is the relationship between di�erent antipodes on a given
(left) bialgebroid?

Let H be a full B-Hopf algebroid and denote by H∗ the set of maps
φ∗ : H −→ B that are right B-module morphism. They are a ring
with respect to

(φ∗ψ∗)(h) = ψ∗(s(φ∗(h(1)))h(2)), h ∈ H, φ∗, ψ∗ ∈ H∗

Moreover H becomes a right H∗-module if endowed with

h / φ∗ := s(φ∗(h(1)))h(2), h ∈ H, φ∗ ∈ H∗
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The group of twists is the set of invertible elements φ∗ ∈ H∗
satisfying

1H / φ∗ = 1H, (h / φ∗)(h′ / φ∗) = (hh′) / φ∗

S(h(1)) / φ∗ ⊗ h(2) = S(h(1))⊗ h(2) / φ
−1
∗ , h, h′ ∈ H

Theorem ([1])

Let (H,S) be a full Hopf algebroid, then (H,S ′) is a full Hopf

algebroid i� there exists a twist φ∗ such that

S ′(h) := S(h / φ∗), h ∈ H

In our case where H = C(A,H) for the O(U(1))-extension
A(CPn−1

q ) ⊆ A(S2n−1
q ), we are in the situation where both S and

the �ip σ are antipodes. The twist connecting them is given by

φ∗ : Vij 7−→ q2(i−n)Pij , Wij 7−→ q2(n−j)Qij
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Thank you!
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