Hopf algebroids over quantum projective spaces

Jacopo Zanchettin (SISSA)
Joint work with L. Dabrowski (SISSA) and G. Landi (UniTS) Noncommutative geometry: metric and spectral aspects

September 2022
(1) Intro
(2) Basic tools
(3) Hopf algebroids

4 Extensions over projective spaces
(5) Twist of an antipode

Hopf-Galois extensions are the (noncommutative) algebraic version of principal bundles. In the classical theory one associates to a them a groupoid known as the gauge groupoid, which allows one to characterize connections.

Hopf-Galois extensions are the (noncommutative) algebraic version of principal bundles. In the classical theory one associates to a them a groupoid known as the gauge groupoid, which allows one to characterize connections.
Its algebraic counterpart is known as the Ehresmann-Schauenburg bialgebroid and recently has been proven to be a Hopf algebroid (in the sense of Schauenburg). It is not clear yet if this Hopf algebroid is always full, i.e. if it posses an antipode map. In my project I am studying conditions under which this map exists and also the concept of twist of an antipode.

Recall that a bialgebra over a field \mathbb{K} is the datum of an algebra (H, m, ν) together with two maps $\Delta: H \otimes H \longrightarrow H$ and $\epsilon: H \longrightarrow \mathbb{K}$ satisfying

$$
(\mathrm{id} \otimes \Delta) \circ \Delta=(\Delta \otimes \mathrm{id}) \circ \Delta, \quad(\mathrm{id} \otimes \epsilon) \circ \Delta=\mathrm{id}=(\epsilon \otimes \mathrm{id}) \circ \Delta
$$

called coproduct and counit such that are algebra morphism.

Recall that a bialgebra over a field \mathbb{K} is the datum of an algebra (H, m, ν) together with two maps $\Delta: H \otimes H \longrightarrow H$ and $\epsilon: H \longrightarrow \mathbb{K}$ satisfying

$$
(\mathrm{id} \otimes \Delta) \circ \Delta=(\Delta \otimes \mathrm{id}) \circ \Delta, \quad(\mathrm{id} \otimes \epsilon) \circ \Delta=\mathrm{id}=(\epsilon \otimes \mathrm{id}) \circ \Delta
$$

called coproduct and counit such that are algebra morphism.
A Hopf algebra is a bialgebra H as above endowed with a linear endomorphism $S: H \longrightarrow H$ satisfying

$$
m \circ(S \otimes \mathrm{id}) \circ \Delta=\nu \circ \epsilon=m \circ(\mathrm{id} \circ S) \circ \Delta
$$

such a map is called the antipode.

Example (Coordinate algebra of a group)

Let G be a finite group and $O(G)$ the \mathbb{K}-linear space of functions $f: G \longrightarrow \mathbb{K}$. The latter is a unital algebra if equipped with

$$
\left(f f^{\prime}\right)(g)=f(g) f^{\prime}(g)
$$

where $f, f^{\prime} \in O(G)$ and $g \in G$, unit is the constant function 1 .

Example (Coordinate algebra of a group)

Let G be a finite group and $O(G)$ the \mathbb{K}-linear space of functions $f: G \longrightarrow \mathbb{K}$. The latter is a unital algebra if equipped with

$$
\left(f f^{\prime}\right)(g)=f(g) f^{\prime}(g)
$$

where $f, f^{\prime} \in O(G)$ and $g \in G$, unit is the constant function 1 . It becomes a Hopf algebra with the \mathbb{K}-linear extensions of

$$
\Delta(f)\left(g, g^{\prime}\right)=f\left(g g^{\prime}\right), \quad \epsilon(f)=f(e), \quad S(f)(g)=f\left(g^{-1}\right)
$$

where e is the identity in G, here we identify $O(G \times G)$ with $O(G) \otimes O(G)$ for the coproduct.

Let now V be a \mathbb{K}-linear space. We say that is a (right) H-comodule when there is a linear map $\rho_{V}: V \longrightarrow V \otimes H$ such that

$$
(\mathrm{id} \otimes \Delta) \circ \rho=(\rho \otimes \mathrm{id}) \circ \rho, \quad(\mathrm{id} \otimes \epsilon) \circ \rho=\mathrm{id}
$$

We adopt the Sweedler notation $\rho_{V}(v)=v_{(0)} \otimes v_{(1)}$.

Let now V be a \mathbb{K}-linear space. We say that is a (right) H-comodule when there is a linear map $\rho_{V}: V \longrightarrow V \otimes H$ such that

$$
(\mathrm{id} \otimes \Delta) \circ \rho=(\rho \otimes \mathrm{id}) \circ \rho, \quad(\mathrm{id} \otimes \epsilon) \circ \rho=\mathrm{id}
$$

We adopt the Sweedler notation $\rho_{V}(v)=v_{(0)} \otimes v_{(1)}$. An algebra A that is also a H-comodule is said to be a H -comodule algebra if the coaction is an algebra morphism.

Let now V be a \mathbb{K}-linear space. We say that is a (right) H-comodule when there is a linear map $\rho_{V}: V \longrightarrow V \otimes H$ such that

$$
(\mathrm{id} \otimes \Delta) \circ \rho=(\rho \otimes \mathrm{id}) \circ \rho, \quad(\mathrm{id} \otimes \epsilon) \circ \rho=\mathrm{id}
$$

We adopt the Sweedler notation $\rho_{V}(v)=v_{(0)} \otimes v_{(1)}$. An algebra A that is also a H-comodule is said to be a H-comodule algebra if the coaction is an algebra morphism. The space of coinvariant elements in a H -comodule algebra

$$
A^{c o H}:=\left\{b \in A \mid \rho_{A}(b)=b \otimes 1_{H}\right\}
$$

is a sub-algebra of A.

Denote by $B=A^{c o H}$. The algebra inclusion $B \subseteq A$ is called a H-Hopf-Galois extension if the canonical map

$$
\chi: A \otimes_{B} A \longrightarrow A \otimes H, \quad a \otimes_{B} a^{\prime} \longmapsto\left(a \otimes 1_{H}\right) \rho_{A}\left(a^{\prime}\right)
$$

is bijective.

Denote by $B=A^{c o H}$. The algebra inclusion $B \subseteq A$ is called a H-Hopf-Galois extension if the canonical map

$$
\chi: A \otimes_{B} A \longrightarrow A \otimes H, \quad a \otimes_{B} a^{\prime} \longmapsto\left(a \otimes 1_{H}\right) \rho_{A}\left(a^{\prime}\right)
$$

is bijective.
Hopf-Galois extension are non-commutative principal bundles in the following sense: consider a G-space P and a projection $\pi: P \longrightarrow X$, we say that this set of data is a principal G-bundle if and only if the following map is bijective

$$
\alpha: P \times G \longrightarrow P \times x P, \quad(p, g) \longmapsto(p, p \cdot g)
$$

Denote by $B=A^{c o H}$. The algebra inclusion $B \subseteq A$ is called a H-Hopf-Galois extension if the canonical map

$$
\chi: A \otimes_{B} A \longrightarrow A \otimes H, \quad a \otimes_{B} a^{\prime} \longmapsto\left(a \otimes 1_{H}\right) \rho_{A}\left(a^{\prime}\right)
$$

is bijective.
Hopf-Galois extension are non-commutative principal bundles in the following sense: consider a G-space P and a projection
$\pi: P \longrightarrow X$, we say that this set of data is a principal G-bundle if and only if the following map is bijective

$$
\alpha: P \times G \longrightarrow P \times_{x} P, \quad(p, g) \longmapsto(p, p \cdot g)
$$

If Now we take $A=O(P), B=O(X)$ and $H=O(G)$ we have that H coacts on A and $A^{c o H}=B$. One checks that χ is the pull-back of α, so principality of the bundle is equivalent to the Hopf-Galois condition.

Let now B be an algebra. A B-coring is the datum of a B-bimodule \mathcal{C} together with B-bimodule morphism $\underline{\Delta}: \mathcal{C} \longrightarrow \mathcal{C} \otimes_{B} \mathcal{C}$ and $\underline{\epsilon}: \mathcal{C} \longrightarrow B$ fulfilling the same axioms of coproduct and counit in a coalgebra.

Let now B be an algebra. A B-coring is the datum of a B-bimodule \mathcal{C} together with B-bimodule morphism
$\underline{\Delta}: \mathcal{C} \longrightarrow \mathcal{C} \otimes_{B} \mathcal{C}$ and $\underline{\epsilon}: \mathcal{C} \longrightarrow B$ fulfilling the same axioms of coproduct and counit in a coalgebra.
If $B^{e}:=B \otimes B^{o P}$ is the enveloping algebra of B then we define a B^{e}-ring to be a triple (\mathcal{R}, s, t) where \mathcal{R} is an algebra and

$$
s: B \longrightarrow \mathcal{R}, \quad t: B^{o p} \longrightarrow \mathcal{R}
$$

are algebra morphism with commuting images. The latter induce a B-bimodule structure on \mathcal{R} via

$$
b r b^{\prime}:=s(b) t\left(b^{\prime}\right) r \quad b, b^{\prime} \in B, r \in \mathcal{R}
$$

Now a bialgebroid over B is the datum of $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon}, s, t)$ where (\mathcal{H}, s, t) is a B^{e}-ring and $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon})$ a B-coring with the B-bimodule structure given before, plus some compatibility conditions.

Now a bialgebroid over B is the datum of $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon}, s, t)$ where (\mathcal{H}, s, t) is a B^{e}-ring and $(\mathcal{H}, \underline{\Delta}, \underline{\epsilon})$ a B-coring with the B-bimodule structure given before, plus some compatibility conditions.

Definition (Antipode)

An anti-algebra isomorphism $\underline{S}: \mathcal{H} \longrightarrow \mathcal{H}$ satisfying

$$
\begin{gathered}
\underline{S} \circ t=s \\
\left(\underline{S}^{-1}\left(h_{(2)}\right)\right)_{\left(1^{\prime}\right)} \otimes_{B}\left(\underline{S}^{-1}\left(h_{(2)}\right)\right)_{\left(2^{\prime}\right)} h_{(1)}=\underline{S}^{-1}(h) \otimes_{B} 1_{\mathcal{H}} \\
\left(\underline{S}\left(h_{(1)}\right)\right)_{\left(1^{\prime}\right)} h_{(2)} \otimes_{B}\left(\underline{S}\left(h_{(1)}\right)\right)_{\left(2^{\prime}\right)}=1_{\mathcal{H}} \otimes_{B} \underline{S}(h)
\end{gathered}
$$

where $\underline{\Delta}(h)=h_{(1)} \otimes_{B} h_{(2)}$, is called an antipode for \mathcal{H}.
We refer to a bialgebroid with a (bijective) antipode as a full Hopf algebroid.

A B-bialgebroid \mathcal{H} is a Hopf algebroid (in the sense of Schauenburg [7]) if

$$
\beta: \mathcal{H} \otimes_{B o p} \mathcal{H} \longrightarrow \mathcal{H} \otimes_{B} \mathcal{H}, \quad h \otimes_{B^{\circ o p}} h^{\prime} \longmapsto h_{(1)} \otimes_{B} h_{(2)} h^{\prime}
$$

is bijective. Any full Hopf algebroid is a Hopf algebroid.

A B-bialgebroid \mathcal{H} is a Hopf algebroid (in the sense of Schauenburg [7]) if

$$
\beta: \mathcal{H} \otimes_{\text {Bop }} \mathcal{H} \longrightarrow \mathcal{H} \otimes_{B} \mathcal{H}, \quad h \otimes_{\text {Bop }} h^{\prime} \longmapsto h_{(1)} \otimes_{B} h_{(2)} h^{\prime}
$$

is bijective. Any full Hopf algebroid is a Hopf algebroid.

Example (Erhesmann-Schauenburg bialgebroid)

Let $B \subseteq A$ be a H-Hopf-Galois extension, the algebra $\mathcal{C}(A, H):=(A \otimes A)^{c o H} \subseteq A^{e}$ is a bialgebroid over B if endowed with

$$
\begin{aligned}
& s(b)=b \otimes 1, \quad t(b)=1 \otimes b \\
& \underline{\Delta}\left(a \otimes a^{\prime}\right)=a_{(0)} \otimes \chi^{-1}\left(1 \otimes a_{(1)}\right) \otimes a^{\prime} \\
& \underline{\epsilon}\left(a \otimes a^{\prime}\right)=a a^{\prime}
\end{aligned}
$$

where $a, a^{\prime} \in A, b \in B$. Recently has been proved that this is a Hopf algebroid [5], a natural question is: When is it full?

Let now $\pi: P \longrightarrow X$ be a principal G-bundle. The E.-S. bialgebroid is a quantization of the gauge groupoid.

Let now $\pi: P \longrightarrow X$ be a principal G-bundle. The E.-S. bialgebroid is a quantization of the gauge groupoid. The latter is constructed taking Cartesian product $P \times P$ equipped with the diagonal G-action $\left(p_{1}, p_{2}\right) \longmapsto\left(p_{1} g, p_{2} g\right)$, with $g \in G$.

Let now $\pi: P \longrightarrow X$ be a principal G-bundle. The E.-S. bialgebroid is a quantization of the gauge groupoid. The latter is constructed taking Cartesian product $P \times P$ equipped with the diagonal G-action $\left(p_{1}, p_{2}\right) \longmapsto\left(p_{1} g, p_{2} g\right)$, with $g \in G$. Thus the quotient $\Omega:=(P \times P) / G$ is a Lie groupoid over X with source and target

$$
s\left(\left[p_{1}, p_{2}\right]\right)=\pi\left(p_{2}\right), \quad t\left(\left[p_{1}, p_{2}\right]\right)=\pi\left(p_{1}\right)
$$

Where $[p, q] \in \Omega$.

Let now $\pi: P \longrightarrow X$ be a principal G-bundle. The E.-S. bialgebroid is a quantization of the gauge groupoid. The latter is constructed taking Cartesian product $P \times P$ equipped with the diagonal G-action $\left(p_{1}, p_{2}\right) \longmapsto\left(p_{1} g, p_{2} g\right)$, with $g \in G$.
Thus the quotient $\Omega:=(P \times P) / G$ is a Lie groupoid over X with source and target

$$
s\left(\left[p_{1}, p_{2}\right]\right)=\pi\left(p_{2}\right), \quad t\left(\left[p_{1}, p_{2}\right]\right)=\pi\left(p_{1}\right)
$$

Where $[p, q] \in \Omega$.
While the composition is

$$
[p, r] \circ[r, q]=[p, q]
$$

where $p, r, q \in P$.

The inverse of the composition operation is

$$
[p, q]^{-1}=[q, p]
$$

The inverse of the composition operation is

$$
[p, q]^{-1}=[q, p]
$$

At the algebraic level, i.e. taking the coordinate algebras over Ω and X, this yields an antipode which is the flip map

$$
\sigma: A \otimes A \longrightarrow A \otimes A, \quad a \otimes a^{\prime} \longmapsto a^{\prime} \otimes a
$$

The inverse of the composition operation is

$$
[p, q]^{-1}=[q, p]
$$

At the algebraic level, i.e. taking the coordinate algebras over Ω and X, this yields an antipode which is the flip map

$$
\sigma: A \otimes A \longrightarrow A \otimes A, \quad a \otimes a^{\prime} \longmapsto a^{\prime} \otimes a
$$

So in the classical case the E.-S. bialgebroid is actually a full Hopf algebroid. For a general noncommutative Hopf-Galois extension this is no longer true.

We now study in details an example. Let n be a positive integer and $q \in(0,1)$, we denote by $A\left(S_{q}^{2 n-1}\right)$ the $*$-algebra generated by $\left\{z_{i}, z_{i}^{*}\right\}$ for $i=1, \ldots, n$ with commutation relations

$$
\begin{gathered}
z_{i} z_{j}=q z_{j} z_{i} \quad \forall i<j, \quad z_{i}^{*} z_{j}=q z_{j} z_{i}^{*} \quad \forall i \neq j \\
{\left[z_{1}^{*}, z_{1}\right]=0, \quad\left[z_{k}^{*}, z_{k}\right]=\left(1-q^{2}\right) \sum_{j=1}^{k-1} z_{j} z_{j}^{*} \quad \forall 1<k \leq n} \\
\sum_{j=1}^{n} z_{j} z_{j}^{*}=1
\end{gathered}
$$

where $[\cdot, \cdot]$ is usual the commutator.

We now study in details an example. Let n be a positive integer and $q \in(0,1)$, we denote by $A\left(S_{q}^{2 n-1}\right)$ the $*$-algebra generated by $\left\{z_{i}, z_{i}^{*}\right\}$ for $i=1, \ldots, n$ with commutation relations

$$
\begin{gathered}
z_{i} z_{j}=q z_{j} z_{i} \quad \forall i<j, \quad z_{i}^{*} z_{j}=q z_{j} z_{i}^{*} \quad \forall i \neq j \\
{\left[z_{1}^{*}, z_{1}\right]=0, \quad\left[z_{k}^{*}, z_{k}\right]=\left(1-q^{2}\right) \sum_{j=1}^{k-1} z_{j} z_{j}^{*} \quad \forall 1<k \leq n} \\
\sum_{j=1}^{n} z_{j} z_{j}^{*}=1
\end{gathered}
$$

where $[\cdot, \cdot]$ is usual the commutator.
For $q=1$ one gets back the algebra of functions on the sphere $S_{q}^{2 n-1}$, so we refer to $A\left(S_{q}^{2 n-1}\right)$ as the quantum odd-dimensional spheres.

If one takes the sub-algebra $A\left(\mathbb{C} P_{q}^{n-1}\right)$ generated by $P_{i j}=z_{i}^{*} z_{j}$ with $i, j=1, \ldots, n$, finds a deformation of the function algebra of the projective space $\mathbb{C} P^{n-1}$.

If one takes the sub-algebra $A\left(\mathbb{C} P_{q}^{n-1}\right)$ generated by $P_{i j}=z_{i}^{*} z_{j}$ with $i, j=1, \ldots, n$, finds a deformation of the function algebra of the projective space $\mathbb{C} P^{n-1}$.
This sub-algebra can be realized as the coinvariants with respect to the $O(U(1))$-coaction
$\rho: A\left(S_{q}^{2 n-1}\right) \longrightarrow A\left(S_{q}^{2 n-1}\right) \otimes O(U(1)), \quad z_{i} \longmapsto z_{i} \otimes t, \quad z_{i}^{*} \longmapsto z_{i}^{*} \otimes t^{-1}$

If one takes the sub-algebra $A\left(\mathbb{C} P_{q}^{n-1}\right)$ generated by $P_{i j}=z_{i}^{*} z_{j}$ with $i, j=1, \ldots, n$, finds a deformation of the function algebra of the projective space $\mathbb{C} P^{n-1}$.
This sub-algebra can be realized as the coinvariants with respect to the $O(U(1))$-coaction
$\rho: A\left(S_{q}^{2 n-1}\right) \longrightarrow A\left(S_{q}^{2 n-1}\right) \otimes O(U(1)), \quad z_{i} \longmapsto z_{i} \otimes t, \quad z_{i}^{*} \longmapsto z_{i}^{*} \otimes t^{-1}$

It is proved that $A\left(S_{q}^{2 n-1}\right) \subseteq A\left(\mathbb{C} P_{q}^{n-1}\right)$ is a $O(U(1))$-Hopf-Galois extension.

Now take the free module $A\left(S_{q}^{2 n-1}\right)^{n} \simeq A\left(S_{q}^{2 n-1}\right) \otimes \mathbb{C}^{n}$ and the elements

$$
v=\left(\begin{array}{c}
z_{1}^{*} \\
z_{2}^{*} \\
\vdots \\
z_{n}^{*}
\end{array}\right), \quad w=\left(\begin{array}{c}
q^{(n-1)} z_{1} \\
q^{(n-2)} z_{2} \\
\vdots \\
z_{n}
\end{array}\right)
$$

Now take the free module $A\left(S_{q}^{2 n-1}\right)^{n} \simeq A\left(S_{q}^{2 n-1}\right) \otimes \mathbb{C}^{n}$ and the elements

$$
v=\left(\begin{array}{c}
z_{1}^{*} \\
z_{2}^{*} \\
\vdots \\
z_{n}^{*}
\end{array}\right), \quad w=\left(\begin{array}{c}
q^{(n-1)} z_{1} \\
q^{(n-2)} z_{2} \\
\vdots \\
z_{n}
\end{array}\right)
$$

Using the commutation relations in $A\left(S_{q}^{2 n-1}\right)$ one proves that $v^{\dagger} v=1=w^{\dagger} w$, thus the two matrices

$$
P=v v^{\dagger}, \quad Q=w w^{\dagger}
$$

are projections that take value in $A\left(\mathbb{C} P_{q}^{n-1}\right)$.

Now take the free module $A\left(S_{q}^{2 n-1}\right)^{n} \simeq A\left(S_{q}^{2 n-1}\right) \otimes \mathbb{C}^{n}$ and the elements

$$
v=\left(\begin{array}{c}
z_{1}^{*} \\
z_{2}^{*} \\
\vdots \\
z_{n}^{*}
\end{array}\right), \quad w=\left(\begin{array}{c}
q^{(n-1)} z_{1} \\
q^{(n-2)} z_{2} \\
\vdots \\
z_{n}
\end{array}\right)
$$

Using the commutation relations in $A\left(S_{q}^{2 n-1}\right)$ one proves that $v^{\dagger} v=1=w^{\dagger} w$, thus the two matrices

$$
P=v v^{\dagger}, \quad Q=w w^{\dagger}
$$

are projections that take value in $A\left(\mathbb{C} P_{q}^{n-1}\right)$.
Then they define two elements in $K_{0}\left(A\left(\mathbb{C} P_{q}^{n-1}\right)\right)$ with topological charges -1 and 1 respectively.

Proposition

The E.-S. bialgebroid associated to $A\left(\mathbb{C} P_{q}^{n-1}\right) \subseteq A\left(S_{q}^{2 n-1}\right)$ is generated by $V_{i j}=z_{i}^{*} \otimes z_{j}, W_{i j}=q^{(2 n-i-j)} z_{i} \otimes z_{j}^{*}$ and moreover the map

$$
\underline{S}: V_{i j} \longmapsto q^{(j-i)} W_{j i}, \quad W_{i j} \longmapsto q^{(i-j)} V_{j i}
$$

is an antipode for $\mathcal{C}(A, H)$ with inverse

$$
\underline{S}^{-1}: V_{i j} \longmapsto q^{(i-j)} W_{j i}, \quad W_{i j} \longmapsto q^{(j-i)} V_{j i}
$$

Proposition

The E.-S. bialgebroid associated to $A\left(\mathbb{C} P_{q}^{n-1}\right) \subseteq A\left(S_{q}^{2 n-1}\right)$ is generated by $V_{i j}=z_{i}^{*} \otimes z_{j}, W_{i j}=q^{(2 n-i-j)} z_{i} \otimes z_{j}^{*}$ and moreover the map

$$
\underline{S}: V_{i j} \longmapsto q^{(j-i)} W_{j i}, \quad W_{i j} \longmapsto q^{(i-j)} V_{j i}
$$

is an antipode for $\mathcal{C}(A, H)$ with inverse

$$
\underline{S}^{-1}: V_{i j} \longmapsto q^{(i-j)} W_{j i}, \quad W_{i j} \longmapsto q^{(j-i)} V_{j i}
$$

Being the Hopf algebra $O(U(1))$ commutative, also the flip σ is an antipode. It is straightforward to see that they are different

$$
\underline{S}\left(V_{11}\right)=W_{11}, \quad \sigma\left(V_{11}\right)=q^{2(1-n)} W_{11}
$$

What is the relationship between different antipodes on a given (left) bialgebroid?

What is the relationship between different antipodes on a given (left) bialgebroid?
Let \mathcal{H} be a full B-Hopf algebroid and denote by \mathcal{H}_{*} the set of maps $\phi_{*}: \mathcal{H} \longrightarrow B$ that are right B-module morphism. They are a ring with respect to

$$
\left(\phi_{*} \psi_{*}\right)(h)=\psi_{*}\left(s\left(\phi_{*}\left(h_{(1)}\right)\right) h_{(2)}\right), \quad h \in \mathcal{H}, \quad \phi_{*}, \psi_{*} \in \mathcal{H}_{*}
$$

What is the relationship between different antipodes on a given (left) bialgebroid?
Let \mathcal{H} be a full B-Hopf algebroid and denote by \mathcal{H}_{*} the set of maps $\phi_{*}: \mathcal{H} \longrightarrow B$ that are right B-module morphism. They are a ring with respect to

$$
\left(\phi_{*} \psi_{*}\right)(h)=\psi_{*}\left(s\left(\phi_{*}\left(h_{(1)}\right)\right) h_{(2)}\right), \quad h \in \mathcal{H}, \quad \phi_{*}, \psi_{*} \in \mathcal{H}_{*}
$$

Moreover \mathcal{H} becomes a right \mathcal{H}_{*}-module if endowed with

$$
h \triangleleft \phi_{*}:=s\left(\phi_{*}\left(h_{(1)}\right)\right) h_{(2)}, \quad h \in \mathcal{H}, \quad \phi_{*} \in \mathcal{H}_{*}
$$

The group of twists is the set of invertible elements $\phi_{*} \in \mathcal{H}_{*}$ satisfying

$$
\begin{gathered}
1_{\mathcal{H}} \triangleleft \phi_{*}=1_{\mathcal{H}}, \quad\left(h \triangleleft \phi_{*}\right)\left(h^{\prime} \triangleleft \phi_{*}\right)=\left(h h^{\prime}\right) \triangleleft \phi_{*} \\
\underline{S}\left(h_{(1)}\right) \triangleleft \phi_{*} \otimes h_{(2)}=\underline{S}\left(h_{(1)}\right) \otimes h_{(2)} \triangleleft \phi_{*}^{-1}, \quad h, h^{\prime} \in \mathcal{H}
\end{gathered}
$$

The group of twists is the set of invertible elements $\phi_{*} \in \mathcal{H}_{*}$ satisfying

$$
\begin{gathered}
1_{\mathcal{H}} \triangleleft \phi_{*}=1_{\mathcal{H}}, \quad\left(h \triangleleft \phi_{*}\right)\left(h^{\prime} \triangleleft \phi_{*}\right)=\left(h h^{\prime}\right) \triangleleft \phi_{*} \\
\underline{S}\left(h_{(1)}\right) \triangleleft \phi_{*} \otimes h_{(2)}=\underline{S}\left(h_{(1)}\right) \otimes h_{(2)} \triangleleft \phi_{*}^{-1}, \quad h, h^{\prime} \in \mathcal{H}
\end{gathered}
$$

Theorem ([1])

Let $(\mathcal{H}, \underline{S})$ be a full Hopf algebroid, then $\left(\mathcal{H}, \underline{S}^{\prime}\right)$ is a full Hopf algebroid iff there exists a twist ϕ_{*} such that

$$
\underline{S}^{\prime}(h):=\underline{S}\left(h \triangleleft \phi_{*}\right), \quad h \in \mathcal{H}
$$

The group of twists is the set of invertible elements $\phi_{*} \in \mathcal{H}_{*}$ satisfying

$$
\begin{gathered}
1_{\mathcal{H}} \triangleleft \phi_{*}=1_{\mathcal{H}}, \quad\left(h \triangleleft \phi_{*}\right)\left(h^{\prime} \triangleleft \phi_{*}\right)=\left(h h^{\prime}\right) \triangleleft \phi_{*} \\
\underline{S}\left(h_{(1)}\right) \triangleleft \phi_{*} \otimes h_{(2)}=\underline{S}\left(h_{(1)}\right) \otimes h_{(2)} \triangleleft \phi_{*}^{-1}, \quad h, h^{\prime} \in \mathcal{H}
\end{gathered}
$$

Theorem ([1])

Let $(\mathcal{H}, \underline{S})$ be a full Hopf algebroid, then $\left(\mathcal{H}, \underline{S}^{\prime}\right)$ is a full Hopf algebroid iff there exists a twist ϕ_{*} such that

$$
\underline{S}^{\prime}(h):=\underline{S}\left(h \triangleleft \phi_{*}\right), \quad h \in \mathcal{H}
$$

In our case where $\mathcal{H}=\mathcal{C}(A, H)$ for the $O(U(1))$-extension $A\left(\mathbb{C} P_{q}^{n-1}\right) \subseteq A\left(S_{q}^{2 n-1}\right)$, we are in the situation where both \underline{S} and the flip σ are antipodes. The twist connecting them is given by

$$
\phi_{*}: V_{i j} \longmapsto q^{2(i-n)} P_{i j}, \quad W_{i j} \longmapsto q^{2(n-j)} Q_{i j}
$$

囯 Böhm G．，An alternative notion of Hopf algebroid，Lect．Notes in Pure and Appl．Math． 239 （2004）．

國 Böhm G．，Szlachanyi K．，Hopf algebroids with bijective antipodes：axioms，integrals and duals，J．Algebra 274 （2004）．

囯 Brzezinski T．，Wisbauer R．，Corings and Comodules，LMS 309， CUP（2003）．
围 Han X．，Landi G．Gauge groups and bialgebroids， Lett．Math．Phys． 111 （2021）．
Han X．，Majid S．，Hopf－Galois extensions and twisted Hopf algebroids，arXiv：2205．11494．

Rovi A．，Hopf algebroids associated to Jacobi algebras， International Journal of Geometric Methods in Modern Physics Vol． 11 （2014）．
围 Schauenburg P．，Duals and doubles of quantum groupoids （ \times_{R} Hopf algebras），AMS Contemporary Mathematics 267

Thank you!

