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Introduction

Consider a Lorentzian manifold (M, g).

The metric has signature (+,−, . . . ,−).

For instance Minkowski space: R1+d, g0 = dt2 − dy21 − · · · − dy2n−1.

The Lorentzian Laplace–Beltrami operator or wave operator:

�g =
n−1∑
i,j=0

|g(x)|−
1
2 ∂xi |g(x)|

1
2 gij(x)∂xj

on Minkowski,�g = ∂2
t − (∂2

y1 + · · ·+ ∂2
yn−1

)

�g (+ non-linearity) has rich theory of solving Cauchy problem, asymp-

totic analysis of solutions, propagation of singularities, etc.

Relatively recently: global theory of�g (Fredholm property, Hilbert

space invertibility) Vasy ’13 et al.. Techniques of microlocal and

asymptotic analysis in relation with classical dynamics and geometry.



As opposed to4g on Riemannian manifold,�g is non-elliptic.

Recently established non-elliptic Fredholm theory for problems such as :

1. stability of black hole solutions of Einstein equations

2. Anosov/Morse–Smale flows, dynamical zeta functions

3. Quantum Field Theory on curved spacetimes

(Vasy, Gérard–W., Nakamura–Taira, Dang–W., Bär–Strohmaier, …)

striking similarities with Euclidean setting4g! (inverses, essential

self-adjointness)

How is global�g related to geometry of (M, g)?

(+ related questions at the interface of quantum physics, gravity and NCG)



Spectral zeta function

(M, g) compact Riemannian =⇒ 4g has discrete spectrum.

Recall Riemann zeta ζ(α) =
∑∞

λ=1 λ
−α, then spectral zeta:

C 3 α 7→ ζ4(α) =
∑

λ∈sp(4g)\{0}

λ−α.

Theorem (Minakshisundaram–Pleijel, Seeley)

The function ζ4(α) = TrL2

(
4−α

g

)
is holomorphic on Reα > n

2 , with

meromorphic continuation to α ∈ C and poles at {n
2 ,

n
2 − 1, . . . , 1}.

+local version with densities:

α 7→ 4−α
g (x, x) holomorphic on Reα > n

2 , with meromorphic continuation

to α ∈ C and poles at {n
2 ,

n
2 − 1, . . . , 1}, smooth in x ∈ M .

Here4−α
g (x, x′) is the Schwartz kernel of4−α, so

TrL2

(
4−α

g

)
=

∫
M

4−α
g (x, x)dx
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The spectral action principle

The heat kernel expansion (small t expansion of e−t4g (x, x)) relates4g with

invariants, in particular scalar curvatureRg(x).

Theorem (elliptic theory + Connes, Kalau–Walze, Kastler)

When dim(M) = n > 4,

res
α=n

2 −1
TrL2

(
4−α

g

)
=

∫
M

Rg(x)

6(4π)
n
2 Γ
(
n
2 − 1

) .
Local version for diagonal value x = x′ of Schwartz kernel4−α

g (x, x′):

res
α=n

2 −1
4−α

g (x, x) =
Rg(x)

6(4π)
n
2 Γ
(
n
2 − 1

) .
— This is a spectral action for Euclidean gravity: δgRg = 0 is equivalent

to Einstein equations.

— Poles are geometric⇒ locality of counterterms in zeta function

regularisation in QFT Hawking ’77

— The analytic residue equals a Guillemin–Wodzicki residue (or

non-commutative residue), therefore a Dixmier trace Connes ’88



Theorem (elliptic theory + Chamseddine–Connes)

For any Schwartz function f ,

f
(
4g/λ

2
)
(x, x) =

N∑
j=0

λn−2jCj(f) aj(x) +O(λn−2N−1),

where aj(x) are the heat kernel coefficients.

— Vector bundle version useful for Dirac f
(
D2

λ2

)
.

— Twisting the bundle yields Standard model Lagrangian.

But no direct physical meaning unless (M, g) Lorentzian...

Yet, fundamental difficulties: Lorentzian�g not elliptic, not bounded from

below. There is no Lorentzian heat kernel.
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Lorentzian non-commutative geometry, a work in progress

Spectral triples by Wick rotation or spacetime foliations

van den Dungen–Paschke–Rennie ’13, van den Dungen–Rennie ’16, van den

Dungen ’18 …

Krein space based spectral triples

Suijlekom ’04, Strohmaier ’06, Paschke–Sitarz ’06, Barrett ’07, Besnard ’16,

van den Dungen ’16 …

Lorentzian distance function and causal relations

Moretti ’03, Besnard ’09, Franco ’10–’18, Rennie–Whale ’17,Minguzzi ’17,

Franco–Eckstein ’13–’15, Bizi–Besnard ’17 …

Algebraic structure of Lorentzian spectral triples / actions

Franco ’12, Bochniak–Sitarz ’18, Bizi–Brouder–Besnard ’18 …

Wick rotation of the spectral action

D’Andrea–Kurkov– Lizzi ’16, Devastato–Farnsworth–Lizzi–Martinetti ’18,

Martinetti–Singh ’19 …



Is there a spectral action with�g?

For (M, g) Lorentzian,4g becomes�g. Two hints:

1. The local geometric quantities (e.g.Rg(x)) still make sense.

— Lorentzian version of local heat kernel coefficients aj(x) by
solving analogous transport equations

— formal Hadamard parametrix for�g produces aj(x)

2. Recent results show essential self-adjointness of�g:

— Static spacetimes (e.g. ∂2
t −4h with time-independent

coefficients): Dereziński-Siemssen ’18

— For perturbations of Minkowski space (and more general

non-trapping Lorentzian scattering spaces):

Vasy ’20, Nakamura–Taira ’20

(related results: Gérard–Wrochna ’19–’20, Kamiński ’19,

Dereziński-Siemssen ’19, Colin de Verdière–Le Bihan ’20, Taira ’20)

— Classes of asymptotically static spacetimes Nakamura–Taira ’22

⇒ f(�g) well-defined!

But is there any relationship between 1. and 2. like in elliptic case?



I. Main results



Main theorem

Assume (M, g) is a perturbation of Minkowski space (or more general

non-trapping Lorentzian scattering space, see later), of even dimension n.

Theorem (Dang, Wrochna ’20)

For ε > 0, the Schwartz kernel of (�g − iε)−α has for Reα > n
2 a

well-defined on-diagonal restriction (�g − iε)−α(x, x), which

extends as a meromorphic function of α ∈ C with poles at {n
2 ,

n
2 − 1, n

2 − 2, . . . , 1}. Furthermore,

lim
ε→0+

res
α=n

2 −1
(�g − iε)

−α
(x, x) =

Rg(x)

i6(4π)
n
2 Γ
(
n
2 − 1

) ,
whereRg(x) is the scalar curvature at x ∈ M .

— Spectral action for gravity! Proof directly in Lorentzian signature.

Perturbations of Minkowski included (no symmetries assumed).

— The ε → 0+ avoids low-frequency problems and responsible for

relationship with Feynman propagator.



Main theorem 2

Theorem (Dang, Wrochna ’20)

For any Schwartz f with Fourier transform in ]0,+∞[,

f
(
(�g + iε)/λ2

)
(x, x) =

N∑
j=0

λn−2jCj(f) aj(x)+O(ε, λn−2N−1),

where aj(x) are Hadamard coefficients.

Theorem (Dang, Wrochna ’21)

Poles of ζg,ε(α) := (�g − iε)−α(x, x) can be recovered by a scaling

procedure.

(This generalizes the Guillemin–Wodzicki residue ofΨDOs.)



Scaling towards the diagonal

Let∆ = {(x, x) |x ∈ M}.

A vector field X is radial (or Euler) if Xf = f modulo quadratically

vanishing terms for all f with f |∆ = 0.

Locally there are coordinates (xi, hi)ni=1 s.t.∆ = {hi = 0} andX =
∑n

i=1 h
i∂hi .

u ∈ D′
Γ(U) is log-polyhomogeneous if

e−tXu =
∑

p6k6N,06i6l−1

e−tk (−1)iti

i!
(X − k)

i
uk+OD′

Γ(U)(e
−t(N+1−ε)).

Pollicott–Ruelle resonances of the flow e−tX are the poles of∫ ∞

0

e−tz
〈
(e−tXu), ϕ

〉
dt =

N∑
k=p,06i6l−1

(−1)i
〈
(X − k)iuk, ϕ

〉
(z + k)i+1

+ holomorphic on Re z 6 N.



Dynamical definition of residue

Suppose Γ|∆ ⊂ N∗∆. Let Π0 := projection on zero resonance.

The dynamical residue of K (w.r.t.X) is:

resXK = ι∗∆
(
X(Π0(K))

)
∈ C∞(M).

Might be ill-defined, and might depend onX . But...

Theorem (Dang–Wrochna ’21)

For all radialX and all k = 1, . . . , n
2 and ε > 0,

res
α=k

ζg,ε(α) =
1

2
resX

(
(�g − iε)

−k )
,

where ζg,ε(α) is the spectral zeta function density of�g − iε.

“Analytic residues of ζg,ε are dynamical residues (scaling anomalies).”



II. From resolvent of�g to geometric invariants



General plan of proof

1) Let P = �g on Lorentzian (M, g). If resolvent exists (P − iε)−α as

contour integral of (P − z)−1. For α = N + µ > 0:

γε

ε
ε
2

Re z

i Im z

(P − iε)−α =
1

2πi

∫
γε

(z − iε)−µ(P − iε)−N (P − z)−1dz, .

2) Construct a Hadamard parametrixHN (z) (replaces heat kernel) and
show it approximates the resolvent uniformly in z.

3) Deduce regularity properties, compute poles and get curvatureR
from contour integrals ofHN (z).



Construction of Hadamard parametrixHN (z):

Let Fα(z, |.|g) be locally given by

Fα(z, x) =
1

Γ(α+ 1)(2π)n

∫
ei〈x,ξ〉

(
|ξ|2g0 − i0− z

)−α−1
dnξ

(in normal coordinates) then ansatz of orderN :

HN (z, .) =

N∑
k=0

ukFk(z, |.|g) ∈ D′(U).

solved modulo errors by transport equations thanks to

(P − z) (uFα) = αuFα−1 + (Pu)Fα + (hu+ 2ρu)
Fα−1

2

for all u ∈ C∞(M), where h(x) = bj(x)g0,jkx
k and ρ = xk∂xk .



Compute poles and get curvature:

Now (P − iε)−α(x, x) expressed by contour integrals of Fβ(z, .).

1

2πi

∫
γε

(z−iε)−αFk(z, .)dz =
(−1)kΓ(−α+ 1)

Γ(−α− k + 1)Γ(α+ k)
Fk+α−1(iε, .)

Residue computation by homological argument.

scalar curvature in normal coordinates comes from

P = ∂xkgkj(x)∂xj + gjk(x)(∂xj log |g(x)|
1
2 )∂xk ,

transport equation u1(0) = −Pu0(0) = −P (|g(0)|
1
4 |g(x)|−

1
4 )|x=0

and gij(x) = g0,ij +
1
3Rikjlx

kxl +O(|x|3).



Hadamard parametrixHN approximates (P − z)−1?

(P − z)

(
N∑

k=0

ukFk(z, .)χ

)
= |g|−

1
2 δ∆ + (PuN )FN (z, .)χ+ rN (z),

where PuN highly regular, and rN singular (but 0 near diagonal).
Applying (P − z)−1 well-defined and yields good errors if (P − z)−1

is shown to have special structure of singularities and mapping

properties uniformly in z.

Think of the distribution (x− i0)−1 on R: it is singular at x = 0, but has good

multiplicative properties like (x− i0)−1(x− i0)−1 = (x− i0)−2.

Here, “controlling singularities” means showing existence of

B1, B2 ∈ Ψ0(M), as elliptic as possible s.t.

B1(P − z)−1B∗
2 : L2(M) → C∞(M)

with seminormsO(1 + |z|)−m.

Related problems in QFT: singularities of two-point functions 〈Ω|φ(x)φ(x′)Ω〉
as x → x′ in relationship with spacetime geometry.



III. Analysis of (P − z)−1



Suppose�g = ∂2
t −4, Im z > 0. Retarded propagator of P − z:

θ(t− s)
ei(t−s)

√
−4−z − e−i(t−s)

√
−4−z

2i
√
−4− z

Looks like no chance of ‖(�g − z)−1‖ 6 |Im z|−1
. But:

“Every particle in Nature has an amplitude to move

backwards in time, and therefore has an anti-particle.”

– Richard Feynman

(
(�g − z)−1u

)
(t, .) = −1

2

∫
e−i|t−s|

√
−4−z

√
−4− z

u(s, .)ds. (1)

The boundary value (�g − i0)−1 is the Feynman propagator.
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−4−z

√
−4− z
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But for general�g with t-dependent coefficients, nothing like (1) exists...

Start with (1) at infinity, then propagate!



Suppose�g = ∂2
t −4, Im z > 0. Retarded propagator of P − z:
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The boundary value (�g − i0)−1 is the Feynman propagator.

Use radial estimates due toMelrose ’94 and Vasy ’13-’19 (or assume g is
a compactly supported perturbation of static metric) + propagation

estimates Hörmander ’71



Positive commutator estimates

Toy model: P = P ∗ bounded, and ∃ bounded A andD s.t.:

[P, iA] > (1+D2)s. (*)

Undo the commutator:

1

2
〈[P, iA]u, u〉 = 〈APu, u〉 − 〈PAu, u〉

2i

=
〈Pu,Au〉 − 〈Au,Pu〉

2i
6 |〈Pu,Au〉|,

By Cauchy–Schwarz,

|〈Pu,Au〉| 6 C‖(1+D2)−s/2Pu‖‖(1+D2)s/2u‖ =: C‖Pu‖−s‖u‖s.

In combination with (*):

‖u‖2s 6 C‖Pu‖−s‖u‖s,

hence invertibility statement ‖u‖s 6 C‖Pu‖−s.



Positive commutator estimates

The existence of suitable A s.t.

[P, iA] > (1+D2)s.

is extremely rare. But we can expect to prove it “somewhere in phase

space”.

I If P ∈ Ψs(M) and A ∈ Ψ`(M) then [P, iA] ∈ Ψs+`−1(M) and

σpr ([P, iA]) = {p, a}mod Ss+`−2(M).

The flow of {p, ·} in {p = 0} is the classical Hamilton flow, or

bicharacteristic flow (note that in {p 6= 0} elliptic theory applies).
I non-compact settings require weighted Sobolev spaces: extra weight

(1+ |x|2)` (Ψm,`
sc (M) calculus)

I non-selfadjointness can be serious trouble (if we know nothing of

P − P ∗), or valuable help (for instance P − iε with ε > 0)



Lorentzian scattering spaces

Example: Minkowski metric g0 = dx2
0 − (dx2

1 + · · ·+ dx2
n−1) on Rn

extends to radial compactification Rn
defined using boundary-defining

function ρ = (x2
0 + x2

1 + · · ·+ x2
n)

− 1
2 . Regularity w.r.t. ρ2∂ρ = −∂r

Definition: Lorentzian sc-metrics are C∞ sections of scT ∗M ⊗s
scT ∗M ,

where scT ∗M generated by ρ−2dρ, ρ−1dy1, . . . ρ
−1dyn−1.

Null geodesics lift to null bicharacteristics on scT ∗M (rescaled and extended at

∂M appropriately)

Definition:

(M, g) non-trapping Lorentzian sc-space

if there are sinks/sources L± above ∂M , and

null bicharacteristics flow from and to L− and L+.

Includes small perturbations of Minkowski

space and asymptotically Minkowski spaces.



From null bicharacteristic flow to global estimates

dynamics of null bicharacteristics in scT ∗M
⇓

classical quantities increasing along flow

⇓
pos. commutator estimates inΨm,`

sc -calculus

⇓

1. Deduce Fredholm property and invertibility of P − z

2. Deduce singularities of (P − z)−1(x, x′)



Dirac operators

The Lorentzian Dirac operator /D satisfies /D
2
= �g+ l.o.t. in vector bundle

sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product,

but (in general) not for an honest scalar product. However, on Lorentzian

scattering spaces, P := /D
2
satisfies

P ∗ − P ∈ Ψ1,−1−δ
sc (M)

for instance for the scalar product 〈·, γ(n)·〉L2(M ;SM) used in quantization

work in progress (with N.V. Dang & A. Vasy): P = /D
2
on non-trapping

Lorentzian scattering space (M, g) as closed operator.

Conjecture

/D
2
is a closed operator, and:

sp( /D
2
) ⊂ R ∪ {some isolated poles in |Im z| 6 R}

This uses stronger resolvent estimates using a resolvedΨm,`
sc -calculus

obtained from blowing up the corner of scT ∗M .
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sp( /D
2
) ⊂ R ∪ {some isolated poles in |Im z| 6 R}

The techniques give a fully microlocal implementation of subelliptic

estimate of Taira ’21:

u ∈ H
m+ 1

2 ,`−
1
2

sc (M), (P − z)u ∈ Hm,`
sc (M)⇒ u ∈ Hm,`

sc (M).



Dirac operators

The Lorentzian Dirac operator /D satisfies /D
2
= �g+ l.o.t. in vector bundle
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for instance for the scalar product 〈·, γ(n)·〉L2(M ;SM) used in quantization
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Conjecture

/D
2
is a closed operator, and:

sp( /D
2
) ⊂ R ∪ {some isolated poles in |Im z| 6 R}

Remark: No role played by indefinite 〈·, ·〉L2(M ;SM)



IV. Summary



To sum up...

We have shown relationship of Lorentzian spectral zeta function density

ζg,ε with space-time geometry.

⇒ (Lorentzian!) Gravity can be derived from a spectral action.

I We also get the theorem for ultra-static spacetimes and compactly

supported pertubations. One can conjecture extensions to

asymptotically static spacetimes (and beyond, especially if weakening

essential self-adjointness).

I We show that the poles are a generalized Wodzicki residue

I Relationships with QFT on curved spacetimes and renormalization

I (P − z)−1 contains information about null geodesics and causality

Does this fit into a spectral triple formalism? Non-commutative

examples? Interpretation of spectrum?

Thank you for your attention!


