Lorentzian spectral ζ-functions

joint work with Nguyen Viet Dang (Jussieu)

"Noncommutative geometry: metric and spectral aspects", Kraków, 2022

Michał Wrochna
Cergy Paris Université
based on joint works:
w. Nguyen Viet Dang (Jussieu)
arXiv:2012.00712, J. Eur. Math. Soc. (JEMS)
arXiv:2108.07529, J. Éc. polytech. Math.
arXiv:2202.06408, proceedings paper
w. Ruben Zeitoun (Cergy \& ENS Lyon)
arXiv:2204.01094, in: Analysis and Partial Differential Equations, Trends in Mathematics, Springer
w. Nguyen Viet Dang (Jussieu) \& András Vasy (Stanford)
\& work in progress

Introduction

Consider a Lorentzian manifold (M, g).
The metric has signature $(+,-, \ldots,-)$.
For instance Minkowski space: $\mathbb{R}^{1+d}, g_{0}=d t^{2}-d y_{1}^{2}-\cdots-d y_{n-1}^{2}$.
The Lorentzian Laplace-Beltrami operator or wave operator:

$$
\square_{g}=\sum_{i, j=0}^{n-1}|g(x)|^{-\frac{1}{2}} \partial_{x^{i}}|g(x)|^{\frac{1}{2}} g^{i j}(x) \partial_{x^{j}}
$$

on Minkowski, $\square_{g}=\partial_{t}^{2}-\left(\partial_{y_{1}}^{2}+\cdots+\partial_{y_{n-1}}^{2}\right)$
\square_{g} (+ non-linearity) has rich theory of solving Cauchy problem, asymptotic analysis of solutions, propagation of singularities, etc.

Relatively recently: global theory of \square_{g} (Fredholm property, Hilbert space invertibility) Vasy '13 et al.. Techniques of microlocal and asymptotic analysis in relation with classical dynamics and geometry.

As opposed to \triangle_{g} on Riemannian manifold, \square_{g} is non-elliptic.
Recently established non-elliptic Fredholm theory for problems such as :

1. stability of black hole solutions of Einstein equations
2. Anosov/Morse-Smale flows, dynamical zeta functions
3. Quantum Field Theory on curved spacetimes
(Vasy, Gérard-W., Nakamura-Taira, Dang-W., Bär-Strohmaier, ...) striking similarities with Euclidean setting \triangle_{g} ! (inverses, essential self-adjointness)
? How is global \square_{g} related to geometry of (M, g) ?
(+ related questions at the interface of quantum physics, gravity and NCG)

Spectral zeta function

(M, g) compact Riemannian $\Rightarrow \triangle_{g}$ has discrete spectrum.
Recall Riemann zeta $\zeta(\alpha)=\sum_{\lambda=1}^{\infty} \lambda^{-\alpha}$, then spectral zeta:

$$
\mathbb{C} \ni \alpha \mapsto \zeta_{\triangle}(\alpha)=\sum_{\lambda \in \operatorname{sp}\left(\triangle_{g}\right) \backslash\{0\}} \lambda^{-\alpha}
$$

Theorem (Minakshisundaram-Pleijel, Seeley)
The function $\zeta_{\Delta}(\alpha)=\operatorname{Tr}_{L^{2}}\left(\triangle_{g}^{-\alpha}\right)$ is holomorphic on $\operatorname{Re} \alpha>\frac{n}{2}$, with meromorphic continuation to $\alpha \in \mathbb{C}$ and poles at $\left\{\frac{n}{2}, \frac{n}{2}-1, \ldots, 1\right\}$.

Spectral zeta function

(M, g) compact Riemannian $\Rightarrow \triangle_{g}$ has discrete spectrum.
Recall Riemann zeta $\zeta(\alpha)=\sum_{\lambda=1}^{\infty} \lambda^{-\alpha}$, then spectral zeta:

$$
\mathbb{C} \ni \alpha \mapsto \zeta_{\triangle}(\alpha)=\sum_{\lambda \in \operatorname{sp}\left(\triangle_{g}\right) \backslash\{0\}} \lambda^{-\alpha}
$$

Theorem (Minakshisundaram-Pleijel, Seeley)
The function $\zeta_{\Delta}(\alpha)=\operatorname{Tr}_{L^{2}}\left(\triangle_{g}^{-\alpha}\right)$ is holomorphic on $\operatorname{Re} \alpha>\frac{n}{2}$, with meromorphic continuation to $\alpha \in \mathbb{C}$ and poles at $\left\{\frac{n}{2}, \frac{n}{2}-1, \ldots, 1\right\}$.
+local version with densities:
$\alpha \mapsto \triangle_{g}^{-\alpha}(x, x)$ holomorphic on $\operatorname{Re} \alpha>\frac{n}{2}$, with meromorphic continuation to $\alpha \in \mathbb{C}$ and poles at $\left\{\frac{n}{2}, \frac{n}{2}-1, \ldots, 1\right\}$, smooth in $x \in M$.

Here $\triangle_{g}^{-\alpha}\left(x, x^{\prime}\right)$ is the Schwartz kernel of $\triangle^{-\alpha}$, so

$$
\operatorname{Tr}_{L^{2}}\left(\triangle_{g}^{-\alpha}\right)=\int_{M} \triangle_{g}^{-\alpha}(x, x) d x
$$

The spectral action principle

The heat kernel expansion (small t expansion of $e^{-t \triangle_{g}}(x, x)$) relates \triangle_{g} with invariants, in particular scalar curvature $R_{g}(x)$.
Theorem (elliptic theory + Connes, Kalau-Walze, Kastler)
When $\operatorname{dim}(M)=n \geqslant 4$,

$$
\underset{\alpha=\frac{n}{2}-1}{\operatorname{res}} \operatorname{Tr}_{L^{2}}\left(\triangle_{g}^{-\alpha}\right)=\frac{\int_{M} R_{g}(x)}{6(4 \pi)^{\frac{n}{2}} \Gamma\left(\frac{n}{2}-1\right)}
$$

Local version for diagonal value $x=x^{\prime}$ of Schwartz kernel $\triangle_{g}^{-\alpha}\left(x, x^{\prime}\right)$:

$$
\operatorname{res}_{\alpha=\frac{n}{2}-1} \triangle_{g}^{-\alpha}(x, x)=\frac{R_{g}(x)}{6(4 \pi)^{\frac{n}{2}} \Gamma\left(\frac{n}{2}-1\right)}
$$

- This is a spectral action for Euclidean gravity: $\delta_{g} R_{g}=0$ is equivalent to Einstein equations.
- Poles are geometric \Rightarrow locality of counterterms in zeta function regularisation in QFT Hawking '77
- The analytic residue equals a Guillemin-Wodzicki residue (or non-commutative residue), therefore a Dixmier trace Connes ' 88

Theorem (elliptic theory + Chamseddine-Connes)
For any Schwartz function f,

$$
f\left(\triangle_{g} / \lambda^{2}\right)(x, x)=\sum_{j=0}^{N} \lambda^{n-2 j} C_{j}(f) a_{j}(x)+\mathcal{O}\left(\lambda^{n-2 N-1}\right)
$$

where $a_{j}(x)$ are the heat kernel coefficients.

- Vector bundle version useful for Dirac $f\left(\frac{D^{2}}{\lambda^{2}}\right)$.
- Twisting the bundle yields Standard model Lagrangian.

Theorem (elliptic theory + Chamseddine-Connes)
For any Schwartz function f,

$$
f\left(\triangle_{g} / \lambda^{2}\right)(x, x)=\sum_{j=0}^{N} \lambda^{n-2 j} C_{j}(f) a_{j}(x)+\mathcal{O}\left(\lambda^{n-2 N-1}\right),
$$

where $a_{j}(x)$ are the heat kernel coefficients.

- Vector bundle version useful for Dirac $f\left(\frac{D^{2}}{\lambda^{2}}\right)$.
- Twisting the bundle yields Standard model Lagrangian.

But no direct physical meaning unless (M, g) Lorentzian...
Yet, fundamental difficulties: Lorentzian \square_{g} not elliptic, not bounded from below. There is no Lorentzian heat kernel.

Lorentzian non-commutative geometry, a work in progress

\measuredangle Spectral triples by Wick rotation or spacetime foliations
van den Dungen-Paschke-Rennie '13, van den Dungen-Rennie '16, van den Dungen '18 ...
Δ Krein space based spectral triples
Suijlekom '04, Strohmaier '06, Paschke-Sitarz '06, Barrett '07, Besnard '16, van den Dungen '16 ...
\checkmark Lorentzian distance function and causal relations
Moretti '03, Besnard '09, Franco '10-'18, Rennie-Whale '17, Minguzzi '17, Franco-Eckstein '13-'15, Bizi-Besnard '17 ...
\checkmark Algebraic structure of Lorentzian spectral triples / actions
Franco '12, Bochniak-Sitarz '18, Bizi-Brouder-Besnard '18 ...
\triangle Wick rotation of the spectral action
D'Andrea-Kurkov- Lizzi '16, Devastato-Farnsworth-Lizzi-Martinetti '18, Martinetti-Singh '19 ...

Is there a spectral action with \square_{g} ?

For (M, g) Lorentzian, \triangle_{g} becomes \square_{g}. Two hints:

1. The local geometric quantities (e.g. $R_{g}(x)$) still make sense.

- Lorentzian version of local heat kernel coefficients $a_{j}(x)$ by solving analogous transport equations
- formal Hadamard parametrix for \square_{g} produces $a_{j}(x)$

2. Recent results show essential self-adjointness of \square_{g} :

- Static spacetimes (e.g. $\partial_{t}^{2}-\triangle_{h}$ with time-independent coefficients): Dereziński-Siemssen '18
- For perturbations of Minkowski space (and more general non-trapping Lorentzian scattering spaces): Vasy '20, Nakamura-Taira '20 (related results: Gérard-Wrochna '19-'20, Kamiński '19, Dereziński-Siemssen '19, Colin de Verdière-Le Bihan '20, Taira '20)
- Classes of asymptotically static spacetimes Nakamura-Taira '22
$\Rightarrow f\left(\square_{g}\right)$ well-defined!

But is there any relationship between 1. and 2. like in elliptic case?
I. Main results

Main theorem

Assume (M, g) is a perturbation of Minkowski space (or more general non-trapping Lorentzian scattering space, see later), of even dimension n.

Theorem (Dang, Wrochna '20)
For $\varepsilon>0$, the Schwartz kernel of $\left(\square_{g}-i \varepsilon\right)^{-\alpha}$ has for $\operatorname{Re} \alpha>\frac{n}{2} a$ well-defined on-diagonal restriction $\left(\square_{g}-i \varepsilon\right)^{-\alpha}(x, x)$, which extends as a meromorphic function of $\alpha \in \mathbb{C}$ with poles at $\left\{\frac{n}{2}\right.$, $\left.\frac{n}{2}-1, \frac{n}{2}-2, \ldots, 1\right\}$. Furthermore,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underset{\alpha=\frac{n}{2}-1}{\operatorname{res}}\left(\square_{g}-i \varepsilon\right)^{-\alpha}(x, x)=\frac{R_{g}(x)}{i 6(4 \pi)^{\frac{n}{2}} \Gamma\left(\frac{n}{2}-1\right)},
$$

where $R_{g}(x)$ is the scalar curvature at $x \in M$.

- Spectral action for gravity! Proof directly in Lorentzian signature. Perturbations of Minkowski included (no symmetries assumed).
- The $\varepsilon \rightarrow 0^{+}$avoids low-frequency problems and responsible for relationship with Feynman propagator.

Main theorem 2

Theorem (Dang, Wrochna '20)
For any Schwartz f with Fourier transform in $] 0,+\infty[$,
$f\left(\left(\square_{g}+i \varepsilon\right) / \lambda^{2}\right)(x, x)=\sum_{j=0}^{N} \lambda^{n-2 j} C_{j}(f) a_{j}(x)+\mathcal{O}\left(\varepsilon, \lambda^{n-2 N-1}\right)$,
where $a_{j}(x)$ are Hadamard coefficients.

Theorem (Dang, Wrochna '21)
Poles of $\zeta_{g, \varepsilon}(\alpha):=\left(\square_{g}-i \varepsilon\right)^{-\alpha}(x, x)$ can be recovered by a scaling procedure.
(This generalizes the Guillemin-Wodzicki residue of $\Psi D O s$.

Scaling towards the diagonal

Let $\Delta=\{(x, x) \mid x \in M\}$.
A vector field X is radial (or Euler) if $X f=f$ modulo quadratically vanishing terms for all f with $\left.f\right|_{\Delta}=0$.

Locally there are coordinates $\left(x^{i}, h^{i}\right)_{i=1}^{n}$ s.t. $\Delta=\left\{h^{i}=0\right\}$ and $X=\sum_{i=1}^{n} h^{i} \partial_{h^{i}}$.
$u \in \mathcal{D}_{\Gamma}^{\prime}(\mathcal{U})$ is log-polyhomogeneous if
$e^{-t X} u=\sum_{p \leqslant k \leqslant N, 0 \leqslant i \leqslant l-1} e^{-t k} \frac{(-1)^{i} t^{i}}{i!}(X-k)^{i} u_{k}+\mathcal{O}_{\mathcal{D}_{\Gamma}^{\prime}(\mathcal{U})}\left(e^{-t(N+1-\varepsilon)}\right)$.
Pollicott-Ruelle resonances of the flow $e^{-t X}$ are the poles of

$$
\begin{aligned}
\int_{0}^{\infty} e^{-t z}\left\langle\left(e^{-t X} u\right), \varphi\right\rangle d t= & \sum_{k=p, 0 \leqslant i \leqslant l-1}^{N}(-1)^{i} \frac{\left\langle(X-k)^{i} u_{k}, \varphi\right\rangle}{(z+k)^{i+1}} \\
& + \text { holomorphic on } \operatorname{Re} z \leqslant N
\end{aligned}
$$

Dynamical definition of residue

Suppose $\left.\Gamma\right|_{\Delta} \subset N^{*} \Delta$. Let $\Pi_{0}:=$ projection on zero resonance.

The dynamical residue of \mathcal{K} (w.r.t. X) is:

$$
\operatorname{res}_{X} \mathcal{K}=\iota_{\Delta}^{*}\left(X\left(\Pi_{0}(\mathcal{K})\right)\right) \in C^{\infty}(M) .
$$

Might be ill-defined, and might depend on X. But...

Theorem (Dang-Wrochna '21)
For all radial X and all $k=1, \ldots, \frac{n}{2}$ and $\varepsilon>0$,

$$
\underset{\alpha=k}{\operatorname{res}} \zeta_{g, \varepsilon}(\alpha)=\frac{1}{2} \operatorname{res}_{X}\left(\left(\square_{g}-i \varepsilon\right)^{-k}\right),
$$

where $\zeta_{g, \varepsilon}(\alpha)$ is the spectral zeta function density of $\square_{g}-i \varepsilon$.
"Analytic residues of $\zeta_{g, \varepsilon}$ are dynamical residues (scaling anomalies)."
II. From resolvent of \square_{g} to geometric invariants

General plan of proof

1) Let $P=\square_{g}$ on Lorentzian (M, g). If resolvent exists $(P-i \varepsilon)^{-\alpha}$ as contour integral of $(P-z)^{-1}$. For $\alpha=N+\mu>0$:

2) Construct a Hadamard parametrix $H_{N}(z)$ (replaces heat kernel) and show it approximates the resolvent uniformly in z.
3) Deduce regularity properties, compute poles and get curvature R from contour integrals of $H_{N}(z)$.

Construction of Hadamard parametrix $H_{N}(z)$:
Let $\mathbf{F}_{\alpha}(z,|\cdot| g)$ be locally given by

$$
F_{\alpha}(z, x)=\frac{1}{\Gamma(\alpha+1)(2 \pi)^{n}} \int e^{i\langle x, \xi\rangle}\left(|\xi|_{g_{0}}^{2}-i 0-z\right)^{-\alpha-1} d^{n} \xi
$$

(in normal coordinates) then ansatz of order N :

$$
H_{N}(z, .)=\sum_{k=0}^{N} u_{k} \mathbf{F}_{k}\left(z,|\cdot|_{g}\right) \in \mathcal{D}^{\prime}(\mathcal{U})
$$

solved modulo errors by transport equations thanks to

$$
(P-z)\left(u \mathbf{F}_{\alpha}\right)=\alpha u \mathbf{F}_{\alpha-1}+(P u) \mathbf{F}_{\alpha}+(h u+2 \rho u) \frac{\mathbf{F}_{\alpha-1}}{2}
$$

for all $u \in C^{\infty}(M)$, where $h(x)=b^{j}(x) g_{0, j k} x^{k}$ and $\rho=x^{k} \partial_{x^{k}}$.

Compute poles and get curvature:

Now $(P-i \varepsilon)^{-\alpha}(x, x)$ expressed by contour integrals of $\mathbf{F}_{\beta}(z,$.$) .$

$$
\frac{1}{2 \pi i} \int_{\gamma_{\varepsilon}}(z-i \varepsilon)^{-\alpha} \mathbf{F}_{k}(z, .) d z=\frac{(-1)^{k} \Gamma(-\alpha+1)}{\Gamma(-\alpha-k+1) \Gamma(\alpha+k)} \mathbf{F}_{k+\alpha-1}(i \varepsilon, .)
$$

Residue computation by homological argument.
scalar curvature in normal coordinates comes from

$$
P=\partial_{x^{k}} g^{k j}(x) \partial_{x^{j}}+g^{j k}(x)\left(\partial_{x^{j}} \log |g(x)|^{\frac{1}{2}}\right) \partial_{x^{k}}
$$

transport equation $u_{1}(0)=-P u_{0}(0)=-\left.P\left(|g(0)|^{\frac{1}{4}}|g(x)|^{-\frac{1}{4}}\right)\right|_{x=0}$ and $g_{i j}(x)=g_{0, i j}+\frac{1}{3} R_{i k j l} x^{k} x^{l}+\mathcal{O}\left(|x|^{3}\right)$.

Hadamard parametrix H_{N} approximates $(P-z)^{-1}$?

$$
(P-z)\left(\sum_{k=0}^{N} u_{k} \mathbf{F}_{k}(z, .) \chi\right)=|g|^{-\frac{1}{2}} \delta_{\Delta}+\left(P u_{N}\right) \mathbf{F}_{N}(z, .) \chi+r_{N}(z),
$$

where $P u_{N}$ highly regular, and r_{N} singular (but 0 near diagonal). Applying $(P-z)^{-1}$ well-defined and yields good errors if $(P-z)^{-1}$ is shown to have special structure of singularities and mapping properties uniformly in z.

Think of the distribution $(x-i 0)^{-1}$ on \mathbb{R} : it is singular at $x=0$, but has good multiplicative properties like $(x-i 0)^{-1}(x-i 0)^{-1}=(x-i 0)^{-2}$.

Here, "controlling singularities" means showing existence of $B_{1}, B_{2} \in \Psi^{0}(M)$, as elliptic as possible s.t.

$$
B_{1}(P-z)^{-1} B_{2}^{*}: L^{2}(M) \rightarrow C^{\infty}(M)
$$

with seminorms $O(1+|z|)^{-m}$.
Related problems in QFT: singularities of two-point functions $\left\langle\Omega \mid \phi(x) \phi\left(x^{\prime}\right) \Omega\right\rangle$ as $x \rightarrow x^{\prime}$ in relationship with spacetime geometry.

III. Analysis of $(P-z)^{-1}$

Suppose $\square_{g}=\partial_{t}^{2}-\triangle$, Im $z>0$. Retarded propagator of $P-z$:

$$
\theta(t-s) \frac{e^{i(t-s) \sqrt{-\Delta-z}}-e^{-i(t-s) \sqrt{-\triangle-z}}}{2 i \sqrt{-\triangle-z}}
$$

Looks like no chance of $\left\|\left(\square_{g}-z\right)^{-1}\right\| \leqslant|\operatorname{lm} z|^{-1}$. But:

Suppose $\square_{g}=\partial_{t}^{2}-\triangle, \operatorname{Im} z>0$. Retarded propagator of $P-z$:

$$
\theta(t-s) \frac{e^{i(t-s) \sqrt{-\triangle-z}}-e^{-i(t-s) \sqrt{-\triangle-z}}}{2 i \sqrt{-\triangle-z}}
$$

Looks like no chance of $\left\|\left(\square_{g}-z\right)^{-1}\right\| \leqslant|\mathrm{Im} z|^{-1}$. But:

"Every particle in Nature has an amplitude to move backwards in time, and therefore has an anti-particle."

- Richard Feynman

$$
\begin{equation*}
\left(\left(\square_{g}-z\right)^{-1} u\right)(t, .)=-\frac{1}{2} \int \frac{e^{-i|t-s| \sqrt{-\triangle-z}}}{\sqrt{-\triangle-z}} u(s, .) d s \tag{1}
\end{equation*}
$$

The boundary value $\left(\square_{g}-i 0\right)^{-1}$ is the Feynman propagator.
But for general \square_{g} with t-dependent coefficients, nothing like (1) exists...
Start with (1) at infinity, then propagate!

Suppose $\square_{g}=\partial_{t}^{2}-\triangle, \quad \operatorname{Im} z>0$. Retarded propagator of $P-z$:

$$
\theta(t-s) \frac{e^{i(t-s) \sqrt{-\triangle-z}}-e^{-i(t-s) \sqrt{-\triangle-z}}}{2 i \sqrt{-\triangle-z}}
$$

Looks like no chance of $\left\|\left(\square_{g}-z\right)^{-1}\right\| \leqslant|\operatorname{lm} z|^{-1}$. But:

"Every particle in Nature has an amplitude to move backwards in time, and therefore has an anti-particle."

- Richard Feynman

$$
\begin{equation*}
\left(\left(\square_{g}-z\right)^{-1} u\right)(t, .)=-\frac{1}{2} \int \frac{e^{-i|t-s| \sqrt{-\triangle-z}}}{\sqrt{-\triangle-z}} u(s, .) d s \tag{1}
\end{equation*}
$$

The boundary value $\left(\square_{g}-i 0\right)^{-1}$ is the Feynman propagator.

- Use radial estimates due to Melrose '94 and Vasy '13-'19 (or assume g is a compactly supported perturbation of static metric) + propagation estimates Hörmander '71

Positive commutator estimates

Toy model: $P=P^{*}$ bounded, and \exists bounded A and D s.t.:

$$
\begin{equation*}
[P, i A] \geqslant\left(\mathbf{1}+D^{2}\right)^{s} . \tag{*}
\end{equation*}
$$

Undo the commutator:

$$
\begin{aligned}
\frac{1}{2}\langle[P, i A] u, u\rangle & =\frac{\langle A P u, u\rangle-\langle P A u, u\rangle}{2 i} \\
& =\frac{\langle P u, A u\rangle-\langle A u, P u\rangle}{2 i} \leqslant|\langle P u, A u\rangle|,
\end{aligned}
$$

By Cauchy-Schwarz,

$$
|\langle P u, A u\rangle| \leqslant C\left\|\left(\mathbf{1}+D^{2}\right)^{-s / 2} P u\right\|\left\|\left(\mathbf{1}+D^{2}\right)^{s / 2} u\right\|=: C\|P u\|_{-s}\|u\|_{s} .
$$

In combination with (*):

$$
\|u\|_{s}^{2} \leqslant C\|P u\|_{-s}\|u\|_{s},
$$

hence invertibility statement $\|u\|_{s} \leqslant C\|P u\|_{-s}$.

Positive commutator estimates

The existence of suitable A s.t.

$$
[P, i A] \geqslant\left(\mathbf{1}+D^{2}\right)^{s}
$$

is extremely rare. But we can expect to prove it "somewhere in phase space".

- If $P \in \Psi^{s}(M)$ and $A \in \Psi^{\ell}(M)$ then $[P, i A] \in \Psi^{s+\ell-1}(M)$ and

$$
\sigma_{\mathrm{pr}}([P, i A])=\{p, a\} \bmod S^{s+\ell-2}(M) .
$$

The flow of $\{p, \cdot\}$ in $\{p=0\}$ is the classical Hamilton flow, or bicharacteristic flow (note that in $\{p \neq 0\}$ elliptic theory applies).

- non-compact settings require weighted Sobolev spaces: extra weight $\left(\mathbf{1}+|x|^{2}\right)^{\ell}\left(\Psi_{\mathrm{sc}}^{m, \ell}(M)\right.$ calculus)
- non-selfadjointness can be serious trouble (if we know nothing of $P-P^{*}$), or valuable help (for instance $P-i \varepsilon$ with $\varepsilon>0$)

Lorentzian scattering spaces

Example: Minkowski metric $g_{0}=d x_{0}^{2}-\left(d x_{1}^{2}+\cdots+d x_{n-1}^{2}\right)$ on \mathbb{R}^{n} extends to radial compactification $\overline{\mathbb{R}}^{n}$ defined using boundary-defining function $\rho=\left(x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{-\frac{1}{2}}$. Regularity w.r.t. $\rho^{2} \partial_{\rho}=-\partial_{r}$

Definition: Lorentzian sc-metrics are C^{∞} sections of ${ }^{\text {sc }} T^{*} M \otimes_{\mathrm{s}}{ }^{\text {sc }} T^{*} M$, where ${ }^{\text {sc }} T^{*} M$ generated by $\rho^{-2} d \rho, \rho^{-1} d y_{1}, \ldots \rho^{-1} d y_{n-1}$.

Null geodesics lift to null bicharacteristics on ${ }^{\text {sc }} T^{*} M$ (rescaled and extended at ∂M appropriately)

Definition:
(M, g) non-trapping Lorentzian sc-space
if there are sinks/sources $L_{ \pm}$above ∂M, and null bicharacteristics flow from and to L_{-}and L_{+}.

Includes small perturbations of Minkowski space and asymptotically Minkowski spaces.

From null bicharacteristic flow to global estimates

1. Deduce Fredholm property and invertibility of $P-z$
2. Deduce singularities of $(P-z)^{-1}\left(x, x^{\prime}\right)$

Dirac operators

The Lorentzian Dirac operator $\not D$ satisfies $\not D^{2}=\square_{g}+$ l.o.t. in vector bundle sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product, but (in general) not for an honest scalar product. However, on Lorentzian scattering spaces, $P:=\not D^{2}$ satisfies

$$
P^{*}-P \in \Psi_{\mathrm{sc}}^{1,-1-\delta}(M)
$$

for instance for the scalar product $\langle\cdot, \gamma(n) \cdot\rangle_{L^{2}(M ; S M)}$ used in quantization
\& work in progress (with N.V. Dang \& A. Vasy): $P=\not D^{2}$ on non-trapping Lorentzian scattering space (M, g) as closed operator.

Conjecture

$\not D^{2}$ is a closed operator, and:

$$
\operatorname{sp}\left(\not D^{2}\right) \subset \mathbb{R} \cup\{\text { some isolated poles in }|\operatorname{lm} z| \leqslant R\}
$$

This uses stronger resolvent estimates using a resolved $\Psi_{\mathrm{sc}}^{m, \ell}$-calculus obtained from blowing up the corner of ${ }^{s c} \overline{T^{*}} M$.

Dirac operators

The Lorentzian Dirac operator $\not D$ satisfies $\not D^{2}=\square_{g}+$ l.o.t. in vector bundle sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product, but (in general) not for an honest scalar product. However, on Lorentzian scattering spaces, $P:=\not D^{2}$ satisfies

$$
P^{*}-P \in \Psi_{\mathrm{sc}}^{1,-1-\delta}(M)
$$

for instance for the scalar product $\langle\cdot, \gamma(n) \cdot\rangle_{L^{2}(M ; S M)}$ used in quantization
\& work in progress (with N.V. Dang \& A. Vasy): $P=\not D^{2}$ on non-trapping Lorentzian scattering space (M, g) as closed operator.

Conjecture

$\not D^{2}$ is a closed operator, and:

$$
\operatorname{sp}\left(\not D^{2}\right) \subset \mathbb{R} \cup\{\text { some isolated poles in }|\operatorname{lm} z| \leqslant R\}
$$

The techniques give a fully microlocal implementation of subelliptic estimate of Taira '21:

$$
u \in H_{\mathrm{sc}}^{m+\frac{1}{2}, \ell-\frac{1}{2}}(M),(P-z) u \in H_{\mathrm{sc}}^{m, \ell}(M) \Rightarrow u \in H_{\mathrm{sc}}^{m, \ell}(M)
$$

Dirac operators

The Lorentzian Dirac operator $\not D$ satisfies $\not D^{2}=\square_{g}+$ l.o.t. in vector bundle sense. It is formally self-adjoint w.r.t. the canonical indefinite inner product, but (in general) not for an honest scalar product. However, on Lorentzian scattering spaces, $P:=\not D^{2}$ satisfies

$$
P^{*}-P \in \Psi_{\mathrm{sc}}^{1,-1-\delta}(M)
$$

for instance for the scalar product $\langle\cdot, \gamma(n) \cdot\rangle_{L^{2}(M ; S M)}$ used in quantization
\& work in progress (with N.V. Dang \& A. Vasy): $P=\not D^{2}$ on non-trapping Lorentzian scattering space (M, g) as closed operator.

Conjecture
$\not D^{2}$ is a closed operator, and:

$$
\operatorname{sp}\left(\not D^{2}\right) \subset \mathbb{R} \cup\{\text { some isolated poles in }|\operatorname{lm} z| \leqslant R\}
$$

Remark: No role played by indefinite $\langle\cdot, \cdot\rangle_{L^{2}(M ; S M)}$
IV. Summary

To sum up...

We have shown relationship of Lorentzian spectral zeta function density $\zeta_{g, \varepsilon}$ with space-time geometry.
\Rightarrow (Lorentzian!) Gravity can be derived from a spectral action.

- We also get the theorem for ultra-static spacetimes and compactly supported pertubations. One can conjecture extensions to asymptotically static spacetimes (and beyond, especially if weakening essential self-adjointness).
- We show that the poles are a generalized Wodzicki residue
- Relationships with QFT on curved spacetimes and renormalization
- $(P-z)^{-1}$ contains information about null geodesics and causality
(?) Does this fit into a spectral triple formalism? Non-commutative examples? Interpretation of spectrum?

Thank you for your attention!

