Quantum Kaluza-Klein Theory with $M_{2}(C)$ and particle physics

Chengcheng Liu

Supervisor: Shahn Majid

Noncommutative geometry: metric and spectral aspects September 30 ${ }^{\text {th }}, 2022$

Elements of Quantum Riemannian Geometry(QRG)

Quantum Riemannian Geometry on $M_{2}(C)$

Kaluza-Klein model and scalar fields on $C^{\infty}(M) \otimes M_{2}(C)$

Elements of Quantum Riemannian Geometry(QRG)

We work with an algebra A, typically a *-algebra over C.
Differential structure d: A $\rightarrow \Omega^{1}$

$$
\begin{gathered}
d(a b)=a d b+(d a) b, \text { where } \Omega^{1}=\operatorname{span}\{a d b \mid a, b \in A\} \\
d(\omega \wedge \eta)=(d \omega) \wedge \eta+(-1)^{n} \omega \wedge d \eta, d^{2}=0 \\
\text { where } \omega, \eta \in \Omega=\oplus_{n \geq 0} \Omega^{n} \text { with } \Omega^{0}=A
\end{gathered}
$$

Connection $\nabla: \Omega^{1} \rightarrow \Omega^{1} \otimes_{A} \Omega^{1}$,

$$
\nabla(\mathrm{a} . \omega)=\mathrm{a} . \nabla \omega+\mathrm{da} \otimes_{A} \omega, \quad \text { where } \omega \in \Omega^{1}
$$

σ map: $\Omega^{1} \otimes_{A} \Omega^{1} \rightarrow \Omega^{1} \otimes_{A} \Omega^{1}$,

$$
\nabla(\omega \cdot \mathrm{a})=(\nabla \omega) \cdot \mathrm{a}+\sigma\left(\omega \otimes_{A} \mathrm{da}\right)
$$

Connection $\nabla: \Omega^{1} \otimes_{A} \Omega^{1} \rightarrow \Omega^{1} \otimes_{A} \Omega^{1} \otimes_{A} \Omega^{1} \quad \nabla\left(\omega \otimes_{A} \eta\right)=\nabla \omega \otimes_{A} \eta+\left(\sigma \otimes_{A}\right.$ id) $\left(\omega \otimes_{A} \nabla \eta\right)$

Elements of Quantum Riemannian Geometry(QRG)

Metric $g \in \Omega^{1} \otimes_{A} \Omega^{1}$, which is invertible in the sense of a bimodule map (,): $\Omega^{1} \otimes_{A} \Omega^{1} \rightarrow$ A obeying

$$
\left((\omega,) \otimes_{A} \text { id }\right) g=\omega=\left(\text { id } \otimes_{A}(, \omega)\right) g
$$

quantum symmetry condition:
Quantum Levi-Civita connection(QLC):
Riemann curvature $R_{\nabla}: \Omega^{1} \rightarrow \Omega^{2} \otimes_{A} \Omega^{1}$
Ricci tensor :

Ricci scalar S:

Reality condition:

$$
\text { Ricci }=\left((,) \otimes_{A} \text { id }\right)(\mathrm{id} \otimes \mathrm{i} \otimes \mathrm{id})\left(\mathrm{id} \otimes R_{\nabla}\right) \mathrm{g}, \quad \text { where i: } \Omega^{2} \rightarrow \Omega^{1} \otimes_{A} \Omega^{1}
$$

$$
S=(,) \text { Ricci } \in A
$$

$$
g^{\dagger}=g \quad \text { and } \quad \nabla \circ *=\sigma \circ \dagger \circ \nabla
$$

Recall QRG on algebra $\mathrm{A}=M_{2}(C)$

In terms of a self-adjoint basis s^{i} (where $s^{i *}=s^{i}$), the exterior algebra is

$$
s^{1} \wedge s^{1}=s^{2} \wedge s^{2}=\imath \mathrm{Vol}, \quad s^{1} \wedge s^{2}=s^{2} \wedge s^{1}=0
$$

Using Pauli matrices and $1=\mathrm{id}$ as a basis of $M_{2}(\mathbb{C})$, the differentials are then

$$
\mathrm{d} \sigma^{1}=\sigma^{3} s^{2}, \quad \mathrm{~d} \sigma^{2}=-\sigma^{3} s^{1}, \quad \mathrm{~d} \sigma^{3}=\sigma^{2} s^{1}-\sigma^{1} s^{2}, \quad \mathrm{~d} s^{i}=-\sigma^{i} \operatorname{Vol}, \quad \mathrm{Vol}=-\imath s^{1} \wedge s^{1}
$$

The quantum metric of interest is

$$
g=-s^{1} \otimes s^{1}+s^{2} \otimes s^{2}
$$

A natural 1-parameter QLC has braiding (where $\overline{1}=2$ and $\overline{2}=1$),

$$
\sigma\left(s^{i} \otimes s^{j}\right)= \begin{cases}s^{i} \otimes s^{j} & \text { if } i \neq j \\ -s^{\bar{i}} \otimes s^{\bar{i}}-2 \imath \rho s^{\bar{i}} \otimes s^{i} & \text { if } i=j\end{cases}
$$

Recall QRG on algebra $\mathrm{A}=M_{2}(C)$

The connection is then

$$
\nabla s^{i}=\frac{i}{2} \sigma^{i}\left(s^{1} \otimes s^{1}+s^{2} \otimes s^{2}\right)+\frac{\imath}{2} \epsilon_{i j} \sigma^{j}\left(s^{2} \otimes s^{1}-s^{1} \otimes s^{2}\right)-\rho \sigma^{i} s^{\bar{i}} \otimes s^{i}
$$

Choosing the canonical symmetric lift

$$
i(\mathrm{Vol})=\frac{1}{2 \imath}\left(s^{1} \otimes s^{1}+s^{2} \otimes s^{2}\right)
$$

Riemann curvature and Ricci tensor are

$$
R_{\nabla} s^{i}=-\imath\left(1+\rho^{2}\right) \mathrm{Vol} \otimes s^{i}, \quad \operatorname{Ricci}=-\frac{1}{2}\left(1+\rho^{2}\right)\left(s^{1} \otimes s^{1}+s^{2} \otimes s^{2}\right), \quad S=0
$$

QRG on algebra $\mathrm{A}=C^{\infty}(M) \otimes M_{2}(C)$

Follow a quantum Kaluza-Klein formulation, we solve for the quantum Riemannian geometry on $\mathrm{A}=$ $C^{\infty}(\boldsymbol{M}) \otimes M_{2}(\boldsymbol{C})$,

We take the graded tensor product exterior algebra $\Omega(A)=\Omega(M) \otimes \Omega\left(M_{2}(\mathbb{C})\right)$

Proposition: For the reason that quantum metric g has to be central, the most general metric has the form

$$
g=g_{\mu \nu}(x, t) \mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}+A_{i \mu}(x, t)\left(s^{i} \otimes \mathrm{~d} x^{\mu}+\mathrm{d} x^{\mu} \otimes s^{i}\right)+h_{i j}(x, t) s^{i} \otimes s^{j}
$$

where $g_{\mu \nu}$ are symmetric, $h_{11}+h_{22}=0$ and $A_{i \mu}=A_{\mu i}$, and all coefficients are functions on spacetime M.

QRG on algebra $\mathrm{A}=C^{\infty}(M) \otimes M_{2}(C)$

From now on, we assume for simplicity that if σ exists, it obeys
(i) $\sigma\left(\mathrm{d} x^{\mu} \otimes s^{i}\right)$ is the flip;
(ii) The result of $\sigma\left(s^{i} \otimes s^{j}\right)$ doesn't have any terms with $\mathrm{d} x^{\mu}$.

Proposition: If ∇ is a torsion free bimodule connection then it has the form

$$
\begin{array}{r}
\nabla \mathrm{d} x^{\mu}=-\Gamma_{\alpha \beta}^{\mu} \mathrm{d} x^{\alpha} \otimes \mathrm{d} x^{\beta}+B_{i \alpha}^{\mu}\left(\mathrm{d} x^{\alpha} \otimes s^{i}+s^{i} \otimes \mathrm{~d} x^{\alpha}\right)+C_{i j}^{\mu} s^{i} \otimes s^{j} \\
\nabla s^{k}=D_{\alpha \beta}^{k} \mathrm{~d} x^{\alpha} \otimes \mathrm{d} x^{\beta}+E_{i \alpha}^{k}\left(\mathrm{~d} x^{\alpha} \otimes s^{i}+s^{i} \otimes \mathrm{~d} x^{\alpha}\right)+\gamma_{i j}^{k} s^{i} \otimes s^{j}
\end{array}
$$

where $\Gamma_{\alpha \beta}^{\mu}, D_{\alpha \beta}^{k}$ are symmetric for the subscripts, $\Gamma_{\alpha \beta}^{\mu}, B_{i \alpha}^{\mu}, C_{i j}^{\mu}, D_{\alpha \beta}^{k}, E_{i \alpha}^{k} \in C^{\infty}(M)$, $\gamma_{i j}^{k} \in C^{\infty}(M) \otimes M_{2}(\mathbb{C})$ but does not have an σ^{3} component, and

$$
C_{11}^{\mu}+C_{22}^{\mu}=0, \quad \gamma_{11}^{k}+\gamma_{22}^{k}=\imath \sigma^{k}
$$

QRG on algebra $\mathrm{A}=C^{\infty}(M) \otimes M_{2}(C)$

Proposition: The only metrics that admit a QLC are of the form

$$
g=g_{\mu \nu}(x, t) \mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}+h_{i j}(x, t) s^{i} \otimes s^{j}
$$

and the QLC has the form in last proposition with the further restrictions $D=B=0, \Gamma$ is the usual LC for $g_{\mu \nu}, \gamma$ is the usual QLC for $h_{i j}$ in the sense

$$
h_{j i} \gamma_{m n}^{j}+2 \imath h_{p j} \gamma_{m n q}^{p} \gamma_{q i}^{j}+h_{n j} \gamma_{m i}^{j}=0
$$

and C, E obey

$$
\begin{aligned}
& C_{i j}^{\mu}=-g^{\mu \alpha} h_{m j} E_{i \alpha}^{m}, \\
& \partial_{\alpha} h_{i j}+h_{m j} E_{i \alpha}^{m}+h_{i m} E_{j \alpha}^{m}=0, \\
& 2 h_{p m} E_{n \alpha}^{m} \gamma_{i j n}^{p}+\left(h_{j m}-h_{m j}\right) E_{i \alpha}^{m}=0 .
\end{aligned}
$$

QRG on algebra $\mathrm{A}=C^{\infty}(M) \otimes M_{2}(C)$

The inverse of the metric (,) has the form

$$
\left(\mathrm{d} x^{\mu}, \mathrm{d} x^{\nu}\right)=g^{\mu \nu}, \quad\left(s^{i}, s^{j}\right)=h^{i j}, \quad\left(\mathrm{~d} x^{\mu}, s^{i}\right)=0, \quad\left(s^{i}, \mathrm{~d} x^{\mu}\right)=0
$$

where $g^{\mu \nu}, h^{i j}$ are the inverse of $g_{\mu \nu}, h_{i j}$
The Laplacian on $f=f_{a}(x, t) \sigma^{a}$ is

$$
\Delta f=(,) \nabla \mathrm{d} f=\Delta_{L B} f+\Delta_{M_{2}} f-g^{\mu \alpha} h_{m j} E_{i \alpha}^{m}\left(\partial_{\mu} f_{a}\right) \sigma^{a} h^{i j}
$$

where $\Delta_{L B}$ is the usual GR Laplacian on each component f_{a} and

$$
\Delta_{M_{2}} f=h^{i j}\left(f_{i} \sigma^{j}-\epsilon_{k c b} f_{c} \sigma^{b} \gamma_{i j}^{k}\right)
$$

is the Laplacian on $M_{2}(\mathbb{C})$ at each x, t.

QRG on algebra $\mathrm{A}=C^{\infty}(M) \otimes M_{2}(C)$

If $h_{i j} s^{i} \otimes s^{j}=h(x, t)\left(-s^{1} \otimes s^{1}+s^{2} \otimes s^{2}\right)$, then
$\Delta f(x, t)=\left(\Delta_{L B} f_{a}(x, t)\right) \sigma^{a}+\frac{1}{h(x, t)}\left(-f_{1}(x, t) \sigma^{1}+f_{2}(x, t) \sigma^{2}-g^{\mu \nu}\left(\partial_{\nu} h(x, t) \partial_{\mu} f_{a}(x, t)\right) \sigma^{a}\right)$.
Especially, if $h(x, t)$ is constant in spacetime and we let $h^{-1}(x, t)=\delta_{m}$ then the KG equation operator reduces to
$\left(\Delta+m^{2}\right) f=\left(\Delta_{L B} f_{a}\right) \sigma^{a}+m^{2} f_{0}+\left(m^{2}-\delta_{m}\right) f_{1}(x, t) \sigma^{1}+\left(m^{2}+\delta_{m}\right) f_{2}(x, t) \sigma^{2}+m^{2} f_{3} \sigma^{3}$,
This implies the field f usually regarded as one component field in classical spacetime now can be regarded as quadruplet of fields having different masses.

QRG on algebra $\mathrm{A}=C^{\infty}(M) \otimes M_{2}(C)$

Proposition:

If the $h_{i j} s^{i} \otimes s^{j}=h(x, t)\left(-s^{1} \otimes s^{1}+s^{2} \otimes s^{2}\right)$ and we let $h(x, t)=e^{\frac{2}{\sqrt{3-3 \rho^{2}}} \phi(x, t)}$ then

$$
S=-\frac{1}{2} S_{M}+\left(\nabla^{\mu} \phi\right)\left(\nabla_{\mu} \phi\right)+\frac{2}{\sqrt{3-3 \rho^{2}}} \nabla^{\mu} \nabla_{\mu} \phi
$$

where $\phi(x, t)$ is real scalar field and ρ is an imaginary parameter.
From here we can see that this result has the scalar field which also appears in KK theory.

Thank you

. ${ }^{+}$Queen Mary
University of London

