

Quantum Kaluza-Klein Theory with $M_2(C)$ and particle physics

Chengcheng Liu

Supervisor: Shahn Majid

Noncommutative geometry: metric and spectral aspects September 30th, 2022 **Elements of Quantum Riemannian Geometry(QRG)**

Quantum Riemannian Geometry on $M_2(C)$

Kaluza-Klein model and scalar fields on $C^{\infty}(M) \otimes M_2(C)$

Elements of Quantum Riemannian Geometry(QRG)

We work with an algebra A, typically a *-algebra over C.

Differential structure d: A $\rightarrow \Omega^1$

$$d(ab) = adb + (da)b$$
, where $\Omega^1 = span\{a db \mid a, b \in A\}$

d: $\Omega^n \to \Omega^{n+1}$

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^n \omega \wedge d\eta, d^2 = 0$$

where
$$\omega$$
, $\eta \in \Omega = \bigoplus_{n \ge 0} \Omega^n$ with $\Omega^0 = A$

Connection $\nabla: \Omega^1 \to \Omega^1 \otimes_A \Omega^1$.

$$\nabla(a.\omega) = a.\nabla\omega + da \otimes_A \omega$$
, where $\omega \in \Omega^1$

where
$$\omega \in \Omega^1$$

 σ map: $\Omega^1 \otimes_{\mathcal{A}} \Omega^1 \to \Omega^1 \otimes_{\mathcal{A}} \Omega^1$.

$$\nabla(\omega.a) = (\nabla\omega).a + \sigma(\omega \otimes_A da)$$

Connection $\nabla : \Omega^1 \otimes_A \Omega^1 \to \Omega^1 \otimes_A \Omega^1 \otimes_A \Omega^1 = \nabla(\omega \otimes_A \eta) = \nabla(\omega \otimes_A \eta) = \nabla(\omega \otimes_A \eta) = \nabla(\omega \otimes_A \eta)$

Elements of Quantum Riemannian Geometry(QRG)

Metric $g \in \Omega^1 \otimes_A \Omega^1$, which is invertible in the sense of a bimodule map $(,): \Omega^1 \otimes_A \Omega^1 \to A$ obeying

$$((\omega,) \otimes_A id)g = \omega = (id \otimes_A (, \omega))g$$

quantum symmetry condition:

$$\Lambda(g)=0$$

Quantum Levi-Civita connection(QLC):

$$\nabla g = 0$$
 and $\Lambda \nabla - d = 0$

Riemann curvature $R_{\nabla}: \Omega^1 \to \Omega^2 \otimes_A \Omega^1$

$$R_{\nabla} = (\mathsf{d} \otimes_{A} \mathsf{id} - \mathsf{id} \wedge \nabla)\nabla$$

Ricci tensor:

$$Ricci = ((,) \otimes_A id)(id \otimes i \otimes id)(id \otimes R_{\nabla})g,$$

where i:
$$\Omega^2 \to \Omega^1 \otimes_A \Omega^1$$

Ricci scalar S:

$$S=(,)Ricci \in A$$

Reality condition:

$$g^{\dagger} = g$$
 and $\nabla \circ * = \sigma \circ \dagger \circ \nabla$

Recall QRG on algebra $A = M_2(C)$

In terms of a self-adjoint basis s^i (where $s^{i*} = s^i$), the exterior algebra is

$$s^{1} \wedge s^{1} = s^{2} \wedge s^{2} = i \text{Vol}, \quad s^{1} \wedge s^{2} = s^{2} \wedge s^{1} = 0$$

Using Pauli matrices and 1 = id as a basis of $M_2(\mathbb{C})$, the differentials are then

$$d\sigma^1 = \sigma^3 s^2$$
, $d\sigma^2 = -\sigma^3 s^1$, $d\sigma^3 = \sigma^2 s^1 - \sigma^1 s^2$, $ds^i = -\sigma^i \text{Vol}$, $\text{Vol} = -i s^1 \wedge s^1$

The quantum metric of interest is

$$g = -s^1 \otimes s^1 + s^2 \otimes s^2$$

A natural 1-parameter QLC has braiding (where $\bar{1} = 2$ and $\bar{2} = 1$),

$$\sigma(s^{i} \otimes s^{j}) = \begin{cases} s^{i} \otimes s^{j} & \text{if } i \neq j \\ -s^{\bar{i}} \otimes s^{\bar{i}} - 2i\rho s^{\bar{i}} \otimes s^{i} & \text{if } i = j \end{cases}$$

Recall QRG on algebra $A = M_2(C)$

The connection is then

$$\nabla s^{i} = \frac{i}{2}\sigma^{i}(s^{1} \otimes s^{1} + s^{2} \otimes s^{2}) + \frac{i}{2}\epsilon_{ij}\sigma^{j}(s^{2} \otimes s^{1} - s^{1} \otimes s^{2}) - \rho\sigma^{i}s^{\bar{i}} \otimes s^{i}.$$

Choosing the canonical symmetric lift

$$i(\text{Vol}) = \frac{1}{2i} (s^1 \otimes s^1 + s^2 \otimes s^2)$$

Riemann curvature and Ricci tensor are

$$R_{\nabla} s^{i} = -i(1+\rho^{2}) \text{Vol} \otimes s^{i}, \quad \text{Ricci} = -\frac{1}{2}(1+\rho^{2})(s^{1} \otimes s^{1} + s^{2} \otimes s^{2}), \quad S = 0.$$

Follow a quantum Kaluza-Klein formulation, we solve for the quantum Riemannian geometry on $A = C^{\infty}(M) \otimes M_2(C)$,

We take the graded tensor product exterior algebra $\Omega(A) = \Omega(M) \underline{\otimes} \Omega(M_2(\mathbb{C}))$

Proposition: For the reason that quantum metric g has to be central, the most general metric has the form

$$g = g_{\mu\nu}(x,t)dx^{\mu} \otimes dx^{\nu} + A_{i\mu}(x,t)(s^{i} \otimes dx^{\mu} + dx^{\mu} \otimes s^{i}) + h_{ij}(x,t)s^{i} \otimes s^{j}$$

where $g_{\mu\nu}$ are symmetric, $h_{11} + h_{22} = 0$ and $A_{i\mu} = A_{\mu i}$, and all coefficients are functions on spacetime M.

From now on, we assume for simplicity that if σ exists, it obeys

- (i) $\sigma(\mathrm{d}x^{\mu}\otimes s^{i})$ is the flip;
- (ii) The result of $\sigma(s^i \otimes s^j)$ doesn't have any terms with dx^{μ} .

Proposition: If ∇ is a torsion free bimodule connection then it has the form

$$\nabla dx^{\mu} = -\Gamma^{\mu}_{\alpha\beta} dx^{\alpha} \otimes dx^{\beta} + B^{\mu}_{i\alpha} (dx^{\alpha} \otimes s^{i} + s^{i} \otimes dx^{\alpha}) + C^{\mu}_{ij} s^{i} \otimes s^{j}$$
$$\nabla s^{k} = D^{k}_{\alpha\beta} dx^{\alpha} \otimes dx^{\beta} + E^{k}_{i\alpha} (dx^{\alpha} \otimes s^{i} + s^{i} \otimes dx^{\alpha}) + \gamma^{k}_{ij} s^{i} \otimes s^{j}$$

where $\Gamma^{\mu}_{\alpha\beta}$, $D^k_{\alpha\beta}$ are symmetric for the subscripts, $\Gamma^{\mu}_{\alpha\beta}$, $B^{\mu}_{i\alpha}$, C^{μ}_{ij} , $D^k_{\alpha\beta}$, $E^k_{i\alpha} \in C^{\infty}(M)$, $\gamma^k_{ij} \in C^{\infty}(M) \otimes M_2(\mathbb{C})$ but does not have an σ^3 component, and

$$C_{11}^{\mu} + C_{22}^{\mu} = 0, \quad \gamma_{11}^{k} + \gamma_{22}^{k} = i\sigma^{k}.$$

Proposition: The only metrics that admit a QLC are of the form

$$g = g_{\mu\nu}(x,t) dx^{\mu} \otimes dx^{\nu} + h_{ij}(x,t) s^{i} \otimes s^{j}$$

and the QLC has the form in last proposition with the further restrictions D = B = 0, Γ is the usual LC for $g_{\mu\nu}$, γ is the usual QLC for h_{ij} in the sense

$$h_{ji}\gamma_{mn}^{j} + 2\imath h_{pj}\gamma_{mnq}^{p}\gamma_{qi}^{j} + h_{nj}\gamma_{mi}^{j} = 0$$

and C, E obey

$$\begin{split} C^{\mu}_{ij} &= -g^{\mu\alpha}h_{mj}E^m_{i\alpha},\\ \partial_{\alpha}h_{ij} + h_{mj}E^m_{i\alpha} + h_{im}E^m_{j\alpha} &= 0,\\ 2\imath h_{pm}E^m_{n\alpha}\gamma^p_{ijn} + (h_{jm} - h_{mj})E^m_{i\alpha} &= 0. \end{split}$$

The inverse of the metric (,) has the form

$$(dx^{\mu}, dx^{\nu}) = g^{\mu\nu}, \quad (s^i, s^j) = h^{ij}, \quad (dx^{\mu}, s^i) = 0, \quad (s^i, dx^{\mu}) = 0$$

where $g^{\mu\nu}, h^{ij}$ are the inverse of $g_{\mu\nu}, h_{ij}$

The Laplacian on $f = f_a(x,t)\sigma^a$ is

$$\Delta f = (,)\nabla df = \Delta_{LB}f + \Delta_{M_2}f - g^{\mu\alpha}h_{mj}E^m_{i\alpha}(\partial_{\mu}f_a)\sigma^a h^{ij}$$

where Δ_{LB} is the usual GR Laplacian on each component f_a and

$$\Delta_{M_2} f = h^{ij} (f_i \sigma^j - \epsilon_{kcb} f_c \sigma^b \gamma_{ij}^k)$$

is the Laplacian on $M_2(\mathbb{C})$ at each x, t.

If $h_{ij}s^i \otimes s^j = h(x,t)(-s^1 \otimes s^1 + s^2 \otimes s^2)$, then

$$\Delta f(x,t) = \left(\Delta_{LB} f_a(x,t)\right) \sigma^a + \frac{1}{h(x,t)} \left(-f_1(x,t)\sigma^1 + f_2(x,t)\sigma^2 - g^{\mu\nu}(\partial_\nu h(x,t)\partial_\mu f_a(x,t))\sigma^a\right).$$

Especially, if h(x,t) is constant in spacetime and we let $h^{-1}(x,t) = \delta_m$ then the KG equation operator reduces to

$$(\Delta + m^2)f = (\Delta_{LB}f_a)\sigma^a + m^2f_0 + (m^2 - \delta_m)f_1(x,t)\sigma^1 + (m^2 + \delta_m)f_2(x,t)\sigma^2 + m^2f_3\sigma^3,$$

This implies the field f usually regarded as one component field in classical spacetime now can be regarded as quadruplet of fields having different masses.

Proposition:

If the $h_{ij}s^i \otimes s^j = h(x,t)(-s^1 \otimes s^1 + s^2 \otimes s^2)$ and we let $h(x,t) = e^{\frac{2}{\sqrt{3-3\rho^2}}\phi(x,t)}$ then

$$S = -\frac{1}{2}S_M + (\nabla^{\mu}\phi)(\nabla_{\mu}\phi) + \frac{2}{\sqrt{3-3\rho^2}}\nabla^{\mu}\nabla_{\mu}\phi$$

where $\phi(x,t)$ is real scalar field and ρ is an imaginary parameter.

From here we can see that this result has the scalar field which also appears in KK theory.

Thank you

