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Main goal

From the "usual" notion of Spectral Triple + Connes’s spectral distance formula

→ adaptation to:

• Spectral Triple corresponding to Lorentzian signature

• Spectral characterisation of Causality

• Spectral characterisation of distance in Lorentzian signature

→ application to:

• Almost-commutative spaces (Kaluza-Klein like)

• "Quantum" deformation spaces

– Moyal spacetime
– Kappa-Minkowski spacetime



Lorentzian Spectral Triple

Which definition are we going to use?

• A Hilbert space H
• A non-unital pre-C∗-algebra A with a representation on H as bounded operators

• A preferred unitization Ã of A which is a pre-C∗-algebra and such that A is an ideal of Ã
• An operator D densely defined on H such that

– a(1 + ⟨D⟩2)−1
2 is compact ∀a ∈ A, with ⟨D⟩2 = 1

2
(DD∗ +D∗D)

– [D, a] is bounded ∀a ∈ Ã
• A bounded operator J with J 2 = 1, J ∗ = J , [J , a] = 0,

– D∗ = −JDJ
– J = −N [D, T ] forN ∈ Ã,N > 0 and some (possibly unbounded) self-adjoint operator
T such that (1 + T 2)

−1
2 ∈ Ã



The operator J is called the fundamental symmetry. Its role is to turn the positive definite inner
product of the Hilbert space ⟨·, ·⟩ into an indefinite inner product (·, ·) = ⟨·,J ·⟩ (Krein space) on
which the Dirac operator D is (skew)-selfadjoint.

For a general J , the signature can correspond to a pseudo-Riemannian one. We restrict to
Lorentzian signatures by requiring that J = −N [D, T ] which corresponds in the commutative
case to J = iNc(dT ) = iγ0 with a global time function T and lapse function N .

Globally hyperbolic ⊆ "J = −N [D, T ]" ⊆ "stably causal"
Lorentzian manifolds



From Riemannian distance to causality
"Riemannian" distance formula:

d(p, q) = sup
f∈C(M)

{|f (q)− f (p)| : ∥[D, f ]∥ ≤ 1}

→ based on a specific set of functions, defined using [D, f ]

In Lorentzian geometry (at least stably causal spaces), the causality relation (p ⪯ q if and only
if there is a future directed causal curve from p to q) can be completely recovered using the set
(cone) of causal functions C, which are the real-valued functions non-decreasing along every future
directed causal curve :

∀p, q ∈ M, p ⪯ q ⇐⇒ ∀f ∈ C, f (p) ≤ f (q)

This set can be determined using spectral properties of the Dirac operator and the fundamental
symmetry:

f ∈ C ⇐⇒ ∀ϕ ∈ H, ⟨ϕ,J [D, f ]ϕ⟩ ≤ 0.

[Franco & Eckstein, Class. Quantum Grav. 2013]



How to derive a causal structure in NCG

1. Define the following subset among the (unitized) C∗-algebra (causal cone):

C =
{
a ∈ Ã | a = a∗,∀ϕ ∈ H ⟨ϕ,J [D, a]ϕ⟩ ≤ 0

}
2. Check the condition (to guarantee that all states can be separated, Stone–Weierstrass):

spanC(C) = Ã

3. Define a causal relation (partial order) on P (Ã) (can be extended on S(Ã)) by

∀χ, ξ ∈ P (Ã), χ ⪯ ξ ⇐⇒ ∀a ∈ C, χ(a) ≤ ξ(a)

• get sufficient condition → transform the constraint on C between states (very difficult)
• get necessary condition → find a specific conter-exemple a ∈ C for each forbidden relation

(even more difficult)



From causality to Lorentzian distance

• 1998, Parfionov & Zapatrin: first idea of dual formula (infimum instead of supremum)

• 2002, Moretti: using specific local causal functions (local "steep" functions) constrained by the
gradient ∇f (+ first noncommutative attempt using Laplace-Beltrami-d’Alembert operator)

• 2010⋆, Franco: global formulation using global "steep" functions constrained by gradient ∇f
(using non-smooth functions for the proof, and only for globally hyperbolic spacetimes)

• 2013, Franco & Eckstein: noncommutative formulation of the gradient ∇f condition (using
smooth functions for the proof) and conjecture of the final formula

• 2014, Rennie & Whale: extension of the result ⋆ to non globally hyperbolic spacetimes

• 2017, Minguzzi: "smooth" proof of the result ⋆ leading to a complete proof

• 2018, Franco: final formulation for even and odd dimensions



Lorentzian distance formula

If (M, g) is a n-dimensional spin Lorentzian manifold which is either

• globally hyperbolic

• or stably causal such that the Lorentzian distance d is continuous and finite,

then for all p, q ∈ M:

d(p, q) = inf
f∈C1(M,R)

{max {0, f (q)− f (p)} : g(∇f,∇f ) ≤ −1 } .

This formula can be generalized for even Lorentian spectral triples (with the chirality operator χ):

d(p, q) = inf
f∈A,f=f∗

{max {0, f (q)− f (p)} : ∀ϕ ∈ H, ⟨ϕ,J ([D, f ] + iχ)ϕ⟩ ≤ 0 } ,

and odd Lorentian spectral triples:

d(p, q) = inf
f∈A,f=f∗

{max {0, f (q)− f (p)} : ∀ϕ ∈ H, ⟨ϕ,J ([D, f ]± 1)ϕ⟩ ≤ 0 } .

[Franco, J. Phys.: Conf. Ser. 2018 and references therein]



"Feasible" applications of causality (and metric): almost-commutative spacetimes

Set of pure states : "Kaluza-Klein" product between usual spacetime and discrete space.

Example 1: C∞(M)×M2(C)→ spacetime × S2 sphere :

Complete causal structure : 2 pure states defines by (p, θξ) and (q, θφ) on a same "parallel of
latitude" are casually related if and only if:

|θφ − θξ|
l(γ)

≤ |d1 − d2| (difference of internal Dirac eigenvalues)



Example 2: C∞(M)× C⊕ C→ spacetime × two points :

Complete causal structure : Two points p and q′ on separated sheets are causally related with
p ⪯ q′ if and only if they are causally related if considered on the same sheet and l(γ) ≥ π

2|m|
(with 1

|m| corresponding to Connes’ distance between the two sheets) [Franco & Eckstein: JGP 2015]

• First physical application: This limit corresponds exactly to the Zitterbewegung phenomera
(fast oscillation of a free electron between two states) [Eckstein, Franco & Miller: PRD 2017]

• Second physical application: The Lorentzian distance formula reproduces the energy-
momentum dispersion relationE2 = (pc)2 +

(
mc2

)2
[Watcharangkool & Sakellariadou: PRD 2017]



"Less Feasible" application of causality (1) : 2-dim Moyal Minkowski spacetime

Moyal Lorentzian spectral triple (A, Ã,H, D,J ):

• H = L2(R1+1)⊗ C2 with the usual positive definite inner product

• A is the space of Schwartz functions S(R1,1) with the "Weyl-Moyal" ⋆ product defined as

(f ⋆ g)(x) :=
1

(πθ)2

∫
d2y d2z f (x + y)g(x + z)e−2i yµΘ−1

µν z
ν

,

with Θµν := θ ( 0 1
−1 0 ), θ > 0

• The preferred unitization Ã = (B, ⋆) is the unital algebra of smooth functions which are
bounded together with all derivatives

• D = −i∂µ ⊗ γµ is the flat Dirac operator on R1,1 where γ0 = iσ1, γ1 = σ2 are the flat Dirac
matrices

• J = iγ0 is the fundamental symmetry



Causal structure between coherent states:

Functions and states on Moyal can be easily described using as orthonormal basis the Wigner
eigenfunctions of the two-dimensional harmonic oscillator a =

∑
mn amnfmn where

fmn =
1

(θm+nm!n!)1/2
z̄⋆m ⋆ f00 ⋆ z

⋆n with z =
x0 + ix1√

2
, f00 = 2e−

x20+x21
θ

The pure states are all the normalized vector states on the matrix representation:
ωψ(a) = 2πθ

∑
m,n ψ

∗
mamnψn, 2πθ

∑
m |ψm|2 = 1

The coherent states of A are the vector states defined, for any κ ∈ C, by:

φm =
1√
2πθ

e−
|κ|2
2θ

κm√
m!θm

The coherent states correspond to the possible translations under the complex scalar
√
2κ of the

ground state |0>, using κ ∈ C ∼= R1,1.

They are the states that minimize the uncertainty equally distributed in position and momentum.
The classical limit of the coherent states (θ → 0) corresponds to the usual pure states on R1,1.



Let us suppose that two coherent states ωξ, ωφ correspond to the complex scalars κ1, κ2 ∈ C.
Those coherent states are causally related, with ωξ ⪯ ωφ, iff ∆κ = κ2 − κ1 is inside the convex
cone of C defined by λ = 1+i√

2
and λ̄ = 1−i√

2
(i.e. the argument of ∆κ is within the interval [−π

4
, π
4
]).

[Franco & Wallet, Contemp.Math. 2016]

This causal structure is similar to the one in Minkowski, except that we do not consider points but
translations of Gaussian functions, so non-local states! In such a case, we can define a kind of
"time" as translations under positive real scalars κ.



Causal structure between generalized coherent states:

Can we have any causal relation between pure states of different energy level (the basic eigenstates
of the harmonic oscillator) |0>, |1>, |2>, etc?

Currently we only have a sufficient condition: An eigenstate can "jump" from one energy state to
another if there is at the same time a sufficient translation in the direction of the "time":

∆κ ∈ R such that ∆κ ≥ π

2

√
θ

2

1√
n + 1

=⇒ |n> ⪯ α∆κ|n+1> and |n+1> ⪯ α∆κ|n>

where α∆κ|n> is the translation of the eigenstate |n> under ∆κ (using C ∼= R1,1).

This model represents waves packets under
causal translations with a lower bound on
time in order to change the energy level.



"Less Feasible" application of causality (2) : 2-dim κ-Minkowski spacetime

Too lazy to re-explain in detail κ-Minkowski (cf. Fedele Lizzi’s talk. . . )

Exploration using a first choice of Dirac operator and states [Franco & Wallet, JPhysA, to appear] but
other choices are possible, leading to similar results [Franco, Hersent, Maris & Wallet, preprint soon].

We don’t currently have a necessary-sufficient condition for this space, only separated necessary
or sufficient conditions.

Hibert space: H = H+ ⊕H0 ⊕H−, H+,0,− = (L2(R), ds)⊗ C2

linked to the unitary irreducible representations π± and the trivial 1-dimensional one π0.

Dirac operator: obtained from natural one-parameter groups of automorphisms of C∗(G)
(cf. Iochum, Masson, Sitarz, BCP 2012) :

D = −γk∂k ⊗ 13 = −i
(
0 ∂−
∂+ 0

)
⊗ 13 with ∂± = ∂0 ± x1∂1, J = iγ0 ⊗ 13.



Which pure states ?

An interesting set of pure states can be determined by a family of (cyclic) vector states:

φΦ
±(f ) = ⟨Φ, π±(f )Φ⟩

for any Φ ∈ L2(R) with ||Φ|| = 1 (this is only a subset of pure states but could give enough
information due to Gel’fand–Raikov theorem).

Some explicit formulas:

• Representations: (πν(f )ϕ)(s) = 1
2π

∫
dudv f (v, νe−s) e−iv(u−s) ϕ(u), ν = +, 0,−

• States: φΦ
±(f ) =

1
2π

∫∫∫
dsdudv f (v,±e−s) e−iv(u−s)Φ(s)Φ(u)

• "Rough" causality relation: φΦ1
± ⪯ φΦ2

± ⇐⇒∫∫∫
dsdudv f (v,±e−s) e−iv(u−s)

[
Φ2(s)Φ2(u)− Φ1(s)Φ1(u)

]
≥ 0, ∀f ∈ C

where f ∈ C ⇐⇒
⊕

ν=+,0,−

(
πν(∂+f ) 0

0 πν(∂−f )

)
≥ 0



A sufficient causality condition: a "phase-momentum transport"

We get a sufficient condition for a causal evolution between two states φΦ1
+ ⪯ φΦ2

+ represented
by the continuous evolution of Φt : Φ1 ⇝ Φ2 if there exists ∀t a function ψt ∈ C∞

c (R) and
αt ∈ [−1, 1] such that

d

dt

(
Φt(s)Φt(u)

)
= i(u− s)ψt(s)ψt(u) + αt

(
ψ

′
t(s)ψt(u) + ψt(s)ψ

′
t(u)

)
Particular solution (ψt = Φt):

d

dt
Φt(u)− αtΦ

′
t(u) = iuΦt(u).

For αt = α constant, this equation is a transport equation whose general solution is

Φt(u) = Φ0(u + αt)eitu, α ∈ [−1, 1].

This evolution represents a αt translation at the level of Φt simultaneously to a t translation at the
level of FΦt, hence can be interpreted as a "phase-momentum transport".



A necessary causality condition: a "quantum causality constraint"

On the specific solution Φt(u) = Φ0(u + αt)eitu, we have that |α| > 1 is excluded.

On two generic states φΦ
+ ⪯ φξ+, we can extract the following necessary constraint:

1
2π

∫
dv v|Fξ(v)|2 − 1

2π

∫
dv v|FΦ(v)|2 ≥

∣∣∣∣∫ ds s|ξ(s)|2 −
∫

ds s|Φ(s)|2
∣∣∣∣

We can interpret this as a constraint on the expectation value of some quantum operators
(position/momentum) :

⟨ξ|P |ξ⟩ − ⟨Φ|P |Φ⟩ ≥ | ⟨ξ|X|ξ⟩ − ⟨Φ|X|Φ⟩|

⇐⇒ δ ⟨P ⟩ ≥ |δ ⟨X⟩|

∼ quantum analogy to the classical speed of light limit δt ≥ |δx|.



Which works for the future?

• Find "equivalent" sufficient/necessary conditions on Moyal/kappa

• Look at the Lorentzian distance more precisely

• If not feasible analytically, why not trying to compute those relations/metric using numerical
methods (Monte-Carlo-like simulation to explore the compete causal structure) ?

Thank you for your attention!


