Causality in noncommutative deformation spacetimes

Nicolas Franco

Namur Institute for Complex Systems (naXys) & Department of Mathematics University of Namur

Noncommutative geometry: metric and spectral aspects - Krakow, September 29, 2022

From the "usual" notion of Spectral Triple + Connes's spectral distance formula

- \rightarrow adaptation to:
 - Spectral Triple corresponding to Lorentzian signature
 - Spectral characterisation of Causality
 - Spectral characterisation of distance in Lorentzian signature

 \rightarrow application to:

- Almost-commutative spaces (Kaluza-Klein like)
- "Quantum" deformation spaces
 - Moyal spacetime
 - Kappa-Minkowski spacetime

Lorentzian Spectral Triple

Which definition are we going to use?

- A Hilbert space \mathcal{H}
- A non-unital pre- C^* -algebra \mathcal{A} with a representation on \mathcal{H} as bounded operators
- A preferred unitization $\widetilde{\mathcal{A}}$ of \mathcal{A} which is a pre- C^* -algebra and such that \mathcal{A} is an ideal of $\widetilde{\mathcal{A}}$
- An operator D densely defined on ${\mathcal H}$ such that
 - $a(1 + \langle D \rangle^2)^{-\frac{1}{2}}$ is compact $\forall a \in \mathcal{A}$, with $\langle D \rangle^2 = \frac{1}{2}(DD^* + D^*D)$
 - [D, a] is bounded $\forall a \in \widetilde{\mathcal{A}}$
- A bounded operator \mathcal{J} with $\mathcal{J}^2 = 1$, $\mathcal{J}^* = \mathcal{J}$, $[\mathcal{J}, a] = 0$,
 - $D^* = -\mathcal{J}D\mathcal{J}$ - $\mathcal{J} = -N[D, \mathcal{T}]$ for $N \in \widetilde{\mathcal{A}}$, N > 0 and some (possibly unbounded) self-adjoint operator \mathcal{T} such that $(1 + \mathcal{T}^2)^{-\frac{1}{2}} \in \widetilde{\mathcal{A}}$

The operator \mathcal{J} is called the *fundamental symmetry*. Its role is to turn the positive definite inner product of the Hilbert space $\langle \cdot, \cdot \rangle$ into an indefinite inner product $(\cdot, \cdot) = \langle \cdot, \mathcal{J} \cdot \rangle$ (Krein space) on which the Dirac operator D is (skew)-selfadjoint.

For a general \mathcal{J} , the signature can correspond to a pseudo-Riemannian one. We restrict to Lorentzian signatures by requiring that $\mathcal{J} = -N[D, \mathcal{T}]$ which corresponds in the commutative case to $\mathcal{J} = iNc(d\mathcal{T}) = i\gamma^0$ with a global time function \mathcal{T} and lapse function N.

Globally hyperbolic $\subseteq "\mathcal{J} = -N[D, \mathcal{T}]" \subseteq$ "stably causal" Lorentzian manifolds

From Riemannian distance to causality

"Riemannian" distance formula:

$$d(p,q) = \sup_{f \in C(\mathcal{M})} \left\{ |f(q) - f(p)| \ : \|[D,f]\| \le 1 \right\}$$

 \rightarrow based on a specific set of functions, defined using [D, f]

In Lorentzian geometry (at least stably causal spaces), the causality relation ($p \leq q$ if and only if there is a future directed causal curve from p to q) can be completely recovered using the set (cone) of causal functions C, which are the real-valued functions non-decreasing along every future directed causal curve :

$$\forall p,q \in \mathcal{M}, \quad p \preceq q \quad \iff \quad \forall f \in \mathcal{C}, \ f(p) \leq f(q)$$

This set can be determined using spectral properties of the Dirac operator and the fundamental symmetry:

$$f \in \mathcal{C} \iff \forall \phi \in \mathcal{H}, \quad \langle \phi, \mathcal{J}[D, f] \phi \rangle \leq 0.$$

[Franco & Eckstein, Class. Quantum Grav. 2013]

How to derive a causal structure in NCG

1. Define the following subset among the (unitized) C^* -algebra (causal cone):

$$\mathcal{C} = \left\{ a \in \widetilde{\mathcal{A}} \mid a = a^*, \forall \phi \in \mathcal{H} \left\langle \phi, \mathcal{J}[D, a] \phi \right\rangle \le 0 \right\}$$

2. Check the condition (to guarantee that all states can be separated, Stone–Weierstrass):

$$\overline{\operatorname{span}_{\mathbb{C}}(\mathcal{C})} = \overline{\hat{\mathcal{A}}}$$

3. Define a causal relation (partial order) on $P(\widetilde{\mathcal{A}})$ (can be extended on $S(\widetilde{\mathcal{A}})$) by

$$\forall \chi, \xi \in P(\widetilde{\mathcal{A}}), \quad \chi \preceq \xi \quad \iff \quad \forall a \in \mathcal{C}, \ \chi(a) \le \xi(a)$$

- get sufficient condition \rightarrow transform the constraint on C between states (very difficult)
- get necessary condition \rightarrow find a specific conter-exemple $a \in C$ for each forbidden relation (even more difficult)

From causality to Lorentzian distance

- 1998, Parfionov & Zapatrin: first idea of dual formula (infimum instead of supremum)
- 2002, Moretti: using specific local causal functions (local "steep" functions) constrained by the gradient ∇f (+ first noncommutative attempt using Laplace-Beltrami-d'Alembert operator)
- 2010^{*}, Franco: global formulation using global "steep" functions constrained by gradient ∇f (using non-smooth functions for the proof, and only for globally hyperbolic spacetimes)
- 2013, Franco & Eckstein: noncommutative formulation of the gradient ∇f condition (using smooth functions for the proof) and conjecture of the final formula
- 2014, Rennie & Whale: extension of the result \star to non globally hyperbolic spacetimes
- 2017, Minguzzi: "smooth" proof of the result \star leading to a complete proof
- 2018, Franco: final formulation for even and odd dimensions

Lorentzian distance formula

If (\mathcal{M},g) is a n-dimensional spin Lorentzian manifold which is either

- globally hyperbolic
- \bullet or stably causal such that the Lorentzian distance d is continuous and finite,

then for all $p, q \in \mathcal{M}$:

$$d(p,q) \ = \ \inf_{f \in C^1(\mathcal{M},\mathbb{R})} \left\{ \ \max\left\{ 0, f(q) - f(p) \right\} \ : \ g(\nabla f, \nabla f) \le -1 \ \right\}.$$

This formula can be generalized for even Lorentian spectral triples (with the chirality operator χ):

$$d(p,q) = \inf_{f \in \mathcal{A}, f=f^*} \left\{ \max \left\{ 0, f(q) - f(p) \right\} : \forall \phi \in \mathcal{H}, \langle \phi, \mathcal{J}([D,f] + i\chi)\phi \rangle \le 0 \right\},$$

and odd Lorentian spectral triples:

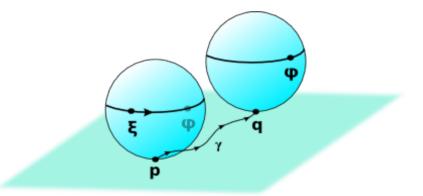
$$d(p,q) = \inf_{f \in \mathcal{A}, f = f^*} \left\{ \max \left\{ 0, f(q) - f(p) \right\} : \forall \phi \in \mathcal{H}, \langle \phi, \mathcal{J}([D,f] \pm 1) \phi \rangle \le 0 \right\}.$$

[Franco, J. Phys.: Conf. Ser. 2018 and references therein]

"Feasible" applications of causality (and metric): almost-commutative spacetimes

Set of pure states : "Kaluza-Klein" product between usual spacetime and discrete space.

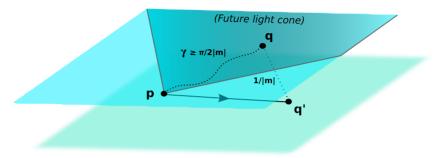
Example 1: $C^{\infty}(\mathcal{M}) \times M_2(\mathbb{C}) \rightarrow$ spacetime $\times S^2$ sphere :



Complete causal structure : 2 pure states defines by (p, θ_{ξ}) and (q, θ_{φ}) on a same "parallel of latitude" are casually related if and only if:

$$\frac{|\theta_{\varphi} - \theta_{\xi}|}{l(\gamma)} \le |d_1 - d_2| \quad \text{(difference of internal Dirac eigenvalues)}$$

Example 2: $C^{\infty}(\mathcal{M}) \times \mathbb{C} \oplus \mathbb{C} \rightarrow$ spacetime \times two points :



Complete causal structure : Two points p and q' on separated sheets are causally related with $p \leq q'$ if and only if they are causally related if considered on the same sheet and $l(\gamma) \geq \frac{\pi}{2|m|}$ (with $\frac{1}{|m|}$ corresponding to Connes' distance between the two sheets) [Franco & Eckstein: JGP 2015]

- First physical application: This limit corresponds exactly to the Zitterbewegung phenomera (fast oscillation of a free electron between two states) [Eckstein, Franco & Miller: PRD 2017]
- Second physical application: The Lorentzian distance formula reproduces the energymomentum dispersion relation $E^2 = (pc)^2 + (mc^2)^2$ [Watcharangkool & Sakellariadou: PRD 2017]

"Less Feasible" application of causality (1) : 2-dim Moyal Minkowski spacetime Moyal Lorentzian spectral triple $(\mathcal{A}, \widetilde{\mathcal{A}}, \mathcal{H}, D, \mathcal{J})$:

- $\mathcal{H} = L^2(\mathbb{R}^{1+1}) \otimes \mathbb{C}^2$ with the usual positive definite inner product
- \mathcal{A} is the space of Schwartz functions $\mathcal{S}(\mathbb{R}^{1,1})$ with the "Weyl-Moyal" \star product defined as

$$(f \star g)(x) := \frac{1}{(\pi \theta)^2} \int d^2 y \, d^2 z \, f(x+y) g(x+z) e^{-2i \, y^\mu \, \Theta_{\mu\nu}^{-1} z^\nu},$$

with $\Theta_{\mu\nu} := \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \theta > 0$

- The preferred unitization $\widetilde{\mathcal{A}} = (\mathcal{B}, \star)$ is the unital algebra of smooth functions which are bounded together with all derivatives
- $D = -i\partial_{\mu} \otimes \gamma^{\mu}$ is the flat Dirac operator on $\mathbb{R}^{1,1}$ where $\gamma^0 = i\sigma^1$, $\gamma^1 = \sigma^2$ are the flat Dirac matrices
- $\mathcal{J} = i\gamma^0$ is the fundamental symmetry

Causal structure between coherent states:

Functions and states on Moyal can be easily described using as orthonormal basis the Wigner eigenfunctions of the two-dimensional harmonic oscillator $a = \sum_{mn} a_{mn} f_{mn}$ where

$$f_{mn} = \frac{1}{(\theta^{m+n}m!n!)^{1/2}} \bar{z}^{\star m} \star f_{00} \star z^{\star n} \text{ with } z = \frac{x_0 + ix_1}{\sqrt{2}}, f_{00} = 2e^{-\frac{x_0^2 + x_1^2}{\theta}}$$

The pure states are all the normalized vector states on the matrix representation: $\omega_{\psi}(a) = 2\pi\theta \sum_{m,n} \psi_m^* a_{mn} \psi_n, \ 2\pi\theta \sum_m |\psi_m|^2 = 1$

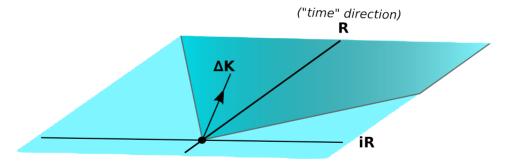
The coherent states of \mathcal{A} are the vector states defined, for any $\kappa \in \mathbb{C}$, by:

$$\varphi_m = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{|\kappa|^2}{2\theta}} \frac{\kappa^m}{\sqrt{m!\theta^m}}$$

The coherent states correspond to the possible translations under the complex scalar $\sqrt{2\kappa}$ of the ground state $|0\rangle$, using $\kappa \in \mathbb{C} \cong \mathbb{R}^{1,1}$.

They are the states that minimize the uncertainty equally distributed in position and momentum. The classical limit of the coherent states ($\theta \to 0$) corresponds to the usual pure states on $\mathbb{R}^{1,1}$.

Let us suppose that two coherent states $\omega_{\xi}, \omega_{\varphi}$ correspond to the complex scalars $\kappa_1, \kappa_2 \in \mathbb{C}$. Those coherent states are causally related, with $\omega_{\xi} \leq \omega_{\varphi}$, iff $\Delta \kappa = \kappa_2 - \kappa_1$ is inside the convex cone of \mathbb{C} defined by $\lambda = \frac{1+i}{\sqrt{2}}$ and $\bar{\lambda} = \frac{1-i}{\sqrt{2}}$ (i.e. the argument of $\Delta \kappa$ is within the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$). [Franco & Wallet, Contemp.Math. 2016]



This causal structure is similar to the one in Minkowski, except that we do not consider points but translations of Gaussian functions, so non-local states! In such a case, we can define a kind of "time" as translations under positive real scalars κ .

Causal structure between generalized coherent states:

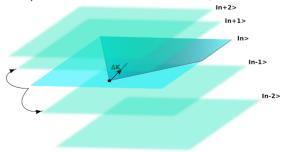
Can we have any causal relation between pure states of different energy level (the basic eigenstates of the harmonic oscillator) |0>, |1>, |2>, etc?

Currently we only have a sufficient condition: An eigenstate can "jump" from one energy state to another if there is at the same time a sufficient translation in the direction of the "time":

$$\Delta \kappa \in \mathbb{R} \text{ such that } \Delta \kappa \geq \frac{\pi}{2} \sqrt{\frac{\theta}{2}} \frac{1}{\sqrt{n+1}} \quad \Longrightarrow \quad |n \rangle \preceq \alpha_{\Delta \kappa} |n+1 \rangle \text{ and } |n+1 \rangle \preceq \alpha_{\Delta \kappa} |n \rangle$$

where $\alpha_{\Delta\kappa}|n\rangle$ is the translation of the eigenstate $|n\rangle$ under $\Delta\kappa$ (using $\mathbb{C} \cong \mathbb{R}^{1,1}$).

This model represents waves packets under causal translations with a lower bound on time in order to change the energy level.



"Less Feasible" application of causality (2) : 2-dim κ -Minkowski spacetime

Too lazy to re-explain in detail κ -Minkowski (cf. Fedele Lizzi's talk...)

Exploration using a first choice of Dirac operator and states [Franco & Wallet, JPhysA, *to appear*] but other choices are possible, leading to similar results [Franco, Hersent, Maris & Wallet, *preprint soon*].

We don't currently have a necessary-sufficient condition for this space, only separated necessary or sufficient conditions.

Hibert space: $\mathbb{H} = \mathcal{H}_+ \oplus \mathcal{H}_0 \oplus \mathcal{H}_-, \quad \mathcal{H}_{+,0,-} = (L^2(\mathbb{R}), ds) \otimes \mathbb{C}^2$ linked to the unitary irreducible representations π_{\pm} and the trivial 1-dimensional one π_0 .

Dirac operator: obtained from natural one-parameter groups of automorphisms of $C^*(\mathcal{G})$ (cf. Iochum, Masson, Sitarz, BCP 2012) :

$$\mathcal{D} = -\gamma^k \partial_k \otimes \mathbf{1}_3 = -i \begin{pmatrix} 0 & \partial_- \\ \partial_+ & 0 \end{pmatrix} \otimes \mathbf{1}_3 \quad \text{with } \partial_\pm = \partial_0 \pm x_1 \partial_1, \qquad \mathcal{J} = i\gamma^0 \otimes \mathbf{1}_3.$$

Which pure states ?

An interesting set of pure states can be determined by a family of (cyclic) vector states:

$$\varphi^{\Phi}_{\pm}(f) = \langle \Phi, \pi_{\pm}(f)\Phi \rangle$$

for any $\Phi \in L^2(\mathbb{R})$ with $||\Phi|| = 1$ (this is only a subset of pure states but could give enough information due to Gel'fand–Raikov theorem).

Some explicit formulas:

- Representations: $(\pi_{\nu}(f)\phi)(s) = \frac{1}{2\pi}\int \mathrm{d}u\mathrm{d}v \ f(v,\nu e^{-s}) \ e^{-iv(u-s)}\phi(u), \quad \nu = +, 0, -iv(u-s)\phi(u), \quad \mu = +, 0, -iv(u-s)\phi(u), \quad$
- States: $\varphi^{\Phi}_{\pm}(f) = \frac{1}{2\pi} \iiint \mathrm{d}s \mathrm{d}u \mathrm{d}v \ f(v, \pm e^{-s}) \ e^{-iv(u-s)} \ \overline{\Phi}(s) \Phi(u)$

A sufficient causality condition: a "phase-momentum transport"

We get a sufficient condition for a causal evolution between two states $\varphi_{+}^{\Phi_1} \preceq \varphi_{+}^{\Phi_2}$ represented by the continuous evolution of $\Phi_t : \Phi_1 \rightsquigarrow \Phi_2$ if there exists $\forall t$ a function $\psi_t \in \mathcal{C}_c^{\infty}(\mathbb{R})$ and $\alpha_t \in [-1, 1]$ such that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\overline{\Phi}_t(s) \Phi_t(u) \right) = i(u-s) \overline{\psi}_t(s) \psi_t(u) + \alpha_t \left(\overline{\psi}_t'(s) \psi_t(u) + \overline{\psi}_t(s) \psi_t'(u) \right)$$

Particular solution ($\psi_t = \Phi_t$):

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi_t(u) - \alpha_t \Phi_t'(u) = iu\Phi_t(u).$$

For $\alpha_t = \alpha$ constant, this equation is a transport equation whose general solution is

$$\Phi_t(u) = \Phi_0(u + \alpha t)e^{itu}, \qquad \alpha \in [-1, 1].$$

This evolution represents a αt translation at the level of Φ_t simultaneously to a t translation at the level of $\mathcal{F}\Phi_t$, hence can be interpreted as a "phase-momentum transport".

A necessary causality condition: a "quantum causality constraint"

On the specific solution $\Phi_t(u) = \Phi_0(u + \alpha t)e^{itu}$, we have that $|\alpha| > 1$ is excluded.

On two generic states $\varphi_+^{\Phi} \preceq \varphi_+^{\xi}$, we can extract the following necessary constraint:

$$\frac{1}{2\pi} \int \mathrm{d}v \; v |\mathcal{F}\xi(v)|^2 - \frac{1}{2\pi} \int \mathrm{d}v \; v |\mathcal{F}\Phi(v)|^2 \ge \left| \int \mathrm{d}s \; s |\xi(s)|^2 - \int \mathrm{d}s \; s |\Phi(s)|^2 \right|$$

We can interpret this as a constraint on the expectation value of some quantum operators (position/momentum) :

$$\begin{aligned} \langle \xi | P | \xi \rangle - \langle \Phi | P | \Phi \rangle &\geq |\langle \xi | X | \xi \rangle - \langle \Phi | X | \Phi \rangle | \\ \iff \delta \langle P \rangle &\geq |\delta \langle X \rangle | \end{aligned}$$

~ quantum analogy to the classical speed of light limit $\delta t \geq |\delta x|$.

Which works for the future?

- Find "equivalent" sufficient/necessary conditions on Moyal/kappa
- Look at the Lorentzian distance more precisely
- If not feasible analytically, why not trying to compute those relations/metric using numerical methods (Monte-Carlo-like simulation to explore the compete causal structure) ?

Thank you for your attention!