Spectral Metric and Einstein Functionals
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We define bilinear functionals of vector fields and differential forms,
the densities of which yield the metric and Einstein tensors on even-
dimensional Riemannian manifolds.

We generalise these concepts in non-commutative geometry and,
in particular, we prove that for the conformally rescaled geometry
of the noncommutative two-torus the Einstein functional vanishes.
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Spectral Geometry:

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects

on manifolds such as volume, scalar curvature, and other scalar
combinations of curvature tensors and their derivatives

is prima facie the small-time asymptotic expansion of the trace of
heat kernel

—tA > n—d
Tre = E t 2 ay.
n=0

Here the scalar laplacian A for a given Riemannian metric g reads
in local coordinates

A= —delt@aa( det(9)g" ) (1)

and a, = an(A) = an(R,0R,...).
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Geometry from residues:

Using the Mellin transform the coefficients of this expansion can be
transmuted into some values or residues of the zeta function of A.
In turn, some can be expressed using the Wodzicki residue W

W(P) := /M (/|§|:1 tro_n(P)(x,§) V5> d"z. (2)

Here we focus on closed oriented M of even dimension n = 2m. a

Then,
W(A™™) = vp—1 vol(M),

where
_ 2
V1 = vol (S = T(m)’
is the volume of the unit sphere S"~! in R™.
In the localized form (as a functional of f € C*(M))

v(f) = W(fA™™) = vp1 /Mf voly.

% This is related to the asymptotic growth of eigenvalues of A;

clear e.g. from the Connes "trace thm.” that here W= Tr". «p 223



Scalar curvature

A. Connes divulged in 90s a startling result, confirmed by Kastler
and by Kalau-Walze:

-2
W(A*m“) = n12 vn_1/ R(g) voly, (3)
M

which, up to a constant, is a Riemannian analogue of the
Einstein-Hilbert action functional of general relativity in vaccum.
Here R = R(g) is the scalar curvature, that is the g-trace
R=g'*Rj, of the Ricci tensor where g/* gy, = 47.

A localised form of (3) is a functional on C*°(M)

n—2
12

R(f) = WA =22 /MfR(g)volg- (4)

% We have uncovered other two unforeseen functionals of a pair
of vector fields V' and W on M, viewed as derivations of C*°(M):
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New functionals

Def/Thm:

The functional

g2 (V, W) := W(VWA ™)
is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V, W

Un—1
n

g (V. W) = -

/ g(V, W) wol,,.
M
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New functionals
Def/Thm: Metric functional

The functional
g2 (V, W) := W(VWA™™1)

is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V, W

Un—1
n

g2 (VW) = —

/ g(V, W) woly,.
M

Def/Thm:

| A\

The functional
GA(V,W) := W(VWA™), (5)

is a bilinear, symmetric map, whose density is proportional to the
Einstein tensor G:= Ric— %R(g)g evaluated on V, W

Un

—1
A /MG(V,W)volg.
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New functionals
Def/Thm: Metric functional

The functional
g2 (V, W) := W(VWA™™1)

is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V, W

Un—1
n

g2 (VW) = —

/ g(V, W) woly,.
M

Def/Thm: Einstein functional

| A\

The functional
GA(V,W) :=W(VIWA™™), (6)

is a bilinear, symmetric map, whose density is proportional to the
Einstein tensor G:= Ric— 1R(g)g evaluated on V,W

GAWV. W) =22 | v, W) wol,.
6 Ju g
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Algebra of symbols of pseudodifferential operators.

Let P and ) be pseudodifferential operators with symbols:

o(P)(x,8) =Y o(P)ax)®,  o(Q)(z,8) =Y o(Q)s(x)E”.

a B
(7)
The composition rule for the symbol of their product is
—_)8l
o(PQ)(w.6) = 3 S0 (P 020w 8). (@)

B

where dg denotes the partial derivative wrt. 8.
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Proof hint 2

Taylor expansion in the normal coordinates:
the metric

1
Gab = 5ab - gRacbdxcxd + 0(X2)7 (9)

1
det(g) =1— éRicabx“xb + o(x?), (10)
and the inverse metric
1
g% =6, + gRacbda:cxd + o(x?). (11)

Here R,.q and Ricg, are the components of the Riemann
and Ricci tensor, respectively, at the point with x =0
and we use the notation o(xX) to denote the expansion
up to the polynomial of order k in the normal coordinates.
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Proof hint 3

Consequently, the symbols of A in normal coordinates are

1
ag =(0ap + gRacdeL‘cﬂﬁd)ﬁafb + o(x?),

2 (12)
aq zgRiCabCEa&, + 0(X2).
Next, the symbols of A~! are given up to order respectively
x2,x,1 by
_ 1
b2 = Hf” 4(5ab - gRacbdxc$d)€a§b + O(X2),
2. _
by = — J Ricapz*&I¢]| ™" + o(x), (13)

2 . -
by = S Ricapba€]| 6+ o0(1).
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Proof hint 4

Thus the first three leading symbols of the operator AF k>0
U(A_k) = Co + C2k41 + Copta + ...,

read

ok k e
cor = [|€]| 772 (5ab - gRacbdx $d> Eabp + 0o(x?),
oy = — 2K
2L 3]l

k(k+1) _.
k42 = 3‘|(£H2]H_)4R1Cab§a£b +o(1).

Ricapzé, + o(x), (14)

Now, by combining all the above we show the statements. [
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Laplace-type operators

More generally, let

Arp=—g®(VoVy —TV,.) + E
be a Laplace-type operator on a vector bundle X of rank r,
where V, =90, — T with T € End X, and ¥ € End X.
By a lengthy computation:
Thm
The functional

g2 (V, W) := W(VyViw AT )
equals _ rgA(V, W).

The functional
GAr.E (V,W) := W(VVVWAJ_“,%)
equals

= 2L (hGV, W) + BF(V, W) + 3TYE g(V, W) Jvoly,
6 Ju ’

where F(V,W) = Tr V¢W?°FE,;, and F,;, is the curvature of V.
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Spin Laplacian

A particularly interesting case is when M is a spin. manifold M
and X is a spinor bundle of rank 2. The spin Laplace operator

AW = vy = ey 4 vl (15)
where V(%) is the spin connection, biexpands in thelorder/normal
coordinates as ]

A(s) = —0;0; + gRijké (ijkaiag + 0<X2)

‘ 1 A
3Ry @ 0j + - Rieji #4770, + o(x) (16)
| To(1),
where 77 are the CAR gamma matrices.
Then by comparing the symbols it is easy to identify A(®) as Ar g
for T = §Rapjiy?v" 22" & E = 0. Hence,

Proposition

g (VW) == (Vv (AW)™2) = 2mg (V, W),

GA(S) ._ () (8) / A (s)\—n\ _ omAA (17)
(V,W) := W(VV VW(A ) )—2 G=(V, W)+0.
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Dirac operator

Since we already spin, why not consider the Dirac operator
(coupled do U(1)-gauge 1-form A):

Dy =iy V) + 4,
or actually its square D124, which by the Lichnerowicz thm
1
D% = A®) 4 JBHF

where F' = 'yjq/ijk, and F}y is the curvature of A. Then

Proposition

The spectral metric and Einstein functionals associated with the
Dirac operator D 4 do not depend on A and read, respectively,

gPA(V, W)= W(VEVE DA 7"2) = 2mg (V, W),
GPA(WV, W) := WYV DA™

= 2m <GA(V, W) + UnS_l/MR(g)g(V, W)volg>.
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Spectral functionals on 1-forms

Spinors are fruitful also in order to define the "dual functionals”
corresponding to contravariant tensors with "raised indices”,
which are C°°(M)-bilinear on 1-forms (co-vectors).

Can the contravariant metric and Einstein tensors be obtained
from such functional using the spectral methods and W?7

We need to represent differential forms as differential operators.

A suitable way is to employ Clifford modules.

On a spin.c manifold M the Clifford representation of one-forms v
are 0-order differential operators 7, i.e. endomorphisms of the
spinor bundle.

In fact they form a C'°°(M)-bimodule generated by commutators
of the Dirac operator with functions.

So the Dirac operator is self-sufficient for our purposes

(and NCG-ready when assembled to a spectral triple of A. Connes).
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Metric and Einstein functionals on 1-forms

Thm

The following spectral functionals of one-forms on a spin-c
manifold M of dimension n

Gp(v,w) == W(5(Dw + wD)D ") (18)

read
g(v,w) UOZQ)
e (19)
Gp(v,w) = 2mn—_1/ G(v,w) voly,
6 Ju

o)
O
<
&

I
)
3
S
3
L
—

where g(v,w) = g®vwy, and G (v, w) = (Ricab — %Rg“b)vawb.

These perfectly (dually) match g and G2.
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Go quantum (= noncommutative

Noncommutative tori are prominent examples of noncommutative
manifolds. In particular, their smooth algebra A = C*°(T})
possesses a faithful state 7 invariant under external derivations d,
a=1,...,n, interpreted as noncommutative vector fields.

It is then easy to identify a noncommutative counterpart

of the flat-metric Laplace operator A = Y~ 52,

and of Dirac operator D =) v*d, and 1-forms Qp(A).

Both of them generalise to the conformally rescaled geometry.

Considering for simplicity only the strictly irrational T}y (Z(A)=C)
the trace extends to a factorized trace on the enlarged algebra
A:= A® A° given by T(ab°) = 7(a)T(b°),

where A° is a copy of A in the commutant A’ of A. Such 7 is still
invariant under the extension of derivations to A (preserving A°).
We use it to define the tracial state YW on A-valued symbols o(§)
(where 6, — &, much the same as for M).
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Noncommutative 2-torus: vector fields

Let h € C°°(T%) be positive, invertible, with a bounded inverse.
By a conformally rescaled Laplace operator for ']I‘g we mean the
selfadjoint operator on H = L*(T%, )
A =h" AR
This is motivated by the commutative case § = 0 where Ay, is
unitarily equivalent via Ady, to h~2A, which is a self-adjoint on
Hy,=L?(T?,73,), where 74,(a) = 7(h?a). Accordingly, as vector fields
we take (unitarily equivalent to derivations) selfadjoint operators
Vi= Y Vehé.h™!, V*e A
a=1,2

Proposition

For the conformally rescaled Laplace operator for ’]I%

g2 (Vi, W) = W(VaWiA;?) = mr(RH VWS,

whereas
G4 (Vi W) = W(ViWRALY) = 0.

v
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Noncommutative 2-torus: 1-forms

Motivated by another unitary equivalence in the classical case,
as the conformal rescaling of D we take Dy = kDk on H as [CM],
however with k > 0 in A° C A’, which assures that (A, Dy, H)
is a spectral triple and 3 an A-bimodule Q}jk (A).
We propose the definition of metric and Einstein functionals for
spectral triples of the same (classical) form as above
gp (v, w) = W(vw|D[™),
Gp(v,w) = W(U{Dv ’w}D|D‘7n),

where v,w € Qp, (A). On Ty, O, (A) is freely generated by k%77

Proposition
For the conformally rescaled spectral triple over 'Jl‘g the metric
functional for v = k*V % and w = k*W%®, V@ W% € A, reads
gp, (v,w) = T(VW?),
whereas the spectral Einstein functional vanishes identically,
Gp, (v,w) = 0.
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Noncommutative 4-torus: vector fields
We take a conformally rescaled Laplace operator on H =L*(T,, 1)

as Ah = Z X_1-5a~X~5a-X_1, Where 0 < X = h2 € COO(T94)
a=1,2,3,4

Proposition
The spectral metric & Einstein functionals on derivations for Ay,
on T} read

gAh(Vh, Wh) = 27727(X3V“W“)
2
GA (Vi W) = %T( — XV 4 WPy — XxWSaxx VP8

+5V % x0x T Wh8x + BW %o x Ve x — V48 W o8k
—W e VOopx — 8VEW 58 x + Ax VW 8¢

+( —30x  Loaxx — X0 x " L0ax — SaxOax + 2x Ay + 2Axx) VbWb> ,

where Vi, = 3,1 5 Vaxdax~t, Ve A
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Noncommutative 4-torus: 1-forms

Proposition
The metric and the Einstein functionals for the conformally rescaled
spectral triple on the noncommutative 4-torus are, respectively,

gp,(v,w) =7 (W“V“k*‘l) ,
Gp, (v,w) = T(vawb(%k—‘l(aak)k?(ébk) + ;k_?’(dak)kl(dbk)
+E72(0.k) (0pk) + gk‘l(éak)k‘l(ébk) — gk(éak)k‘?’(ébk)

~2R2ERAG) + 2k Bk

1, _ 1 _
+0ap (57 (Bch)h ™" (9ck) + S (Bek)h ™ (3ck)

5 : 2 _
2k (Bk)k P (5k) — SkTH(AR)),

where v = k2V %% w = kW%, and V¢, W € A.
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Another situation where we can define the metric and Einstein
functionals on differential forms concerns regular, finitely summable
spectral triples (for simplicity with simple dimension spectrum).

In this case there is a WDO algebra and calculus of symbols as
defined by Connes and Moscovici and there exists a tracial state.
However, the methods of computation of our functionals are

much involved and explicitly feasible only in some special cases.

Altogether, the spectral formulation of such geometric objects
as the metric, curvature and other tensors should be beneficial
for studying them globally both for the manifolds as well as
for generalized geometries, like noncommutative geometry.
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Outlook 2

More concretely, it opens a possibility to study them on the
analytic/operator level, and to compare with other settings
(algebraic, differential) for quantum analogues of:
- Levi-Civita connection, torsion, ...
- metric spaces
- orbifolds and manifolds with singularities
- flat manifolds
- Einstein manifolds (< Einstein spectral triples)
for which Gp is proportional to gp.

Conjecture: For a 2-dimensional regular spectral triple Gp = 0. J

Its validity would indicate some more robustness
of noncommutative manifolds (< spectral triples).
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