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We define bilinear functionals of vector fields and differential forms,
the densities of which yield the metric and Einstein tensors on even-
dimensional Riemannian manifolds.
We generalise these concepts in non-commutative geometry and,
in particular, we prove that for the conformally rescaled geometry
of the noncommutative two-torus the Einstein functional vanishes.
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Spectral Geometry:

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects
on manifolds such as volume, scalar curvature, and other scalar
combinations of curvature tensors and their derivatives
is prima facie the small-time asymptotic expansion of the trace of
heat kernel

Tr e−t∆ =

∞∑
n=0

t
n−d
2 an.

Here the scalar laplacian ∆ for a given Riemannian metric g reads
in local coordinates

∆ = − 1√
det(g)

∂a
(√

det(g)gab∂b
)

(1)

and an = an(∆) = an(R, ∂R, . . . ).
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Geometry from residues:

Using the Mellin transform the coefficients of this expansion can be
transmuted into some values or residues of the zeta function of ∆.
In turn, some can be expressed using the Wodzicki residue W

W(P ) :=

∫
M

(∫
|ξ|=1

tr σ−n(P )(x, ξ) Vξ

)
dnx. (2)

Here we focus on closed oriented M of even dimension n = 2m. ♠

Then,
W(∆−m) = vn−1 vol(M),

where
vn−1 := vol(Sn−1) =

2πm

Γ(m)
,

is the volume of the unit sphere Sn−1 in Rn.

In the localized form (as a functional of f ∈ C∞(M))

v(f) :=W(f∆−m) = vn−1

∫
M
f volg.

# This is related to the asymptotic growth of eigenvalues of ∆;
clear e.g. from the Connes ”trace thm.” that here W= Tr+. "
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Scalar curvature

A. Connes divulged in 90s a startling result, confirmed by Kastler
and by Kalau-Walze:

W(∆−m+1) =
n− 2

12
vn−1

∫
M
R(g) volg, (3)

which, up to a constant, is a Riemannian analogue of the
Einstein-Hilbert action functional of general relativity in vaccum.
Here R = R(g) is the scalar curvature, that is the g-trace
R=gjkRjk of the Ricci tensor where gjkgk` = δj` .

A localised form of (3) is a functional on C∞(M)

R(f) :=W(f∆−m+1) =
n− 2

12
vn−1

∫
M
fR(g)volg. (4)

# We have uncovered other two unforeseen functionals of a pair
of vector fields V and W on M , viewed as derivations of C∞(M):
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New functionals

Def/Thm:

The functional
g∆(V,W) :=W

(
VW∆−m−1

)
is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V,W

g∆(V,W ) = −vn−1

n

∫
M
g(V,W ) volg.
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New functionals

Def/Thm: Metric functional

The functional
g∆(V,W) :=W

(
VW∆−m−1

)
is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V,W

g∆(V,W ) = −vn−1

n

∫
M
g(V,W ) volg.

Def/Thm:

The functional
G∆(V,W) :=W

(
VW∆−m

)
, (5)

is a bilinear, symmetric map, whose density is proportional to the
Einstein tensor G := Ric− 1

2R(g)g evaluated on V,W

G∆(V,W ) =
vn−1

6

∫
M
G(V,W ) volg.
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New functionals

Def/Thm: Metric functional

The functional
g∆(V,W) :=W

(
VW∆−m−1

)
is a bilinear, symmetric map, whose density is proportional to the
metric g evaluated on V,W

g∆(V,W ) = −vn−1

n

∫
M
g(V,W ) volg.

Def/Thm: Einstein functional

The functional
G∆(V,W ) :=W

(
VW∆−m

)
, (6)

is a bilinear, symmetric map, whose density is proportional to the
Einstein tensor G := Ric− 1

2R(g)g evaluated on V,W

G∆(V,W ) =
vn−1

6

∫
M
G(V,W ) volg.
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Proof hint

Algebra of symbols of pseudodifferential operators.

Let P and Q be pseudodifferential operators with symbols:

σ(P )(x, ξ) =
∑
α

σ(P )α(x)ξα, σ(Q)(x, ξ) =
∑
β

σ(Q)β(x)ξβ.

(7)
The composition rule for the symbol of their product is

σ(PQ)(x, ξ) =
∑
β

(−i)|β|

|β|!
δβσ(P )(x, ξ)∂βσ(Q)(x, ξ), (8)

where δβ denotes the partial derivative wrt. ξβ.
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Proof hint 2

Taylor expansion in the normal coordinates:

the metric

gab = δab −
1

3
Racbdx

cxd + o(x2), (9)√
det(g) = 1− 1

6
Ricabx

axb + o(x2), (10)

and the inverse metric

gab = δab +
1

3
Racbdx

cxd + o(x2). (11)

Here Racbd and Ricab are the components of the Riemann
and Ricci tensor, respectively, at the point with x = 0
and we use the notation o(xk) to denote the expansion
up to the polynomial of order k in the normal coordinates.
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Proof hint 3

Consequently, the symbols of ∆ in normal coordinates are

a2 =
(
δab +

1

3
Racbdx

cxd
)
ξaξb + o(x2),

a1 =
2i

3
Ricabx

aξb + o(x2).

(12)

Next, the symbols of ∆−1 are given up to order respectively
x2,x,1 by

b2 = ||ξ||−4
(
δab −

1

3
Racbdx

cxd
)
ξaξb + o(x2),

b3 = −2i

3
Ricabx

aξb||ξ||−4 + o(x),

b4 =
2

3
Ricabξaξb||ξ||−6 + o(1).

(13)
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Proof hint 4

Thus the first three leading symbols of the operator ∆−k, k > 0

σ(∆−k) = c2k + c2k+1 + c2k+2 + . . . ,

read

c2k = ||ξ||−2k−2

(
δab −

k

3
Racbdx

cxd
)
ξaξb + o(x2),

c2k+1 =
−2ki

3||ξ||2k+2
Ricabx

bξa + o(x),

c2k+2 =
k(k + 1)

3||ξ||2k+4
Ricabξaξb + o(1).

(14)

Now, by combining all the above we show the statements. �
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Laplace-type operators

More generally, let
∆T,E = −gab(∇a∇b − Γcab∇c) + E

be a Laplace-type operator on a vector bundle X of rank r,
where ∇a = ∂a − T with T ∈ End X, and E ∈ End X.
By a lengthy computation:

Thm

The functional

g∆T,E (V,W ) :=W(∇V∇W∆−m−1
T,E )

equals = r g∆(V,W ).

The functional
G∆T,E (V,W ) :=W(∇V∇W∆−mT,E)

equals

=
vn−1

6

∫
M

(
rG(V,W ) + 3F (V,W ) + 3TrE g(V,W )

)
volg,

where F (V,W ) = Tr V aW bFab and Fab is the curvature of ∇a.
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Spin Laplacian

A particularly interesting case is when M is a spinc manifold M
and X is a spinor bundle of rank 2m. The spin Laplace operator

∆(s) := ∇(s)∗∇(s) = −∇(s)
ei ∇

(s)
ei +∇(s)

∇eiei
, (15)

where ∇(s) is the spin connection, biexpands in the order/normal
coordinates as

∆(s) = −∂i∂i +
1

3
Rijk` x

jxk∂i∂` + o(x2)

+
2

3
Rij x

i∂j +
1

4
Ri`jk x

`γjγk∂i + o(x)

+o(1),

(16)

where γj are the CAR gamma matrices.
Then by comparing the symbols it is easy to identify ∆(s) as ∆T,E

for T = 1
8Rabjkγ

jγkxaxb & E = 0. Hence,

Proposition

g∆(s)
(V,W ) :=W

(
∇(s)
V ∇

(s)
W (∆(s))−n−2

)
= 2mg∆(V,W ),

G∆(s)
(V,W ) :=W

(
∇(s)
V ∇

(s)
W (∆(s))−n

)
= 2mG∆(V,W )+0.

(17)
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Dirac operator

Since we already spin, why not consider the Dirac operator
(coupled do U(1)-gauge 1-form A):

DA = iγj∇(s)
ej +A,

or actually its square D2
A, which by the Lichnerowicz thm

D2
A = ∆(s) +

1

4
R+ F,

where F = γjγkFjk, and Fjk is the curvature of A. Then

Proposition

The spectral metric and Einstein functionals associated with the
Dirac operator DA do not depend on A and read, respectively,

gD
2
A(V,W ) :=W(∇(s)

V ∇
(s)
W |DA|−n−2) = 2mg∆(V,W ),

GD2
A(V,W ) :=W(∇(s)

V ∇
(s)
W |DA|−n)

= 2m
(

G∆(V,W ) +
vn−1

8

∫
M
R(g)g(V,W )volg

)
.
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Spectral functionals on 1-forms

Spinors are fruitful also in order to define the ”dual functionals”
corresponding to contravariant tensors with ”raised indices”,
which are C∞(M)-bilinear on 1-forms (co-vectors).
Can the contravariant metric and Einstein tensors be obtained
from such functional using the spectral methods and W ?

We need to represent differential forms as differential operators.
A suitable way is to employ Clifford modules.
On a spincc manifold M the Clifford representation of one-forms v
are 0-order differential operators ν̂, i.e. endomorphisms of the
spinor bundle.
In fact they form a C∞(M)-bimodule generated by commutators
of the Dirac operator with functions.
So the Dirac operator is self-sufficient for our purposes
(and NCG-ready when assembled to a spectral triple of A. Connes).
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Metric and Einstein functionals on 1-forms

Thm

The following spectral functionals of one-forms on a spin-c
manifold M of dimension n

gD(v, w) :=W
(
v̂ŵD−n

)
,

GD(v, w) :=W
(
v̂(Dŵ + ŵD)D−n+1

)
=W

(
(Dv̂ + v̂D)ŵD−n+1

)
,

(18)

read

gD(v, w) = 2mvn−1

∫
M
g(v, w) volg,

GD(v, w) = 2m
vn−1

6

∫
M
G(v, w) volg,

(19)

where g(v, w) = gabvawb and G(v, w) =
(
Ricab − 1

2Rg
ab
)
vawb.

These perfectly (dually) match g∆ and G∆.
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Go quantum (= noncommutative)

Noncommutative tori are prominent examples of noncommutative
manifolds. In particular, their smooth algebra A = C∞(Tnθ )
possesses a faithful state τ invariant under external derivations δa,
a = 1, . . . , n, interpreted as noncommutative vector fields.
It is then easy to identify a noncommutative counterpart
of the flat-metric Laplace operator ∆ =

∑
a δ

2
a,

and of Dirac operator D =
∑

a γ
aδa and 1-forms ΩD(A).

Both of them generalise to the conformally rescaled geometry.

Considering for simplicity only the strictly irrational Tnθ (Z(A)=C)
the trace extends to a factorized trace on the enlarged algebra
Â := A⊗Ao given by τ(abo) = τ(a)τ(bo),
where Ao is a copy of A in the commutant A′ of A. Such τ is still
invariant under the extension of derivations to Â (preserving Ao).
We use it to define the tracial state W on Â-valued symbols σ(ξ)
(where δa 7→ ξa much the same as for M).
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Noncommutative 2-torus: vector fields

Let h ∈ C∞(T2
θ) be positive, invertible, with a bounded inverse.

By a conformally rescaled Laplace operator for T2
θ we mean the

selfadjoint operator on H = L2(T2
θ, τ)

∆h = h−1∆h−1.
This is motivated by the commutative case θ = 0 where ∆h is
unitarily equivalent via Adh to h−2∆, which is a self-adjoint on
Hh=L2(T2,τh), where τh(a) = τ(h2a). Accordingly, as vector fields
we take (unitarily equivalent to derivations) selfadjoint operators

Vh =
∑
a=1,2

V ahδah
−1, V a ∈ Ao.

Proposition

For the conformally rescaled Laplace operator for T2
θ

g∆h(Vh,Wh) =W
(
VhWh∆−2

h

)
= πτ(h4)V aW a,

whereas
G∆h(Vh,Wh) =W

(
VhWh∆−1

h

)
= 0.
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Noncommutative 2-torus: 1-forms

Motivated by another unitary equivalence in the classical case,
as the conformal rescaling of D we take Dk = kDk on H as [CM],
however with k > 0 in Ao ⊂ A′, which assures that (A,Dk, H)
is a spectral triple and ∃ an A-bimodule Ω1

Dk
(A).

We propose the definition of metric and Einstein functionals for
spectral triples of the same (classical) form as above

gD(v, w) =W(vw|D|−n),

GD(v, w) =W(v{D,w}D|D|−n),

where v, w ∈ Ω1
Dk

(A). On Tnθ , Ω1
Dk

(A) is freely generated by k2γj .

Proposition

For the conformally rescaled spectral triple over T2
θ the metric

functional for v = k2V aσa and w = k2W aσa, V a,W a ∈ A, reads
gDk

(v, w) = τ(V aW a),

whereas the spectral Einstein functional vanishes identically,

GDk
(v, w) = 0.
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Noncommutative 4-torus: vector fields

We take a conformally rescaled Laplace operator on H=L2(T 4
θ , τ)

as ∆h =
∑

a=1,2,3,4

χ−1·δa·χ·δa·χ−1, where 0 < χ = h2 ∈ C∞(T 4
θ ).

Proposition

The spectral metric & Einstein functionals on derivations for ∆h

on T 4
θ read

g∆h(Vh,Wh) = 2π2τ(χ3V aW a)

G∆h(Vh,Wh) =
π2

12
τ
(
− χV aδaχχ

−1W bδbχ− χW aδaχχ
−1V bδbχ

+5V aδaχχ
−1W bδbχχ+ 5W aδaχχ

−1V bδbχχ− V aδaχW
bδbχ

−W aδaχV
bδbχ− 8V aW bδaδbχχ+ 4χV aW bδaδbχ

+
(
− δaχχ−1δaχχ−χδaχχ−1δaχ− δaχδaχ+2χ∆χ+2∆χχ

)
V bW b

)
,

where Vh =
∑

a=1,2 V
aχδaχ

−1, V a ∈ Ao.
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Noncommutative 4-torus: 1-forms

Proposition

The metric and the Einstein functionals for the conformally rescaled
spectral triple on the noncommutative 4-torus are, respectively,

gDk
(v, w) = τ

(
W aV ak−4

)
,

GDk
(v, w) = τ

(
V aW b

(1

3
k−4(δak)k2(δbk) +

2

3
k−3(δak)k1(δbk)

+k−2(δak)(δbk) +
2

3
k−1(δak)k−1(δbk)− 4

3
k(δak)k−3(δbk)

−2

3
k2(δak)k−4(δbk) +

2

3
k−1(δaδbk)

+δab
(1

3
k−1(δck)k−1(δck) +

1

3
k2(δck)k−4(δck)

+
2

3
k1(δck)k−3(δck)− 2

3
k−1(∆k)

))
,

where v = k2V aγa, w = k2W aγa, and V a,W a ∈ A.
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Outlook

Another situation where we can define the metric and Einstein
functionals on differential forms concerns regular, finitely summable
spectral triples (for simplicity with simple dimension spectrum).
In this case there is a ΨDO algebra and calculus of symbols as
defined by Connes and Moscovici and there exists a tracial state.
However, the methods of computation of our functionals are
much involved and explicitly feasible only in some special cases.

Altogether, the spectral formulation of such geometric objects
as the metric, curvature and other tensors should be beneficial
for studying them globally both for the manifolds as well as
for generalized geometries, like noncommutative geometry.
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Outlook 2

More concretely, it opens a possibility to study them on the
analytic/operator level, and to compare with other settings
(algebraic, differential) for quantum analogues of:
- Levi-Civita connection, torsion, . . .
- metric spaces
- orbifolds and manifolds with singularities
- flat manifolds
- Einstein manifolds (↔ Einstein spectral triples)

for which GD is proportional to gD.

Conjecture: For a 2-dimensional regular spectral triple GD = 0.

Its validity would indicate some more robustness
of noncommutative manifolds (↔ spectral triples).
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