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Tolerance relations

Definition.
Let S be a set. Then, R ⊂ S× S is a tolerance relation on S if it is

• reflexive: (a,a) ∈ R ∀ a ∈ S

• symmetric: (a,b) ∈ R ⇒ (b,a) ∈ R

(Tolerance relation + transitivity = equivalence relation.)

Observation. R is a tolerance relation on S ⇐⇒ (S,R∖ ∆)

vertices edges

is a simple graph.†

† Unweighted, undirected graph with no loops or multiple edges. Here ∆ :=
{
(a,a) : a ∈ S

}
.

Example. A tolerance relation that is not an equivalence relation:

x

y

z
S := {x,y, z}

R := ∆ ∪
{
(x,y), (y, x), (y, z), (z,y)

}
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Real-life examples

1 Causality in Special Relativity.

Here S := R1,3 and a ∼ b
def⇐⇒ ∥a− b∥ ⩾ 0 . Example:

x z

y

In the picture:
x ∼ y and y ∼ z but x ̸∼ z

2 Equality in Wolfram Mathematica.

3 Proximity relations.

4 Covers.

5 Tolerance relations associated to actions (later).
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Real-life examples

1 Causality in Special Relativity.

2 Equality in Wolfram Mathematica.

eps = 50*$MachineEpsilon;

x = 1;

y = x + eps;

z = y + eps;

{x == x, y == y, z == z, x == y, y == x, y == z, z == y, x == z, z == x}

(* Out: {True, True, True, True, True, True, True, False, False} *)

That is, y := x+ ε, z := y+ ε.

Since ε≪ 1 (finite storage capacity for numbers = instrument with finite resolution):
x ∼ y and y ∼ z but x ̸∼ z

3 Proximity relations.

4 Covers.

5 Tolerance relations associated to actions (later).
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1 Causality in Special Relativity.

2 Equality in Wolfram Mathematica.

3 Proximity relations.

Let (S,d) be a metric space and ε > 0. Define R ⊂ S× S by:

(a,b) ∈ R ⇐⇒ d(a,b) < ε.

In some cases, proximity relations are transitive. E.g. if d is an ultrametric, i.e.

d(a, c) ⩽ max
{
d(a,b),d(b, c)

}
∀ a,b, c ∈ S.

4 Covers.

5 Tolerance relations associated to actions (later).
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Real-life examples

1 Causality in Special Relativity.

2 Equality in Wolfram Mathematica.

3 Proximity relations.

4 Covers.

Let S be a set and U a covering of S. A tolerance relation R on S is given by:

(x,y) ∈ R
def⇐⇒

{
∃ A ∈ U : x,y ∈ A

}
.

▶ On a metric space with midpoint property (e.g. spectral distance):

ϵ-proximity relation↭ cover with open balls of radius ε/2.

▶ Compare with Sorkin and its approximations of topological spaces with posets.

5 Tolerance relations associated to actions (later).
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The convolution product

In the following, X := topological space and R := tolerance relation on X.

We say that R is étale of ∃ topology on R such that the projection

R→ X, (x,y) 7→ x,

is a local homeomorphism.
(If R is transitive, this means that the associated groupoid is étale.)

Lemma

If R is Hausdorff and étale, the space Cc(R) of compactly-supported continuous complex
functions on R is a ∗-algebra, with product and involution:

(f ⋆ g)(x, z) :=
∑

y∈X:x∼y,y∼z

f(x,y)g(y, z)

f∗(x, z) := f(z, x)
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Example

Let both X and R discrete (hence étale).

For (i, j) ∈ R, Eij is the function on R that is 1 at the site (i, j) and zero everywhere else.

In such a basis of Cc(R):

Eij ⋆ Ekl =




δjkEil if (i, l) ∈ R

0 otherwise

The algebra is unital if and only if X is a finite set (i.e. the diagonal ∆ is compact), with unit:

1 =
∑

i∈X

Eii .

▶ R equivalence relation =⇒
(
Cc(R), ⋆

)
associative =⇒ universal C*-algebra.

▶ R not transitive =⇒ ⋆ is not nec. associative =⇒ no good notion of representation.

▶ The definition of convolution product makes sense over an arbitrary field F.

▶ If X = {1, . . . ,n}, we can identify Cc(R) with a subset of Mn(F) (as a vector space, but
⋆ is the matrix product iff R is transitive).

5 / 14

Finite-dimensional case
Notations. Here:

• X := {1, . . . ,n},

• R is a tolerance relation on X,

• the topology on X and R is discrete,

• Γ is the simple graph associated to R,

• A(Γ) :=
(
Cc(R) ⊂Mn(F), ⋆

)
,

• Γ =
⋃
Γi dec. into connected components.

Then:

■ R is transitive ⇐⇒ each Γi is a complete graph.

■ A(Γ) =
⊕

i A(Γi), hence WLOG assume that Γ is connected.

Call A3 := A
( 2

1 3

)
. Then:

■ A3 is not power associative. a :=
(

0 1 0
1 0 1
0 1 0

)
=⇒ (a ⋆ a) ⋆ a ̸= a ⋆ (a ⋆ a).

■ TFAE: (i) A(Γ) is associative;
(ii) A(Γ) is power associative;
(iii) A(Γ) has no subalgebra isomorphic to A3;
(iv) R is an equivalence relation.

Corollaries:
• A(Γ) division algebra

⇐⇒ A(Γ) = F.
• Sedenions /∈

{
A(Γ)

}
.
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Relations from actions
Act 1: group actions

▶ Given a group action α : G× X→ X, the relation “being on the same orbit”:

R :=
{
(x,αgx) : g ∈ G, x ∈ X

}

is an equivalence relation.

▶ If G is discrete, X locally compact and Hausdorff and α continuous =⇒ R is étale.

▶ If X compact, the completion of (Cc(G), ⋆) is C(X)⋊G.

▶ If α is free and proper, C(X)⋊G is Morita equivalent to C(X/G).

▶ Examples: foliations, orbifolds, tilings of the plane, dynamical systems arising in number
theory (Bost-Connes), . . .

▶ Transitivity (and associativity) follows from the property:

αg ◦ αh = αgh ∀ g,h ∈ G,

and from associativity of the product in G.

Generalizations: (1) α not a group action; (2) G not a group.
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Relations from actions
Act 2: group quasi-actions

▶ Let A be a unital C*-algebra, G a group and

G→ Out(A) := Aut(A)/Inn(A) (⋆)

a group homomorphism. (E.g. A almost commutative =⇒ Out(A) = Diff(M).)

▶ Lift (⋆) to a map α : G→ Aut(A) satisfying:

αg ◦ αh = Adf(g,h) ◦ αgh

for a suitable f : G×G→ U(A). This was the motivation in [Bouwknegt, Hannabuss, Mathai,

CMP 2006] for a theory of non-associative crossed products.

▶ A group quasi-action on a metric space (X,d) is a map α : G× X→ X satisfying

d
(
αgαh(x),αgh(x)

)
⩽ ε

for some fixed ε > 0.
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Relations from actions
Act 3: magmas

■ Here G is a set equipped with:

• a binary operation ∗ : G×G→ G (the “multiplication”),
• a unary operation (−)−1 : G→ G (the “right inversion”),
• an element 1 ∈ G (the “right unit”),

such that:
(g ∗ h) ∗ h−1 = g ∗ 1 = g ∀ g,h ∈ G.

(Tentative name: magma with right inversion and unit.)

■ A right action on a set X is a map X×G→ X, (x,g) 7→ x ◁ g, such that:

(x ◁ g) ◁ g−1 = x ◁ 1 = x ∀ g ∈ G, x ∈ X.

Given such an action, the image R(G,X) of the canonical map:

X×G→ X× X, (x,g) 7→ (x, x ◁ g),

is a tolerance relation.
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Relations from actions
Act 3: magmas

■ An action is called free

transitive

⇐⇒ the canonical map is injective

surjective

.

■ The action of G ↶ G by right mult. is free ⇐⇒ ∗ is left-cancellative.

If g−1 ∗ (g ∗ h) = h ∀ g,h ∈ G =⇒ G ↶ G is both free and transitive.

▶ Example. G := R∖ {0}, x ∗ y := x/y. The action G ↶ G is both free and transitive.

▶ Example. G := Moufang loop (e.g. unit octonions). G ↶ G is free and transitive.

▶ Let G,X as before + topology; α, ∗, (−)−1 not nec. continuous.

Then: R(G,X) is étale ⇐⇒ G is discrete.
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Truncations

Let B := C*-algebra, T : B→ B a linear map, A := Im(T), and ⋆ the product on A:

a ⋆ b := T(ab) a,b ∈ A.

T is called idempotent if T ◦ T = T (which implies B = A⊕ ker T as vector spaces).

If T is idempotent and a completely positive contraction (CPC), then ⋆ is associative.

T is called a conditional expectation if one of the following equivalent conditions is satisfied:

(i) T is idempotent with ∥T∥ = 1,

(ii) T is positive, idempotent, and an A-bimodule map.

A conditional expectation is a CPC.

Example: P ∈ B projection =⇒ T(x) := PxP ∀ x ∈ B is a conditional expectation.

Example: B = C(S1), N ⩾ 1, T1(f) :=
∑

|k|⩽N−1 e
2πikθf̂(k) (Fourier partial sum)

T2 := Cesàro sum

T1 is idempotent but not positive; T2 is positive but not idempotent.
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States

■ Every finite-dim. A(Γ) is a truncation of a matrix algebra!

If X := {1, . . . ,n}, then B := Mn(C) and T : Mn(C)→Mn(C) is given by

T(x) :=
∑

(i,j)∈R

EiixEjj

■ S(A) := states in the sense of operator systems, i.e. restriction of states of B = Mn(C).

■ TFAE: (i) the map S(B)→ S(A), φ 7→ φ|A, is injective (it is always surjective);

(ii) the restriction of this map to pure states is injective;

(iii) A = B
(
= Mn(C)

)
.

■ A unit vector v = (v1, . . . , vn) ∈ Cn is called R-tolerant if the graph of the relation

Rv :=
{
(i, j) ∈ R : vivj ̸= 0

}

is connected.

(Analogous to “states with ε-connected support” in the case of a proximity relations, cf. [CvS21].)

■ R-tolerant vector states of Mn(C)
1:1←→ pure states of A.
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Positivity
Let A = A(Γ) ⊂Mn(C) and T as before. For a ∈ A, we write:

a ⩾ 0 ⇐⇒ a is a positive semidefinite matrix

a ⪰ 0 ⇐⇒ a = T(b) with b ∈Mn(C) positive semidefinite

Since T is idempotent
a ⩾ 0 =⇒ a ⪰ 0.

Moreover, if ∃ bk ∈ A s.t.
a =

∑
k
bk ⋆ b∗

k (‡)
then a = T

(∑
k bkb

∗
k

)
⪰ 0.

Proposition

• Each Γi has a dominant vertex ⇐⇒ every a ⪰ 0 is of the form (‡).
• For x,a ∈Mn(C) let φx(a) := Tr(x∗a). Then, the map

(A,⪰)→ (A∗,⩾), x 7→ φx|A,

is an isomorphism of ordered vector spaces.

• States of A 1:1←→ elements ρ ∈ A s.t. ρ ⪰ 0 & Tr(ρ) = 1.
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Thank you!
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