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Tolerance relations

Definition.

Let S be a set. Then, R C S x S is a tolerance relation on S if it is
® reflexive: (a,a) €eRVaeSs

e symmetric: (a,b) € R = (b,a) €R

(Tolerance relation + transitivity = equivalence relation.)

Observation. R is a tolerance relatonon S <= (S,R~ A) is a simple graph.f

[ A

vertices edges

T Unweighted, undirected graph with no loops or multiple edges. Here A := {(a,a) : a € S}.

Example. A tolerance relation that is not an equivalence relation:

X\y/l

S ={x,y,z}
R:=AU {(x,y), (v, x), (y,z), (Z:U)}
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Real-life examples

@ Causality in Special Relativity.

Here S:=R¥and a~b < |[a—Db| > 0. Example:

In the picture:
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Real-life examples

© Causality in Special Relativity.

® Equality in Wolfram Mathematica.

[)
el
[0}
]

50*$MachineEpsilon;
x = 1;

X + eps;
z =y + eps;

{x==x,y==y,z==2,x==y,y==x, y==12,2z==y, x ==z, z==x}

(* Out: A{True, True, True, True, True, True, True, False, False} x*)

Thatis,y:=x+¢,z:=y+e¢.
Since ¢ < 1 (finite storage capacity for numbers = instrument with finite resolution):
X~y and Yy~z but x+z
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Real-life examples

@ Causality in Special Relativity.
@® Equality in Wolfram Mathematica.

@® Proximity relations.

Let (S, d) be a metric space and ¢ > 0. Define R C S x S by:

(a,b)eR <<= d(a,b)<e.

In some cases, proximity relations are transitive. E.g. if d is an ultrametric, i.e.

d(a,c) < max{d(a,b), d(b,c)} Vab,ceS.
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Real-life examples Real-life examples
© Causality in Special Relativity. © Causality in Special Relativity.
@ Equality in Wolfram Mathematica. ® Equality in Wolfram Mathematica.
® Proximity relations. @® Proximity relations.
O Covers. @ Covers.
Let S be a set and U a covering of S. A tolerance relation R on S is given by: . . ,
@ Tolerance relations associated to actions (later).
(xy) eR <& [FAecU:xyecAl
» On a metric space with midpoint property (e.g. spectral distance):
e-proximity relation «~ cover with open balls of radius ¢/2.
» Compare with Sorkin and its approximations of topological spaces with posets.
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The convolution product

In the following, X := topological space and R := tolerance relation on X.

We say that R is étale of 3 topology on R such that the projection

R — X, (x,y) — x,

is a local homeomorphism.
(If R is transitive, this means that the associated groupoid is étale.)

Lemma

If R is Hausdorff and étale, the space C.(R) of compactly-supported continuous complex
functions on R is a *-algebra, with product and involution:

(fxg)(x,z):= Z

yeXix~y,y~z

f(x,y)g(y, z)

*(x, z) := f(z, x)

Example

Let both X and R discrete (hence étale).

For (i,j) € R, Ey; is the function on R that is 1 at the site (i, j) and zero everywhere else.
In such a basis of C.(R):

5jkEiI if (1, l) €R

Eij * F—kl =
0 otherwise

The algebra is unital if and only if X is a finite set (i.e. the diagonal A is compact), with unit:

1=) Ey.

ieX

v

R equivalence relation —- (CC(R),*) associative = universal C*-algebra.

v

R not transitive = * is not nec. associative = no good notion of representation.
> The definition of convolution product makes sense over an arbitrary field IF.

> fX={1,..., n}, we can identify C.(R) with a subset of M, (F) (as a vector space, but
* is the matrix product iff R is transitive).

4/14 5/14
Finite-dimensional case Relations from actions
Notations. Here: Act 1: group actions
) . . > Given a group action « : G x X — X, the relation “being on the same orbit”:
e X:={1,...,n}, ® [is the simple graph associated to R,
e Ris a tolerance relation on X, ® Al :=(Cc(R) € M, (F), %), R:={(x,xgx) : g € G,x € X}
e the topology on X and R is discrete, ® T' = |JT} dec. into connected components. is an equivalence relation.
Then: > If G is discrete, X locally compact and Hausdorff and « continuous = R is étale.
B Ris transitive <= each T is a complete graph. > If X compact, the completion of (C.(G), %) is C(X) x G.
| | = . . i
A(T") = @: Allh), hence WLOG assume that I'is connected. > If «is free and proper, C(X) x G is Morita equivalent to C(X/G).
2
Call 2;:= A( / \ ) . Then: » Examples: foliations, orbifolds, tilings of the plane, dynamical systems arising in number
1 3 theory (Bost-Connes), ...
. A 010

® 25 is not power associative. a = ((1) 0 é) = (axa)xa#ax(axa). > Transitivity (and associativity) follows from the property:
m TFAE: (i) A(I") is associative; Corollaries: Xgoon =xgh Vg hegG,

(i) A(T) is power associative; e A(T) division algebra o .

(i) A(T) has no subalgebra isomorphic to 2s; — A =F. and from associativity of the product in G.

(iv) Ris an equivalence relation. e Sedenions ¢ {A(T)}. Generalizations: (1) « not a group action; (2) G not a group.
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Relations from actions

Act 2: group quasi-actions

> Let A be a unital C*-algebra, G a group and
G — Out(A) := Aut(A)/Inn(A) (%)
a group homomorphism. (E.g. A almost commutative = Out(A) = Diff(M).)
> Lift (x) toamap «: G — Aut(A) satisfying:
0g © & = Ad¢(g,h) © Xgh

for a suitable f : G x G — U(A). This was the motivation in [Bouwknegt, Hannabuss, Mathai,
cMP 2006] for a theory of non-associative crossed products.

> A group quasi-action on a metric space (X, d) isamap o : G x X — X satisfying
d(ogom(x), xgn(x)) < €

for some fixed ¢ > 0.
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Relations from actions
Act 3: magmas
B Here G is a set equipped with:

® abinary operation *: G x G — G (the “multiplication”),
® aunary operation (—)~!: G — G (the “right inversion”),
® anelement 1 € G (the “right unit”),

such that:

(gxh)*h'=gxl=g Vg heG.

(Tentative name: magma with right inversion and unit.)
B Aright action onaset Xisamap X x G — X, (x, g) — x < g, such that:

1

(x<ag)<ag "=x<dl=x VgegGxeX

Given such an action, the image R(G, X) of the canonical map:
XxG = XxX, (x,g) = (x,x<g),

is a tolerance relation.
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Relations from actions

Act 3: magmas

® An action is called free <= the canonical map is injective .

transitive surjective

The action of G\~ G by right mult. is free <= x is left-cancellative.

lfgt+(gxh)=hVgheG = G Gisbothfree and transitive.

v

Example. G := R\ {0}, x * y := x/y. The action G .~ G is both free and transitive.

v

Example. G := Moufang loop (e.g. unit octonions). G~ G is free and transitive.

> Let G, X as before + topology; , *, (=)~ not nec. continuous.

Then: R(G,X) is étale <= G is discrete.
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Truncations

Let B := C*-algebra, T: B — B alinear map, A := Im(T), and % the product on A:
axb:=T(ab) a,beA.

T is called idempotent if To T =T (which implies B = A @ ker T as vector spaces).

If T is idempotent and a completely positive contraction (CPC), then x is associative.

T is called a conditional expectation if one of the following equivalent conditions is satisfied:
(i) Tisidempotent with ||T|| =1,
(i) T is positive, idempotent, and an A-bimodule map.

A conditional expectation is a CPC.
Example: P € B projection =—> T(x) := PxP V x € B is a conditional expectation.

Example: B =C(S'), N> 1, Ti(f) =3 |, jen s e2™kOF (k) (Fourier partial sum)
T, := Cesaro sum

T, is idempotent but not positive; T, is positive but not idempotent.
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States

® Every finite-dim. A(T") is a truncation of a matrix algebral!
fX:={1,...,n},thenB:=M,(C)and T : M,,(C) — M, (C) is given by

T(X) = Z EﬁXEjj

(1,j)€R
B §(A) := states in the sense of operator systems, i.e. restriction of states of B = M, (C).
B TFAE: (i) the map 8(B) — S(A), @ — @|a, is injective (it is always surjective);

(i) the restriction of this map to pure states is injective;
(i) A=B ( = Mn(C)).

B A unit vectorv = (v1,...,v,) € C™is called R-tolerant if the graph of the relation
R, = {(1,]) € R 1ViVy 7é 0}

is connected.

(Analogous to “states with e-connected support” in the case of a proximity relations, cf. [CvS21].)

B R-tolerant vector states of M,,(C) LN pure states of A.
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Positivity
Let A =A(T') € M, (C) and T as before. For a € A, we write:
a >0 <= ais a positive semidefinite matrix
a>0 < a=T(b)withb € M,(C) positive semidefinite

Since T is idempotent
az20 = ax»0.

Moreover, if 3 by € A s.t.

a= Zkbk*b]*(
thena =T()Y , byb}) = 0.

Proposition
® EachT; has a dominant vertex <= every a > 0 is of the form ().
® Forx,a € M, (C) let py(a) := Tr(x*a). Then, the map

(A, z) = (A% 2), x> @xla,

is an isomorphism of ordered vector spaces.

e States of A <% elements peAstp=0&Tr(p)=1.

#

v
13714

Thank you! .
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