Spectral Triple with Real Structure for Fuzzy Sphere

Anwesha Chakraborty

S. N. Bose National Centre for Basic sciences, Kolkata,India

Noncommutative geometry: metric and spectral aspects Jagiellonian University, Krakow

28/9/2020

Motivation

Aim: Constructing a real and even spectral triple for fuzzy sphere.

Motivation

Aim: Constructing a real and even spectral triple for fuzzy sphere.

Motivation:

The algebra of fuzzy sphere can carry representations of SU(2) Lie group, which is given by $M_{2 n+1}$ matrices for its n-th representation. So it is fruitful to study the geometry in context of both matrix models and NCG.

Motivation

Aim: Constructing a real and even spectral triple for fuzzy sphere.

Motivation:

The algebra of fuzzy sphere can carry representations of SU(2) Lie group, which is given by $M_{2 n+1}$ matrices for its n-th representation. So it is fruitful to study the geometry in context of both matrix models and NCG.
\rightarrow Our goal in mind is to take S_{*}^{2} to be the finite space and try to formulate gauge theory using the prescription of almost commutative geometry a la' Connes.

Motivation

Aim: Constructing a real and even spectral triple for fuzzy sphere.

Motivation:

The algebra of fuzzy sphere can carry representations of SU(2) Lie group, which is given by $M_{2 n+1}$ matrices for its n-th representation. So it is fruitful to study the geometry in context of both matrix models and NCG.
\rightarrow Our goal in mind is to take S_{*}^{2} to be the finite space and try to formulate gauge theory using the prescription of almost commutative geometry a la' Connes.

Result:

First we have tried to find the spectral data for S_{*}^{2}, including a real structure, and shown that although the zero-order condition is valid. But the first order condition is broken with our choice of spectral triple.

Algebra of S_{*}^{2}

S_{*}^{2} algebra is given by

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \lambda \epsilon_{i j k} \hat{x}_{k} ; \quad i, j, k \in\{1,2,3\} \tag{1}
\end{equation*}
$$

Algebra of S_{*}^{2}

S_{*}^{2} algebra is given by

$$
\begin{aligned}
& \qquad\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \lambda \epsilon_{i j k} \hat{x}_{k} ; \quad i, j, k \in\{1,2,3\} \\
& \hat{\vec{x}}^{2}=\hat{x}_{i} \cdot \hat{x}_{i}=\lambda^{2} n(n+1) \text {, where } n \in\left\{\frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}-\operatorname{SU}(2) \text { representation } \\
& \text { index. }
\end{aligned}
$$

Algebra of S_{*}^{2}

S_{*}^{2} algebra is given by

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \lambda \epsilon_{i j k} \hat{x}_{k} ; \quad i, j, k \in\{1,2,3\} \tag{1}
\end{equation*}
$$

$\hat{\vec{x}}^{2}=\hat{x}_{i} \cdot \hat{x}_{i}=\lambda^{2} n(n+1)$, where $n \in\left\{\frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}-\operatorname{SU}(2)$ representation index. For $n=\frac{1}{2}$, representation of the algebra (1) is furnished by the 2D Hilbert space

$$
\mathcal{H}=\operatorname{span}_{\mathbb{C}}\left\{\left|\frac{1}{2}\right\rangle,\left|-\frac{1}{2}\right\rangle\right\}
$$

where

$$
\begin{align*}
& \hat{x}_{+}\left|\frac{1}{2}\right\rangle=\hat{x}_{-}\left|-\frac{1}{2}\right\rangle=0 ; \quad \hat{x}_{+}\left|-\frac{1}{2}\right\rangle=\lambda\left|\frac{1}{2}\right\rangle ; \quad \hat{x}_{-}\left|\frac{1}{2}\right\rangle=\lambda\left|-\frac{1}{2}\right\rangle \\
& \hat{x}_{3}\left| \pm \frac{1}{2}\right\rangle= \pm \frac{\lambda}{2}\left| \pm \frac{1}{2}\right\rangle ; \quad \hat{x}_{ \pm}=\hat{x}_{1} \pm i \hat{x}_{2} \tag{2}
\end{align*}
$$

Algebra of S_{*}^{2}

S_{*}^{2} algebra is given by

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \lambda \epsilon_{i j k} \hat{x}_{k} ; \quad i, j, k \in\{1,2,3\} \tag{1}
\end{equation*}
$$

$\hat{\vec{x}}^{2}=\hat{x}_{i} \cdot \hat{x}_{i}=\lambda^{2} n(n+1)$, where $n \in\left\{\frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}-\operatorname{SU}(2)$ representation index. For $n=\frac{1}{2}$, representation of the algebra (1) is furnished by the 2 D Hilbert space

$$
\mathcal{H}=\operatorname{span}_{\mathbb{C}}\left\{\left|\frac{1}{2}\right\rangle,\left|-\frac{1}{2}\right\rangle\right\}
$$

where

$$
\begin{align*}
& \hat{x}_{+}\left|\frac{1}{2}\right\rangle=\hat{x}_{-}\left|-\frac{1}{2}\right\rangle=0 ; \quad \hat{x}_{+}\left|-\frac{1}{2}\right\rangle=\lambda\left|\frac{1}{2}\right\rangle ; \quad \hat{x}_{-}\left|\frac{1}{2}\right\rangle=\lambda\left|-\frac{1}{2}\right\rangle \\
& \hat{x}_{3}\left| \pm \frac{1}{2}\right\rangle= \pm \frac{\lambda}{2}\left| \pm \frac{1}{2}\right\rangle ; \quad \hat{x}_{ \pm}=\hat{x}_{1} \pm i \hat{x}_{2} \tag{2}
\end{align*}
$$

Orthonormality and completeness condition for \mathcal{H} -

$$
\begin{equation*}
\langle m \mid n\rangle=\delta_{m n} ; \quad\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|+\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|:=\mathbf{I}_{\mathcal{H}} ; \quad m, n \in\left\{\frac{1}{2},-\frac{1}{2}\right\} \tag{3}
\end{equation*}
$$

Spectral Triple for S_{*}^{2}

Algebra :-

$$
\begin{gathered}
\mathcal{A}_{F}=\mathcal{H} \otimes \tilde{\mathcal{H}}=\operatorname{span}_{\mathbb{C}}\left\{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|,\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|,\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|,\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|\right\} \\
=\operatorname{span}_{\mathbb{C}}\{\mathbf{1}, \hat{\vec{\sigma}}\}=M_{2}(C)
\end{gathered}
$$

For example- $\left.\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|=\left\lvert\, \frac{1}{2}\right., \frac{1}{2}\right)=\binom{1}{0}\left(\begin{array}{ll}1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\frac{1}{2}\left(1+\sigma_{3}\right) \in \mathcal{A}_{F}$ Note that we can represent \hat{x}_{i} 's in the basis of \mathcal{H} as,

$$
\hat{\vec{x}}=\frac{\lambda}{2} \vec{\sigma}
$$

Multiplication rule :-

$$
\hat{x}_{i} \hat{x}_{j}=\frac{\lambda^{2}}{4} \delta_{i j} \mathbf{1}+i \frac{\lambda}{2} \epsilon_{i j k} \hat{x}_{k}
$$

Spectral Triple for S_{*}^{2}

Hilbert space:- Note $\mathcal{H} \otimes \tilde{\mathcal{H}}$, is a bi-module of \mathcal{A}_{F}. The elements $|m\rangle\langle n|:=\mid m, n)$ provide complete orthonormal basis for \mathcal{A}_{F},

$$
\begin{equation*}
\left.\left(m^{\prime}, n^{\prime} \mid m, n\right)=\delta_{m, m^{\prime}} \delta_{n, n^{\prime}} ; \sum_{m, n} \mid m, n\right)\left(m, n \mid=\mathbf{I}_{\mathcal{A}_{F}} \in \mathcal{A}_{F} \otimes \tilde{\mathcal{A}_{F}}\right. \tag{5}
\end{equation*}
$$

So we take our Hilbert space to be

$$
\begin{equation*}
\left.\left.\mathcal{H}_{F}:=\mathbb{C}^{2} \otimes \mathcal{A}_{F}=\operatorname{span}_{\mathbb{C}}\left\{\mid \phi_{i}\right)\right), \quad i=1, \ldots, 8\right\} \tag{6}
\end{equation*}
$$

Spectral Triple for S_{*}^{2}

Hilbert space:- Note $\mathcal{H} \otimes \tilde{\mathcal{H}}$, is a bi-module of \mathcal{A}_{F}. The elements $|m\rangle\langle n|:=\mid m, n)$ provide complete orthonormal basis for \mathcal{A}_{F},

$$
\begin{equation*}
\left.\left(m^{\prime}, n^{\prime} \mid m, n\right)=\delta_{m, m^{\prime}} \delta_{n, n^{\prime}} ; \quad \sum_{m, n} \mid m, n\right)\left(m, n \mid=\mathbf{I}_{\mathcal{A}_{F}} \in \mathcal{A}_{F} \otimes \tilde{\mathcal{A}}_{F}\right. \tag{5}
\end{equation*}
$$

So we take our Hilbert space to be

$$
\begin{equation*}
\left.\left.\mathcal{H}_{F}:=\mathbb{C}^{2} \otimes \mathcal{A}_{F}=\operatorname{span}_{\mathbb{C}}\left\{\mid \phi_{i}\right)\right), \quad i=1, \ldots, 8\right\} \tag{6}
\end{equation*}
$$

Canonical basis:

$$
\begin{align*}
& \left.\left.\left.\left.\left.\left.\mid \phi_{1}\right)\right)=\binom{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{0}, \quad \mid \phi_{2}\right)\right)=\binom{\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{0}, \quad \mid \phi_{3}\right)\right)=\binom{\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{0}, \\
& \left.\left.\left.\left.\left.\left|\phi_{4}\right\rangle\right)=\binom{\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{0}, \mid \phi_{5}\right)\right)=\binom{0}{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}, \quad \mid \phi_{6}\right)\right)=\binom{0}{\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|} \\
& \left.\left.\left.\left.\mid \phi_{7}\right)\right)=\binom{0}{\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}, \quad \mid \phi_{8}\right)\right)=\binom{0}{\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|} \tag{7}
\end{align*}
$$

Spectral Triple for S_{*}^{2}

Hilbert space:- Note $\mathcal{H} \otimes \tilde{\mathcal{H}}$, is a bi-module of \mathcal{A}_{F}. The elements $|m\rangle\langle n|:=\mid m, n)$ provide complete orthonormal basis for \mathcal{A}_{F},

$$
\begin{equation*}
\left.\left(m^{\prime}, n^{\prime} \mid m, n\right)=\delta_{m, m^{\prime}} \delta_{n, n^{\prime}} ; \quad \sum_{m, n} \mid m, n\right)\left(m, n \mid=\mathbf{I}_{\mathcal{A}_{F}} \in \mathcal{A}_{F} \otimes \tilde{\mathcal{A}}_{F}\right. \tag{5}
\end{equation*}
$$

So we take our Hilbert space to be

$$
\begin{equation*}
\left.\left.\mathcal{H}_{F}:=\mathbb{C}^{2} \otimes \mathcal{A}_{F}=\operatorname{span}_{\mathbb{C}}\left\{\mid \phi_{i}\right)\right), \quad i=1, \ldots, 8\right\} \tag{6}
\end{equation*}
$$

Canonical basis:

$$
\begin{align*}
& \left.\left.\left.\left.\left.\left.\mid \phi_{1}\right)\right)=\binom{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{0}, \quad \mid \phi_{2}\right)\right)=\binom{\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{0}, \quad \mid \phi_{3}\right)\right)=\binom{\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{0}, \\
& \left.\left.\left.\left.\left.\left|\phi_{4}\right\rangle\right)=\binom{\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{0}, \mid \phi_{5}\right)\right)=\binom{0}{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}, \quad \mid \phi_{6}\right)\right)=\binom{0}{\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|} \\
& \left.\left.\left.\left.\mid \phi_{7}\right)\right)=\binom{0}{\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}, \quad \mid \phi_{8}\right)\right)=\binom{0}{\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|} \tag{7}
\end{align*}
$$

Spectral Triple for S_{*}^{2}

Dirac Operator and Chirality Operator:- (U. C Watamura, S Watamura, Comm. Math. Phys., 212, 395-413 (2000))

$$
\begin{align*}
D_{F} & =\frac{i}{r_{n} \lambda} \gamma_{F} \epsilon_{i j k} \sigma_{i} \hat{x}_{j}^{R} \hat{x}_{k} ; \\
\gamma_{F} & =\frac{1}{\mathcal{N}}\left(\vec{\sigma} \cdot \hat{\vec{x}}^{R}-\frac{\lambda}{2}\right) \rightarrow \mathrm{SU}(2) \text { symmetric } \tag{9}\\
r_{n}^{2}:=\hat{x}_{i} \cdot \hat{x}_{i} & =\frac{3 \lambda^{2}}{4}, \text { and } \mathcal{N}=\lambda \text { for } n=\frac{1}{2} \text { representation }
\end{align*}
$$

Here $x_{j}^{R} \psi=\psi \hat{x}_{j}$.

$$
\left\{D_{F}, \gamma_{F}\right\}=0
$$

Define- $\hat{\jmath}_{i}=\hat{L}_{i}+\frac{\sigma_{i}}{2} ; \quad L_{i}=\frac{1}{\lambda}\left(\hat{x}_{i}-\hat{x}_{i}^{R}\right)$

$$
\left[D_{F}, \hat{J}_{i}\right]=0
$$

Eigen-spinors of the Dirac Operator

We can find eigen-spinors of Dirac operators that follow -

$$
\begin{align*}
\left.\left.D_{F} \mid m ; j, j_{3}\right)\right)= & \left.\left.\left.\left.\left.\left.m \mid m ; j, j_{3}\right)\right) ; \quad \hat{J}_{3} \mid m ; j, j_{3}\right)\right)=j_{3} \mid m ; j, j_{3}\right)\right) ; \\
& \left.\left.\left.\left.\hat{\vec{J}}^{2} \mid m ; j, j_{3}\right)\right)=j(j+1) \mid m ; j, j_{3}\right)\right) \tag{10}
\end{align*}
$$

$\underline{m}=1$

$$
\begin{align*}
& \left.\left.\mid \psi_{1}\right)\right)=N\binom{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|+(\sqrt{3}-1)\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{(2-\sqrt{3})\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}=\left|1 ; \frac{1}{2}, \frac{1}{2}\right\rangle ; N=\frac{1}{3-\sqrt{3}} \\
& \left.\left.\mid \psi_{2}\right)\right)=N\binom{(2-\sqrt{3})\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{(\sqrt{3}-1)\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|+\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}=\left|1 ; \frac{1}{2},-\frac{1}{2}\right\rangle \tag{11}
\end{align*}
$$

$\underline{m}=-1$

$$
\begin{aligned}
& \left.\left.\mid \psi_{3}\right)\right)=N\binom{(1-\sqrt{3})\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|+(2-\sqrt{3})\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}=\left|-1 ; \frac{1}{2}, \frac{1}{2}\right\rangle \\
& \left.\left.\mid \psi_{4}\right)\right)=N\binom{\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{(2-\sqrt{3})\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|+(1-\sqrt{3})\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}=\left|-1 ; \frac{1}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

$\underline{m}=0$

$$
\begin{align*}
& \left.\left.\left.\left.\mid \psi_{5}\right)\right)=\binom{\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{0}=\left|0 ; \frac{3}{2}, \frac{3}{2}\right\rangle, \quad \mid \psi_{6}\right)\right)=\binom{0}{\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}=\left|0 ; \frac{3}{2},-\frac{3}{2}\right\rangle \\
& \left.\left.\mid \psi_{7}\right)\right)=\frac{1}{\sqrt{3}}\binom{-\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|+\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}=\left|0 ; \frac{3}{2}, \frac{1}{2}\right\rangle, \\
& \left.\left.\mid \psi_{8}\right)\right)=\frac{1}{\sqrt{3}}\binom{\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|-\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}=\left|0 ; \frac{3}{2},-\frac{1}{2}\right\rangle \tag{12}
\end{align*}
$$

These eigen spinors provide a complete orthonormal basis for \mathcal{H}_{F}.

Chiral Basis:-

We can write

$$
\begin{aligned}
& \left.\left.\left.\left(\chi_{ \pm}^{1}\right)\right)=\frac{1}{\sqrt{2}}\left(\left(\psi_{1}\right)\right) \pm\left(\psi_{3}\right)\right)\right) \\
& \left.\left.\left.\left.\left(\chi_{ \pm}^{2}\right)\right)=\frac{1}{\sqrt{2}}\left(\mid \psi_{2}\right)\right) \pm\left(\psi_{4}\right)\right)\right)
\end{aligned}
$$

It can be shown,

$$
\begin{align*}
\left.\gamma_{F}\left(\chi_{+}^{i}\right)\right) & \left.=\left(\chi_{+}^{i}\right)\right), \quad i=1,2 \\
\left.\gamma_{F}\left(\chi_{-}^{i}\right)\right) & \left.=-\left(\chi_{-}^{i}\right)\right), \quad i=1,2 \\
\left.\gamma_{F}\left(\psi_{i}\right)\right) & \left.=-\left(\psi_{i}\right)\right), \quad i=5,6,7,8 \tag{13}
\end{align*}
$$

$\mathcal{H}_{F}=C^{2} \otimes \mathcal{H} \otimes \tilde{\mathcal{H}}$, which is spanned by the Dirac spinors (alternatively the chiral spinors) can be shown to split, through Clebsch-Gordon rule, into a quadruplate and a pair of doublet states as- $2 \times(2 \times 2)=4 \oplus 2 \oplus 2$.

Determination of \mathcal{J}_{F}

\mathcal{J}_{F} (anti-unitary isomorphism) should be such that it satisfies the properties of a particular KO dimension-

n	0	1	2	3	4	5	6	7
ϵ	1	1	-1	-1	-1	-1	1	1
ϵ^{\prime}	1	-1	1	1	1	-1	1	1
$\epsilon^{\prime \prime}$	1		-1		1		-1	

where, $\mathcal{J}_{F}^{2}=\epsilon ; \quad \mathcal{J}_{F} D_{F}=\epsilon^{\prime} D_{F} \mathcal{J}_{F} ; \quad \mathcal{J}_{F} \gamma_{F}=\epsilon^{\prime \prime} \gamma_{F} \mathcal{J}_{F} ; \quad \epsilon, \epsilon^{\prime}, \epsilon^{\prime \prime} \in\{1,-1\}$ Also,

$$
\mathcal{J}_{F} \pi(a)^{*} \mathcal{J}_{F}^{*}=\pi(a)^{o} \forall a \in \mathcal{A}_{F}
$$

so that

$$
\begin{aligned}
& {\left[\pi(a), \pi(b)^{\circ}\right]=0, \forall a, b \in \mathcal{A}_{F} \text { (zero order condition) }} \\
& {\left[[D, \pi(a)], \pi(b)^{\circ}\right]=0 \quad \text { (1st order condition) }}
\end{aligned}
$$

Determination of \mathcal{J}_{F}

Existence of $\gamma_{F} \rightarrow$ even KO dimension $\rightarrow \epsilon^{\prime}=1 \rightarrow\left[D_{F}, \mathcal{J}_{F}\right]=0$

$$
\begin{gather*}
\left.\left.\left.\left.\mathcal{J}_{F}: \mid \pm 1, \frac{1}{2}, \frac{1}{2}\right)\right) \longleftrightarrow \pm \mid \pm 1, \frac{1}{2},-\frac{1}{2}\right)\right) \tag{14}\\
I_{D}=\operatorname{dim}\left(H_{+}\right)-\operatorname{dim}\left(H_{-}\right)=-4 \neq 0
\end{gather*}
$$

J.Barrett, J. Math. Phys. 56, 082301 (2015)

$$
\begin{equation*}
\left[\mathcal{J}_{F}, \gamma_{F}\right]=0 \text { for } \mathrm{KO} \operatorname{dim}-0,4 \tag{15}
\end{equation*}
$$

$$
\mathcal{J}_{F} \psi_{1}=\psi_{2} ; \quad \mathcal{J}_{F} \psi_{2}= \pm \psi_{1} ; \quad \mathcal{J}_{F} \psi_{3}=\psi_{4} ; \quad \mathcal{J}_{F} \psi_{4}= \pm \psi_{3}
$$

As a sample let us write,

$$
\begin{align*}
& \left.\left.\mid \psi_{1}\right)\right)=N\binom{\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|+(\sqrt{3}-1)\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}{(2-\sqrt{3})\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}=\left|1 ; \frac{1}{2}, \frac{1}{2}\right\rangle \\
& \left.\left.\mid \psi_{2}\right)\right)=N\binom{(2-\sqrt{3})\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|}{(\sqrt{3}-1)\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|+\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|}=\left|1 ; \frac{1}{2},-\frac{1}{2}\right\rangle \tag{16}
\end{align*}
$$

Action of \mathcal{J}_{F}-sector-wise in $\mathcal{A}_{F}=L_{3}^{ \pm 1} \oplus L_{3}^{0}$: Swaps the $L_{3}= \pm 1$ states in \mathcal{A}_{F} as,

$$
\begin{equation*}
\left|\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right| \longleftrightarrow(\pm)\left|-\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right| \tag{17}
\end{equation*}
$$

Swaps between $L_{3}=0$ states in \mathcal{A}_{F} as,

$$
\begin{equation*}
\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right| \longleftrightarrow(\pm)\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right| \tag{18}
\end{equation*}
$$

Simultaneously exchange in upper and lower components indicates that \mathcal{J}_{F} acts non-trivially on the C^{2} sector.

Determination of \mathcal{J}_{F}

In the massless sector-

$$
\mathcal{J}_{F} \psi_{5}=\psi_{6} ; \quad \mathcal{J}_{F} \psi_{6}= \pm \psi_{5} ; \quad \mathcal{J}_{F} \psi_{7}=\psi_{8} ; \quad \mathcal{J}_{F} \psi_{8}= \pm \psi_{7}
$$

These suggest that we should define \mathcal{J}_{F} as following:

$$
\mathcal{J}_{F}=\left(\begin{array}{cc}
0 & 1 \tag{19}\\
-1 & 0
\end{array}\right) \otimes(H \circ P)
$$

where H is the Hermitian conjugation operation and P is the space reversal transformation:

$$
\begin{equation*}
P: \hat{x}_{i} \rightarrow-\hat{x}_{i} \tag{20}
\end{equation*}
$$

Determination of \mathcal{J}_{F}

In the massless sector-

$$
\mathcal{J}_{F} \psi_{5}=\psi_{6} ; \quad \mathcal{J}_{F} \psi_{6}= \pm \psi_{5} ; \quad \mathcal{J}_{F} \psi_{7}=\psi_{8} ; \quad \mathcal{J}_{F} \psi_{8}= \pm \psi_{7}
$$

These suggest that we should define \mathcal{J}_{F} as following:

$$
\mathcal{J}_{F}=\left(\begin{array}{cc}
0 & 1 \tag{19}\\
-1 & 0
\end{array}\right) \otimes(H \circ P)
$$

where H is the Hermitian conjugation operation and P is the space reversal transformation:

$$
\begin{equation*}
P: \hat{x}_{i} \rightarrow-\hat{x}_{i} \tag{20}
\end{equation*}
$$

Under P,however, the fuzzy sphere algebra $\rightarrow\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \lambda \epsilon_{i j k} \hat{x}_{k}$ is non-invariant .

Determination of \mathcal{J}_{F}

In the massless sector-

$$
\mathcal{J}_{F} \psi_{5}=\psi_{6} ; \quad \mathcal{J}_{F} \psi_{6}= \pm \psi_{5} ; \quad \mathcal{J}_{F} \psi_{7}=\psi_{8} ; \quad \mathcal{J}_{F} \psi_{8}= \pm \psi_{7}
$$

These suggest that we should define \mathcal{J}_{F} as following:

$$
\mathcal{J}_{F}=\left(\begin{array}{cc}
0 & 1 \tag{19}\\
-1 & 0
\end{array}\right) \otimes(H \circ P)
$$

where H is the Hermitian conjugation operation and P is the space reversal transformation:

$$
\begin{equation*}
P: \hat{x}_{i} \rightarrow-\hat{x}_{i} \tag{20}
\end{equation*}
$$

Under P,however,the fuzzy sphere algebra $\rightarrow\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \lambda \epsilon_{i j k} \hat{x}_{k}$ is non-invariant .
We elevate the Levi-civita(which is a pseudo tensor) to the level of a tensor, which is defined as

$$
\begin{aligned}
E_{i j k} & =\epsilon_{i j k}, \text { for right handed system } \\
& =-\epsilon_{i j k} \text { for left handed system }
\end{aligned}
$$

Transformation rule under parity as:

$$
\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \lambda E_{i j k} \hat{x}_{k}
$$

remains invariant under $P . \therefore$ Total symmetry group is $O(3)$
G. Fiore and F. Pisacane, DOI: https://doi.org/10.22323/1.318.0184 Modified multiplication rule -

$$
\hat{x}_{i} \hat{x}_{j}=\frac{\lambda^{2}}{4} \delta_{i j} \mathbf{1}+i \frac{\lambda}{2} E_{i j k} \hat{x}_{k}
$$

With this

$$
\begin{align*}
& \mathcal{J}_{F} \psi_{2}=\psi_{1} ; \quad \mathcal{J}_{F} \psi_{1}=-\psi_{2} \quad \mathcal{J}_{F} \psi_{3}=-\psi_{4} ; \quad \mathcal{J}_{F} \psi_{4}=\psi_{3} ; \\
& \mathcal{J}_{F} \psi_{5}=\psi_{6} ; \quad \mathcal{J}_{F} \psi_{6}=-\psi_{5} ; \quad \mathcal{J}_{F} \psi_{7}=-\psi_{8} ; \quad \mathcal{J}_{F} \psi_{8}=\psi_{7} ; \tag{21}
\end{align*}
$$

This implies $\mathcal{J}_{F}^{2}=-1 \quad \rightarrow$ KO dimension- 4. Using this we can show, for example

$$
\begin{gathered}
(H \circ P)\left(\hat{x}_{i}\left|\frac{1}{2}\right\rangle\left\langle\frac{1}{2}\right|\right)=(H \circ P)\left(\hat{x}_{i}\left(\frac{1}{2}+\frac{\hat{x}_{3}}{\lambda}\right)\right)=(H \circ P)\left(\frac{\hat{x}_{i}}{2}+\frac{\hat{x}_{i} \hat{x}_{3}}{\lambda}\right)=H\left(-\frac{\hat{x}_{i}}{2}+\frac{\hat{x}_{i} \hat{x}_{3}}{\lambda}\right) \\
=-\frac{\hat{x}_{i}}{2}+\frac{\hat{x}_{3} \hat{x}_{i}}{\lambda}=-\hat{x}_{i}^{R}\left(\frac{1}{2}-\frac{\hat{x}_{3}}{\lambda}\right)=-\hat{x}_{i}^{R}\left|-\frac{1}{2}\right\rangle\left\langle-\frac{1}{2}\right|
\end{gathered}
$$

Using this ,

$$
\begin{gathered}
\mathcal{J}_{F} \pi\left(\hat{x}_{1}\right) \mathcal{J}_{F}^{\dagger} \psi_{1}=\mathcal{J}_{F} \pi\left(\hat{x}_{1}\right) \psi_{2} ; \quad \pi(\hat{\vec{x}})=\left(\begin{array}{cc}
\hat{\vec{x}} & 0 \\
0 & \hat{\vec{x}}
\end{array}\right) \\
=\mathcal{J}_{F} N\binom{(2-\sqrt{3}) \frac{\hat{x}_{1} \hat{x}_{-}}{\lambda}}{(\sqrt{3}-1)\left(\frac{\hat{x}_{1}}{2}+\frac{\hat{x}_{1} \hat{x}_{3}}{\lambda}\right)+\left(\frac{\hat{x}_{1}}{2}-\frac{\hat{x}_{1} \hat{x}_{3}}{\lambda}\right)} \\
=N\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\frac{\hat{x}_{+} \hat{x}_{1}}{\lambda_{1}}}{(\sqrt{3}-1)\left(-\frac{\hat{x}_{1}}{2}+\frac{\hat{x}_{3} \hat{x}_{1}}{\lambda}\right)-\left(\frac{\hat{x}_{1}}{2}+\frac{\hat{x}_{3} \hat{x}_{1}}{\lambda}\right)}=-\pi\left(\hat{x}_{1}^{R}\right) \psi_{1}
\end{gathered}
$$

For all generators of algebra,

$$
\pi\left(\hat{x}_{i}^{o}\right)=\mathcal{J}_{F} \pi\left(x_{i}\right) \mathcal{J}_{F}^{\dagger}=-\pi\left(\hat{x}_{i}^{R}\right)
$$

This helps us to identify: $\hat{x}_{i}^{o}=-\hat{x}_{i}^{R}=P\left(\hat{x}_{i}^{R}\right)$ and not $\hat{x}_{i}^{o}=\hat{x}_{i}^{R}$

Finally

$$
\left[\hat{x}_{i}^{o}, \hat{x}_{j}^{o}\right]=-i \lambda E_{i j k} \hat{x}_{k}^{o} \quad \rightarrow \quad S U(2)^{R} \text { algebra }
$$

Finally

$$
\left[\hat{x}_{i}^{o}, \hat{x}_{j}^{o}\right]=-i \lambda E_{i j k} \hat{x}_{k}^{o} \quad \rightarrow \quad S U(2)^{R} \text { algebra }
$$

Some key points:

Finally

$$
\left[\hat{x}_{i}^{o}, \hat{x}_{j}^{o}\right]=-i \lambda E_{i j k} \hat{x}_{k}^{o} \quad \rightarrow \quad S U(2)^{R} \text { algebra }
$$

Some key points:

- $L_{i}=\frac{1}{\lambda}\left(\hat{x}_{i}-\hat{x}_{i}^{R}\right) \xrightarrow{P}-L_{i}$ (under P operation). In our definition the commutative counterpart of $L_{i}=E_{i j k} \hat{x}_{j} \hat{p}_{k}$, which also changes sign under parity.
\hat{L} is a vector rather a pseudovector in our formulation.

Finally

$$
\left[\hat{x}_{i}^{o}, \hat{x}_{j}^{o}\right]=-i \lambda E_{i j k} \hat{x}_{k}^{o} \quad \rightarrow \quad \operatorname{SU}(2)^{R} \text { algebra }
$$

Some key points:

- $L_{i}=\frac{1}{\lambda}\left(\hat{x}_{i}-\hat{x}_{i}^{R}\right) \xrightarrow{P}-L_{i}$ (under P operation). In our definition the commutative counterpart of $L_{i}=E_{i j k} \hat{x}_{j} \hat{p}_{k}$, which also changes sign under parity.
\hat{L} is a vector rather a pseudovector in our formulation.
- $\hat{J}_{i}=L_{i}+\frac{\sigma_{i}}{2}$ should also transform the same way, under parity as L_{i} does. So, we have to impose $\sigma_{i} \xrightarrow{P}-\sigma_{i}$.

Finally

$$
\left[\hat{x}_{i}^{o}, \hat{x}_{j}^{o}\right]=-i \lambda E_{i j k} \hat{x}_{k}^{o} \quad \rightarrow \quad \operatorname{SU}(2)^{R} \text { algebra }
$$

Some key points:

- $L_{i}=\frac{1}{\lambda}\left(\hat{x}_{i}-\hat{x}_{i}^{R}\right) \xrightarrow{P}-L_{i}$ (under P operation). In our definition the commutative counterpart of $L_{i}=E_{i j k} \hat{x}_{j} \hat{p}_{k}$, which also changes sign under parity.
\hat{L} is a vector rather a pseudovector in our formulation.
- $\hat{J}_{i}=L_{i}+\frac{\sigma_{i}}{2}$ should also transform the same way, under parity as L_{i} does. So, we have to impose $\sigma_{i} \xrightarrow{P}-\sigma_{i}$.
- Chirality operator: $\gamma_{F}=\frac{1}{\lambda}\left(\sigma_{i} \hat{x}_{i}^{R}-\frac{\lambda}{2}\right) \xrightarrow{P} \gamma_{F}$

Finally

$$
\left[\hat{x}_{i}^{0}, \hat{x}_{j}^{0}\right]=-i \lambda E_{i j k} \hat{x}_{k}^{o} \quad \rightarrow \quad S U(2)^{R} \text { algebra }
$$

Some key points:

- $L_{i}=\frac{1}{\lambda}\left(\hat{x}_{i}-\hat{x}_{i}^{R}\right) \xrightarrow{P}-L_{i}$ (under P operation).

In our definition the commutative counterpart of $L_{i}=E_{i j k} \hat{x}_{j} \hat{p}_{k}$, which also changes sign under parity.
\hat{L} is a vector rather a pseudovector in our formulation.

- $\hat{J}_{i}=L_{i}+\frac{\sigma_{i}}{2}$ should also transform the same way, under parity as L_{i} does. So, we have to impose $\sigma_{i} \xrightarrow{P}-\sigma_{i}$.
- Chirality operator: $\gamma_{F}=\frac{1}{\lambda}\left(\sigma_{i} \hat{x}_{i}^{R}-\frac{\lambda}{2}\right) \xrightarrow{P} \gamma_{F}$
- Dirac Operator:

$$
D_{F}=\frac{i}{r_{n} \lambda} \gamma_{F} E_{i j k} \sigma_{i} \hat{x}_{j}^{R} \hat{x}_{k} \quad \xrightarrow{P} \frac{i}{r_{n} \lambda} \gamma_{F}\left(-E_{i j k}\right)\left(-\sigma_{i}\right)\left(-\hat{x}_{j}^{R}\right)\left(-\hat{x}_{k}\right)=D_{F}
$$

First Order Condition

$$
\left[[D, \pi(a)], \pi(b)^{o}\right]=? 0
$$

Without loss of generality, we can take $a=\hat{x}_{l}, \pi\left(\hat{x}_{l}\right)=\operatorname{diag}\left(\hat{x}_{l}, \hat{x}_{l}\right)$ and $b^{o}=-\hat{x}_{p}^{R}, \pi\left(\hat{x}_{p}^{O}\right)=\operatorname{diag}\left(-\hat{x}_{p}^{R},-\hat{x}_{p}^{R}\right)$.

$$
\begin{gathered}
{\left[\left[D, \pi\left(\hat{x}_{l}\right)\right], \pi\left(\hat{x}_{p}\right)^{o}\right]=} \\
=\frac{i \lambda \gamma_{F}}{r_{n}}\left(\epsilon_{l p m} \sigma_{i} \hat{x}_{i} \hat{x}_{m}^{R}-\epsilon_{j p m} \sigma_{l} \hat{x}_{j} \hat{x}_{m}^{R}\right) \neq 0
\end{gathered}
$$

The first order condition is violated.

Future prospect

Since the above mentioned spectral triple violates the first order condition - an important ingredient in spectral formulation of standard model, this opens the door to investigate phenomena beyond standard model through a toy model.

Future prospect

Since the above mentioned spectral triple violates the first order condition - an important ingredient in spectral formulation of standard model, this opens the door to investigate phenomena beyond standard model through a toy model.
\rightarrow In the formulation of Standard model with almost commutative geometry, a strong restriction is implemented through the First Order Condition requiring that the Dirac operator is a differential operator of order one.

Future prospect

Since the above mentioned spectral triple violates the first order condition - an important ingredient in spectral formulation of standard model, this opens the door to investigate phenomena beyond standard model through a toy model.
\rightarrow In the formulation of Standard model with almost commutative geometry, a strong restriction is implemented through the First Order Condition requiring that the Dirac operator is a differential operator of order one.
\rightarrow Without this restriction, the invariance of the fluctuated Dirac operator, under inner-automorphism of the algebra, is violated.
To restore the invariance one has to add another term to the fluctuated Dirac operator \Rightarrow Beyond SM physics.
(A. H. Chamseddine, A. Connes, W D van Suijlekom, J. Geo. Phys., 73(2013)222-234; JHEP 1311 (2013) 132)

Conclusion

- We have tried to provide a consistent formulation of an even and real spectral triple for the fuzzy sphere in its $1 / 2$ representation using Watamura's prescription of Dirac and grading operator.
- We started by obtaining the explicit expressions of the eigen spinors of $\operatorname{SU}(2)$ covariant forms of Dirac and chirality operators.
- Finally, we demonstrate how the real structure operator in spin- $1 / 2$ representation, consistent with the spectral data of KO dimension-4 can be obtained.
- Symmetry group is now enhanced to $\mathrm{O}(3)$ from $\mathrm{SO}(3)$.
- The first order condition is violated.

Spectral triple with real structure on fuzzy sphere, AC, P Nandi, B Chakraborty, J.Math.Phys. 63 (2022) 2, 023504.

THANK YOU

