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In recent years there has been a growing interest in noncommutative
homogeneous fibrations.

In a C* algebraic approach (Arici and Kaad 2020).

In an Hopf–Galois framework Brezinski and Szymanski (2019,2021)
generalized the notion of a principal comodule algebra.

In arXiv:2111.11284, A.C. and Ó Buachalla showed simple but effective new
framework for producing examples of noncommutative fibrations, both
principal and non-principal, from a nested pair of quantum homogeneous
spaces.

In this project we aim to include a suitable differential structure in this
picture, generalizing Brzeziński and Majid’s notion of a quantum principle
bundle.
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The classical picture

Let G be a group, we have a fibration

M/N → G/N � G/M,

for any two subgroups N ⊆ M ⊆ G .

This fibration is principal if and only if N is a normal subgroup of M.
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A right H-comodule algebra (P,∆R) is said to be a H-Hopf–Galois extension of
B := Pco(H) if for mP : P⊗B P → P the multiplication of P, a bijection is given by

can := (mP ⊗ id) ◦ (id⊗∆R) : P ⊗B P → P ⊗ H.

Definition

A principal right H-comodule algebra is a right H-comodule algebra (P,∆R) such
that P is a Hopf–Galois extension of B := Pco(H) and P is faithfully flat as a right
and left B-module.
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Let A be an Hopf algebra consider a left coideal subalgebra B ⊆ A such that
B+A = AB+. ˙
We have a πB(A)-coaction

∆R,πB := (id⊗ πB) ◦∆, πB : A→ A/B+A

We have Aco(A/B+A) = B.

Definition
If A is faithfully flat as a right B-module, we call B a quantum homogeneous
A-space.
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The right setting to extend the construction of a (principal) fibration by taking the
quotient with respect to a (normal) subgroup is given by nested pairs B ⊆ P ⊆ A
of homogeneous quantum spaces.

The normalcy condition corresponds to the request that πB(P) is an Hopf algebra.

Definition

A principal pair of quantum homogeneous spaces (B,P) is given by a pair of
homogeneous spaces B ⊆ P such that πB(P) is an Hopf algebra.
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Of course πB(P) is not guaranteed to have a coalgebra structure (just like M
might be not normal in N!).

However, even for the pair B ⊆ P ⊆ A we end up within the domain of
Brzeziński and Szymański’s putative theory of noncommutative fiber bundles

Proposition (Generalised Hopf–Galois condition for nested pair of
quantum homogeneous spaces)

The canonical map can : A⊗B A→ A⊗ πB(A) restricts to an isomorphism

P ⊗B P → A�πPπB(P),

in the category A
PMod.

We think of the triple of algebras

B ↪→ P � πB(A)co(πP (A))

as a noncommutative homogeneous fibration.

In order to get an honest bundle with homogeneous fibre we have to add
some informations about the differential structures that are involved.
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Let us recall how the principle case looks like.

Definition (Brzeziński–Majid)

Let H be a Hopf algebra. A quantum principal H-bundle is a pair (P,Ω1(P)),
consisting of a right H-comodule algebra (P,∆R) and a right-H-covariant calculus
Ω1(P), such that:

1 P is a Hopf–Galois extension of B = P co(H).

2 If N ⊆ Ω1
u(P) is the sub-bimodule of the universal calculus corresponding to

Ω1(P), we have ver(N) = P ⊗ I , for some Ad-sub-comodule right ideal

I ⊆ H+ := ker(ε : H → C).

Where ver := can ◦ projB and Ad : H → H ⊗ H is defined by
Ad(h) := h(2) ⊗ S(h(1))h(3).
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We have then the short exact sequence:

0 −→ PΩ1(B)P
ι−→Ω1(P)

ver−→ P ⊗ Λ1(H) −→ 0,

By abuse of notation ver denotes the map induced on Ω1(P) by
identifying Ω1(P) as a quotient of Ω1

u(P).

A principal connection corresponds to a splitting of this sequence.

This corresponds to the classical notion of a principal connection as an
Horizontal complement to the Vertical component of the tangent space.
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When we pass to homogeneous fibrations, things work well at the universal level

Proposition

For any nested pairs of quantum homogeneous spaces, an exact sequence in the
category A

PModπB is given by

0→ PΩ1
u(B)P

ι−→Ω1
u(P)

ver−→ A�πPπB(P)+ → 0.

Definition
A differential nested pair of quantum homogeneous spaces is a nested pair of
quantum homogeneous spaces B ⊆ P ⊆ A together with a sub-object
NP ⊆ Ωu(P) in the category A

PModπB

P .
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Definition
An Ehresmann connection is a left P-module, right πB -comodule, projection
Π : Ω1(P)→ Ω1(P) satisfying

ker(Π) = PΩ1(B)P.

Just like in the principal case, an Ehresmann connection corresponds to a
splitting of the short sequence.

We say that an Ehresmann connection is strong if (id− Π)
(
dP
)
⊆ Ω1(B)P

We can now use these data to produce bimodule connections on
homogeneous vector bundles over quantum homogeneous spaces.
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Definition

For Ω1 a fodc over an algebra B, and F a left B-module, a left connection on F
is a C-linear map ∇ : F → Ω1 ⊗B F satisfying

∇(bf ) = db ⊗ f + b∇f , for all b ∈ B, f ∈ F .

A left bimodule connection on F is a pair (∇, σ) where ∇ is a left connection and
σ : F ⊗B Ω1(B)→ Ω1(B)⊗B F is a bimodule map satisfying

σ(f ⊗B db) = ∇(fb)−∇(f )b.
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We define a functor Ψ : πBMod→ PMod,V 7→ P�πB V ,

For any F := Ψ(V ) we have a natural embedding

j : Ω1(B)⊗B F ↪→ Ω1(B)P �πB V ,

given by the multiplication map.

A strong Ehresmann connection Π defines a connection ∇ on F by

∇ : F → Ω1(B)⊗B F ,
∑
i

pi ⊗ vi 7→ j−1
(
(id− Π)(dpi )⊗ vi

)
.
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Let’s look at some examples from quantum flag manifolds.

Let g be a finite-dimensional complex semisimple Lie algebra, for q 6= −1, 0, 1
we have Uq(g), the Drinfeld–Jimbo quantised enveloping algebra.

We also have a correspondent Oq(G ), the quantum coordinate algebra of
G , where G is the compact, simply-connected, simple Lie group having g as
its complexified Lie algebra.

There is an action Uq(g)⊗Oq(G )→ Oq(G ).
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Take the Dynkin diagram of G and crossed an arbitrary number of nodes.

We define the levi subalgebra of Uq(g)

Uq(lS) :=
〈
Ki ,Ej ,Fj | i = 1, . . . , l ; j ∈ S

〉
.

We call the quantum flag manifold associated to S coideal subalgebra of
Uq(lS)-invariants:

Oq

(
G/LS

)
:= Uq(lS )Oq(G ).
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Theorem (Ó Buachalla, Somberg - Bhattacharjee, A.C., D́ıaz Garćıa-
A.C., Mukhopadhyay)

Let G = An,Dn,G2 and denote by Oq(Fg) the full quantum flag manifold of G .
There exist exactly two right Oq(G )-covariant complex structures Ω±q (Fg) of
classical dimension.

This calculi restrict to Heckenberger–Kolb calculi when we restrict to the
irreducible cases!

It holds that Oq

(
G/LS

)
⊆ Oq(Fg). So we have a fibration where fibre, base

and bundle are all quantum flag manifolds!

Example

For the Drinfeld–Jimbo quantum group Uq(sln+1) we consider the coloured
Dynkin diagrams.

and .

This gives us the fibration

Oq(CPn) ↪→ Oq(FSUn+1 ) � Oq(FSUn).
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A.C., Mukhopadhyay)

Let G = An,Dn,G2 and denote by Oq(Fg) the full quantum flag manifold of G .
There exist exactly two right Oq(G )-covariant complex structures Ω±q (Fg) of
classical dimension.

This calculi restrict to Heckenberger–Kolb calculi when we restrict to the
irreducible cases!

It holds that Oq

(
G/LS

)
⊆ Oq(Fg). So we have a fibration where fibre, base

and bundle are all quantum flag manifolds!

Example

For the Drinfeld–Jimbo quantum group Uq(sln+1) we consider the coloured
Dynkin diagrams.

and .

This gives us the fibration

Oq(CPn) ↪→ Oq(FSUn+1 ) � Oq(FSUn).

Alessandro Carotenuto (Charles University, Prague) Differential nested pairs of quantum homogeneous spaces Based on a joint work with Réamonn Ó BuachallaSeptember 30, 2022 16 / 18



Morever when we we consider the restricted calculi Ω±q
(
G/LS

)
we have a

differential nested pair and hence a quantum bundle with homogeneous fibre!

The zero map on Ω±q
(
G/LS

)
is a strong connection.

We can realize the connections on homogeneous vector bundles as associated
to the zero map on Ω±q

(
G/LS

)
Theorem (Work in progress)

Let F be a homogeneous vector bundle over Oq

(
G/LS

)
. There exist two unique

right Oq(G )-covariant connections ∇± : F → F ⊗
Oq

(
G/LS

) Ω±q
(
G/LS

)
. Moreover

∇± are bimodule connections.
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Thank you
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