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Introduction

I In this talk, by a noncommutative field theory I will mean a field

theory that is a deformation of a classical field theory via a

star-product on the algebras of functions, differential forms, . . .

I Of particular interest (e.g. in string theory) are noncommutative

gauge theories — after over 20 years of intensive work, there are

still many open general problems in the construction of these theories

I Problems with star-gauge transformations:

δ?λA = dλ+ [λ?,A] = dλ+ λ ? A− A ? λ

In general, closure of gauge algebra is obstructed:

(δ?λ1
δ?λ2
− δ?λ2

δ?λ1
)A 6= δ?

[λ1
?,λ2]

A

I Failure of Leibniz rule: d(f ? g) 6= df ? g + f ? dg
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Introduction

I Noncommutative gravity: in general (particularly for nonassociative

star-products) metric aspects of noncommutative differential

geometry only partially developed, no general version of the

Einstein-Hilbert action is known
(Aschieri et al. ’05; Blumenhagen & Fuchs ’16; Aschieri, Dimitrijević Ćirić & Sz ’17)

I Try to treat as a deformation of ‘gauge theory’:

Use Einstein-Cartan principal bundle formulation, corresponding

action is the Palatini action
(Chamseddine ’01; Cardela & Zanon ’03; Aschieri & Castellani ’09; . . . )

I L∞-algebras offer a natural arena for systematic constructions of

noncommutative gauge theories that deal with these issues —

so far not understood beyond “semi-classical (Poisson) level”
(Blumenhagen, Brunner, Kupriyanov & Lüst ’18; Kupriyanov & Sz ’21)
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I Try to treat as a deformation of ‘gauge theory’:

Use Einstein-Cartan principal bundle formulation, corresponding

action is the Palatini action
(Chamseddine ’01; Cardela & Zanon ’03; Aschieri & Castellani ’09; . . . )

I L∞-algebras offer a natural arena for systematic constructions of

noncommutative gauge theories that deal with these issues —

so far not understood beyond “semi-classical (Poisson) level”
(Blumenhagen, Brunner, Kupriyanov & Lüst ’18; Kupriyanov & Sz ’21)



L∞-Algebras in Physics & Mathematics

I Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers & van Dam ’85)

(δα δβ − δβ δα)Φ = δC(α,β,Φ)Φ

I “Generalized” gauge symmetries of closed string field theory involve

higher brackets: (Zwiebach ’92)

δαΦ =
∑
n

`n(α,Φn−1)

I Dual to differential graded (commutative) algebras (Lada & Stasheff ’92)

I Deformation theory: Kontsevich’s Formality Theorem based on

L∞-quasi-isomorphims of differential graded Lie algebras

I Any classical field theory with “generalized” gauge symmetries is

determined by an L∞-algebra, due to duality with BV–BRST
(Hohm & Zwiebach ’17; Jurčo, Raspollini, Sämann & Wolf ’18)



Goals & Disclaimers

I Twisted diffeomorphism symmetry does not fit (nicely) into

L∞-algebra picture =⇒ deform L∞-algebra to make it compatible

I In this talk: Define deformations of field theories with braided

gauge symmetries, formulate through a general notion of braided

L∞-algebras which systematically constructs new examples

I Disclaimers:

I I do not claim notion of ‘braided gauge symmetry’ is new
— kinematical aspects of this idea have appeared before
(Brzezinkski & Majid ’92; . . . ) — ideas and techniques borrowed from
twisted noncommutative gravity

I I do not know anything yet about corresponding QFTs —
they should be related to Oeckl’s ‘braided QFT’

(Oeckl ’99; Sasai & Sasakura ’07)

I I’ll only discuss diffeomorphism-invariant field theories here for
simplicity — Yang-Mills theory, scalar field theories, . . . also fit

I Physical realizations? To be looked into . . .
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What is a Gauge Symmetry?

I Consider the example of Chern-Simons theory on a 3D manifold M:

Let g be a quadratic Lie algebra with pairing Trg, then the

Chern-Simons action for a gauge field A ∈ Ω1(M, g) is

S =

∫
M

Trg

(1

2
A ∧ dA +

1

3!
A ∧ [A,A]g

)

I This action is invariant under the gauge transformations

δλA = dλ− [λ,A]g for any λ ∈ Ω0(M, g): δλS = 0

I The Euler-Lagrange equations δS = 0 (for arbitrary variations δA)

are FA = 0, where FA = dA + 1
2 [A,A]g ∈ Ω2(M, g) is the

curvature of the connection A, which is covariant: δλFA = [λ,FA]g

I Gauge symmetry acts on classical solutions:

FA+δλA = FA + δλFA + O(λ2), so there are gauge redundancies in

the classical degrees of freedom

I Space of physical states: Moduli space of classical solutions (flat

connections) modulo gauge transformations
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What is a Gauge Symmetry?

I An equivalent perspective on gauge redundancies: gauge

transformations δλA are special cases of general field variations δA:

δλS =

∫
M

Trg
(
δλA ∧ FA

)
= −

∫
M

Trg
(
λ dAFA

)
dAFA = dFA + [FA,A]g ∈ Ω3(M, g) covariant derivative of FA

I Bianchi identity dAFA = 0 is equivalent to gauge invariance of

the action δλS = 0 for all λ ∈ Ω0(M, g)

I This is just a simple example of the more general statement of

Noether’s Second Theorem: Gauge symmetries are in 1-1

correspondence with differential identities among the equations of

motion (off-shell)

I Noether identities exhibit interdependence of degrees of freedom due

to gauge symmetries
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What is a Gauge Symmetry?

I To describe the classical moduli space of Chern-Simons theory, we

relied on 3 ingredients:

I The graded vector space V = Ω•(M, g) = V0 ⊕ V1 ⊕ V2 ⊕ V3,
where Vp = Ωp(M, g) (p = 0 are gauge parameters, p = 1 are
fields, p = 2 are field equations, p = 3 are Noether identities)

I The ‘brackets’ `1 = d , `2 = [−,−]g on V ; `1 makes V into a
cochain complex, which is a derivation of `2, while `2 is a graded Lie
bracket on V (antisymmetric and satisfies Jacobi identity)

I The action is constructed by pairing A with `1(A) and `2(A,A)

through the ‘cyclic pairing’ 〈α, β〉 =

∫
M

Trg(α ∧ β) on V

I Chern-Simons gauge theory is organised by a

(cyclic) differential graded Lie algebra

I This is the prototypical example of a more general statement:

Any classical field theory with “generalized” gauge symmetries is

organised by a (cyclic) L∞-algebra
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What is an L∞-Algebra?

I Graded vector space: V = · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ,
with graded exterior algebra ΛV = ∧•(V [1]) viewed as a free

cocommutative coalgebra

I L : ΛV −→ ΛV coderivation of degree |L| = 1 , with L2 = 0

I Write L2 = 0 in ‘components’ L = {`n} where
`n : ∧n(V [1]) −→ V [1] with |`n| = 1, or restoring original grading
`n : ∧nV −→ V with |`n| = 2− n :

`1(`1(v)) = 0 (V , `1) is a cochain complex

`1(`2(v ,w)) = `2(`1(v),w)± `2(v , `1(w)) `1 is a derivation of `2

`2(v , `2(w , u)) + cyclic = (`1 ◦ `3 ± `3 ◦ `1)(v ,w , u) Jacobi up to homotopy

plus “higher homotopy Jacobi identities”

I L∞-algebras are generalizations of differential graded Lie algebras



What is an L∞-Algebra?

I Graded vector space: V = · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ,
with graded exterior algebra ΛV = ∧•(V [1]) viewed as a free

cocommutative coalgebra

I L : ΛV −→ ΛV coderivation of degree |L| = 1 , with L2 = 0

I Write L2 = 0 in ‘components’ L = {`n} where
`n : ∧n(V [1]) −→ V [1] with |`n| = 1, or restoring original grading
`n : ∧nV −→ V with |`n| = 2− n :

`1(`1(v)) = 0 (V , `1) is a cochain complex

`1(`2(v ,w)) = `2(`1(v),w)± `2(v , `1(w)) `1 is a derivation of `2

`2(v , `2(w , u)) + cyclic = (`1 ◦ `3 ± `3 ◦ `1)(v ,w , u) Jacobi up to homotopy

plus “higher homotopy Jacobi identities”

I L∞-algebras are generalizations of differential graded Lie algebras



What is an L∞-Algebra?

I Graded vector space: V = · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ,
with graded exterior algebra ΛV = ∧•(V [1]) viewed as a free

cocommutative coalgebra

I L : ΛV −→ ΛV coderivation of degree |L| = 1 , with L2 = 0

I Write L2 = 0 in ‘components’ L = {`n} where
`n : ∧n(V [1]) −→ V [1] with |`n| = 1, or restoring original grading
`n : ∧nV −→ V with |`n| = 2− n :

`1(`1(v)) = 0 (V , `1) is a cochain complex

`1(`2(v ,w)) = `2(`1(v),w)± `2(v , `1(w)) `1 is a derivation of `2

`2(v , `2(w , u)) + cyclic = (`1 ◦ `3 ± `3 ◦ `1)(v ,w , u) Jacobi up to homotopy

plus “higher homotopy Jacobi identities”

I L∞-algebras are generalizations of differential graded Lie algebras



Cyclic L∞-Algebras

I Cyclic pairing 〈−,−〉 : V × V −→ R is non-degenerate, graded

symmetric, bilinear and satisfies cyclicity:

〈v0, `n(v1, v2, . . . , vn)〉 = ±〈vn, `n(v0, v1, . . . , vn−1)〉

I Cyclic L∞-algebras generalize quadratic Lie algebras

I Dualizing gives graded commutative algebra derivation

Q = L∗ : Λ∗V −→ Λ∗V with |Q| = 1 , Q2 = 0

(Chevalley-Eilenberg algebra)

I Cyclic pairing is dually a graded symplectic 2-form ω ∈ Ω2(V [1])

which is Q-invariant
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L∞-Algebras of Classical Field Theories

I BV formalism constructs a dg algebra (C∞• (V [1]),QBV) on graded

vector space V of BV fields (ghosts, fields and antifields)

I Translate coordinate functions ξ to elements of vector spaces, then

action of QBV is a polynomial in ghosts, fields and antifields and

their derivatives, dual to sum over all brackets `n on V :

QBVξ = `1(ξ) + 1
2 `2(ξ, ξ) + · · ·

I BV symplectic form (inducing antibracket) of degree −1 on V

induces cyclic pairing of degree −3

· · · V0 V1 V2 V3 · · ·
· · · gauge par. fields field eqs. Noether ids. · · ·

I V−k encode ‘higher gauge transformations’ (ghosts-for-ghosts, etc.)
for reducible symmetries



L∞-Algebras of Classical Field Theories

I Gauge transformations of fields A ∈ V1 by λ ∈ V0:

δλA = `1(λ) + `2(λ,A) + · · ·

I Closure of gauge algebra: [δλ1 , δλ2 ]A = δC(λ1,λ2;A)A

C (λ1, λ2;A) = `2(λ1, λ2) + `3(λ1, λ2,A) + · · ·

I Field equations: FA = `1(A)− 1
2 `2(A,A) + · · ·

I Gauge covariance: δλFA = `2(λ,FA) + `3(λ,FA,A) + · · ·

I Noether ids: IAFA = `1(FA) + `2(FA,A) + · · · ≡ 0 (off-shell)

I Action: S = 1
2 〈A, `1(A)〉 − 1

3! 〈A, `2(A,A)〉+ · · ·
δS = 〈δA,FA〉 , δλS = 〈δλA,FA〉 = −〈λ, IAFA〉

I Moduli space = field equations / gauge transformations
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Conventional Star-Gauge Symmetry

I Consider noncomm. field theory defined with the Moyal-Weyl

star-product, for a constant Poisson bivector θ on M = Rd :

f ? g =
∞∑
n=0

( i

2

)n 1

n!
θµ1ν1 · · · θµnνn ∂µ1 · · · ∂µn f ∂ν1 · · · ∂νng

I Let g be a matrix Lie algebra, λ ∈ Ω0(M, g) gauge parameter,

A ∈ Ω1(M, g) gauge field

I A star-gauge transformation is the naive deformation of a classical

gauge transformation: δ?λA = dλ− [λ?,A]g

I Problem: These gauge variations do not close on g:

[δ?λ1
, δ?λ2

] = δ?
[λ1
?,λ2]g

, but star-commutator does not close:

[λ1
?, λ2]g := λ1 ? λ2 − λ2 ? λ1 /∈ Ω0(M, g)

(Exception: g = u(N) in fundamental representation)
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Closing Star-Gauge Transformations

I Enveloping alg-valued gauge symm: Closure takes place in universal

enveloping algebra Ug, so extend λ ∈ Ω0(M,Ug), A ∈ Ω1(M,Ug)
(Jurčo, Schraml, Schupp & Wess ’00; Aschieri & Castellani ’09)

Introduces (infinitely many) new degrees of freedom, no good classical

limit

I Seiberg-Witten map: Noncommutative gauge orbits induced by

classical gauge orbits: Â(A + δλA) = Â(A) + δ?
λ̂(λ,A)

Â(A);

no new degrees of freedom, new interactions appear
(Seiberg & Witten ’99)

Seiberg-Witten map not known in closed form, describes star-gauge

transformations only to lowest orders in θ

I Gravity? If ξ1, ξ2 are vector fields, then [ξ1
?, ξ2] is not a vector field

No analog of Seiberg-Witten map for deformed diffeomorphisms, naturally

defined using Drinfel’d twist techniques (Aschieri et al. ’05)
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λ̂(λ,A)
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Drinfel’d Twist Deformation Quantization

I Let F = fα ⊗ fα ∈ UΓ(TM)⊗ UΓ(TM) be a Drinfel’d twist;

e.g. Moyal-Weyl twist F = exp
(
− i

2 θ
µν ∂µ ⊗ ∂ν

)

I If A is a UΓ(TM)-module algebra (functions, forms, tensors on M),

then Γ(TM) acts on A via Lie derivative and Leibniz rule

I Deform product on A into a star-product:

a ? b = ·F−1(a⊗ b) = f̄α(a) · f̄α(b)

I Defines noncommutative algebra A? carrying representation of

twisted Hopf algebra UFΓ(TM):

ξ(a ? b) = ξ(1)(a) ? ξ(2)(b) , ∆(ξ) = ξ(1) ⊗ ξ(2)

I If A is commutative, then A? is braided-commutative:

a ? b = R̄α(b) ? R̄α(a)

R = F−2 = Rα ⊗ Rα = triangular R-matrix
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Braided Gauge Symmetry

I Braided Lie algebra Ω0
?(M, g): [λ1, λ2]?g := [−,−]g ◦ F−1(λ1 ⊗ λ2)

I Braided antisymmetry and braided Jacobi identity:

[λ1, λ2]?g = −[R̄αλ2, R̄αλ1]?

[λ1, [λ2, λ3]?g]?g = [[λ1, λ2]?g, λ3]?g + [R̄α(λ2), [R̄α(λ1), λ3]?g]?g

(Woronowicz ’89; Majid ’93; . . . )

I For matrix g: [λ1, λ2]?g = λ1 ? λ2 − R̄α(λ2) ? R̄α(λ1) 6= [λ1
?, λ2]g

I Braided gauge fields, matter fields A ∈ Ω1
?(M, g) , φ ∈ Ωp

?(M,W )

transform in left/right braided representations:

δ?Lλ φ = −λ ? φ , δ?Lλ A = dλ− [λ,A]?g

δ?Rλ φ = −R̄α(λ) ? R̄α(φ) , δ?Rλ A = dλ+ [A, λ]?g

Star-gauge transformations don’t see left/right distinction

— we’ll only consider left ones from now on
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Braided Gauge Symmetry

I Braided gauge transformations satisfy braided Leibniz rule:

δ?λ(φ⊗ A) = δ?λφ⊗ A + R̄αφ⊗ δ?
R̄αλ

A

I They close a braided Lie algebra:[
δ?λ1
, δ?λ2

]?
:= δ?λ1

◦ δ?λ2
− δ?

R̄αλ2
◦ δ?

R̄αλ1
= δ?[λ1,λ2]?g

I Braided left/right covariant derivatives:

dA?Lφ := dφ+ A ∧? φ , dA?Rφ := dφ+ R̄α(A) ∧? R̄α(φ)

Braided covariance: δ?λ
(
dA
?L,Rφ

)
= −λ ?

(
dA
?L,Rφ

)
I Braided curvature:

F ?A := dA + 1
2 [A,A]?g , δ?λF

?
A = −[λ,F ?A ]?g

I Braided diffeomorphisms Γ?(TM):

L?ξT := Lf̄αξ (̄fαT ) ,
[
L?ξ1

,L?ξ2

]?
= L?[ξ1,ξ2]?
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Braided Chern-Simons Theory

S? =

∫
M

Trg

(1

2
A ∧? dA +

1

3!
A ∧? [A,A]?g

)
I Invariant under braided gauge transformations from Ω0

?(M, g)

No extra degrees of freedom introduced

I Field equations: F ?A = 0

I Field equations are braided covariant, but braided gauge symmetries

do not produce new solutions:

δ?λF
?
A 6= F ?A+δ?λA

− F ?A

There is no “moduli space” of classical solutions

I Bianchi identities are modified:

1
2

(
dA?LF

?
A + dA?RF

?
A

)
= − 1

4 [R̄α(A), [R̄α(A),A]?g]?g

I Braided Noether identity off-shell: justifies interpretation of local

braided symmetries as “gauge”
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Braided L∞-Algebras

I If (V , {`n}) is a classical L∞-algebra in the category of

UΓ(TM)-modules, then (V , {`?n}) is a braided L∞-algebra in the

category of UFΓ(TM)-modules, where

`?n(v1 ∧ · · · ∧ vn) := `n(v1 ∧? · · · ∧? vn)

I Braided graded antisymmetry:

`?n(. . . , v , v ′, . . . ) = −(−1)|v | |v
′| `?n(. . . , R̄α(v ′), R̄α(v), . . . )

+ braided homotopy Jacobi identities (unchanged for n = 1, 2)

I Cyclic pairing: 〈−,−〉? := 〈−,−〉 ◦ F−1

I Example: Braided Chern-Simons theory built on dg braided Lie

algebra with Vp = Ωp(M, g) and

`?1 = `1 = d , `?2 = [−,−]?g
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Braided L∞-Algebras of Braided Field Theories

I Braided gauge transformations δ?λA = `?1(λ) + `?2(λ,A) + · · ·
close a braided Lie algebra under braided commutator [−,−]?

I Braided field eqs F ?A = `?1(A)− 1
2 `

?
2(A,A) + · · · are covariant:

δ?λF
?
A = `?2(λ,F ?A) + 1

2

(
`?3(λ,F ?A ,A)− `?3(λ,A,F ?A)

)
+ · · ·

I No moduli space of solutions to F ?A = 0, but braided Noether ids
from weighted sum over all braided homotopy relations on (An):

I?AF ?A = `?1 (F ?A ) + 1
2

(
`?2 (F ?A ,A)− `?2 (A,F ?A )

)
+ 1

3!
`?1
(
`?3 (A3)

)
+ 1

4

(
`?2 (`?2 (A2),A)− `?2 (A, `?2 (A2))

)
+ · · · ≡ 0

I Action: S = 1
2 〈A, `

?
1(A)〉? − 1

3! 〈A, `
?
2(A,A)〉? + · · ·

δS = 〈δA,F ?A 〉? , δ?λS = −〈λ, I?AF ?A 〉? 6= 〈δ?λA,F ?A 〉?
Braided gauge variations not special directions of general field variations

I Systematic constructions of new noncomm. field theories with no
new degrees of freedom, good classical limit, and some “surprises”
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Einstein-Cartan-Palatini Gravity (4d)

S =

∫
M

Tr
(1

2
e ∧ e ∧ R +

Λ

4
e ∧ e ∧ e ∧ e

)
I Fields: e ∈ Ω1(M,R1,3) , ω ∈ Ω1(M, so(1, 3))

R = dω + 1
2 [ω, ω] ∈ Ω2(M, so(1, 3)) , Tr : ∧4(R1,3) −→ R

I (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

Γ(TM) n Ω0(M, so(1, 3))

I Bianchi identities: dωT = R ∧ e , dωR = 0

T = dωe = de + ω ∧ e = torsion of ω

I Field equations: e ∧ T = 0 , e ∧ R + Λ e ∧ e ∧ e = 0

For e non-degenerate, equivalent to torsion-free + Einstein equations

I L∞-algebra is not a dg Lie algebra (`3 6= 0)
(Dimitrijević Ćirić, Giotopoulos, Radovanović & Sz ’20)
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Braided Noncommutative Gravity (4d)

I Invariant under braided semi-direct product:

Γ?(TM) n? Ω0
?(M, so(1, 3))

I Field equations: T ?
L,R := dω?L,Re = braided left/right torsion of ω

e ∧? T ?
L − T ?

R ∧? e −dω?L(e ∧? e)− dω?R(e ∧? e) = 0

2 e ∧? R? + 2R? ∧? e + 6 Λ e ∧? e ∧? e
+ e ∧? dω + dω ∧? e + R̄α(e) ∧? [R̄α(ω), ω]? = 0

Covariant, classical limit is torsion-free + Einstein equations

I Action:

S? =

∫
M

Tr
(1

2
e ∧? e ∧? R? +

Λ

4
e ∧? e ∧? e ∧? e

)
− 1

24

∫
M

Tr
(
ω ∧?

(
2 e ∧? T ?

L − 2T ?
R ∧? e + dω?L(e ∧? e) + dω?R(e ∧? e)

))
Gauge invariant with good classical limit

I Noether ids: complicated . . . — New deformation of general relativity
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