A New Look at Symmetries in Noncommutative Field Theory

Richard Szabo

UNIVERSITY

Outline

- Introduction/Motivation
- Gauge symmetry and L_{∞}-algebras
- Braided gauge symmetry and braided L_{∞}-algebras
- Example: Braided noncommutative gravity

> with M. Dimitrijević Ćirić, G. Giotopoulos \& V. Radovanović $[$ [arXiv:2103.08939]

Introduction

- In this talk, by a noncommutative field theory I will mean a field theory that is a deformation of a classical field theory via a star-product on the algebras of functions, differential forms, ...
- Of particular interest (e.g. in string theory) are noncommutative gauge theories - after over 20 years of intensive work, there are still many open general problems in the construction of these theories

Introduction

- In this talk, by a noncommutative field theory I will mean a field theory that is a deformation of a classical field theory via a star-product on the algebras of functions, differential forms, ...
- Of particular interest (e.g. in string theory) are noncommutative gauge theories - after over 20 years of intensive work, there are still many open general problems in the construction of these theories
- Problems with star-gauge transformations:

$$
\delta_{\lambda}^{\star} A=\mathrm{d} \lambda+[\lambda \star A]=\mathrm{d} \lambda+\lambda \star A-A \star \lambda
$$

In general, closure of gauge algebra is obstructed:

$$
\left(\delta_{\lambda_{1}}^{\star} \delta_{\lambda_{2}}^{\star}-\delta_{\lambda_{2}}^{\star} \delta_{\lambda_{1}}^{\star}\right) A \neq \delta_{\left[\lambda_{1}, \lambda_{2}\right]}^{\star} A
$$

- Failure of Leibniz rule: $\mathrm{d}(f \star g) \neq \mathrm{d} f \star g+f \star \mathrm{~d} g$

Introduction

- Noncommutative gravity: in general (particularly for nonassociative star-products) metric aspects of noncommutative differential geometry only partially developed, no general version of the Einstein-Hilbert action is known
(Aschieri et al. '05; Blumenhagen \& Fuchs '16; Aschieri, Dimitrijević Ćirić \& Sz '17)

Introduction

- Noncommutative gravity: in general (particularly for nonassociative star-products) metric aspects of noncommutative differential geometry only partially developed, no general version of the Einstein-Hilbert action is known
(Aschieri et al. '05; Blumenhagen \& Fuchs '16; Aschieri, Dimitrijević Ćirić \& Sz '17)
- Try to treat as a deformation of 'gauge theory':

Use Einstein-Cartan principal bundle formulation, corresponding action is the Palatini action
(Chamseddine '01; Cardela \& Zanon '03; Aschieri \& Castellani '09; . . .)

Introduction

- Noncommutative gravity: in general (particularly for nonassociative star-products) metric aspects of noncommutative differential geometry only partially developed, no general version of the Einstein-Hilbert action is known
(Aschieri et al. '05; Blumenhagen \& Fuchs '16; Aschieri, Dimitrijević Ćirić \& Sz '17)
- Try to treat as a deformation of 'gauge theory':

Use Einstein-Cartan principal bundle formulation, corresponding action is the Palatini action
(Chamseddine '01; Cardela \& Zanon '03; Aschieri \& Castellani '09; . . .)

- L_{∞}-algebras offer a natural arena for systematic constructions of noncommutative gauge theories that deal with these issues so far not understood beyond "semi-classical (Poisson) level"
(Blumenhagen, Brunner, Kupriyanov \& Lüst '18; Kupriyanov \& Sz '21)

L_{∞}-Algebras in Physics \& Mathematics

- Higher spin gauge theories with field-dependent gauge parameters:
(Berends, Burgers \& van Dam '85)

$$
\left(\delta_{\alpha} \delta_{\beta}-\delta_{\beta} \delta_{\alpha}\right) \Phi=\delta_{C(\alpha, \beta, \Phi)} \Phi
$$

- "Generalized" gauge symmetries of closed string field theory involve higher brackets:
(Zwiebach '92)

$$
\delta_{\alpha} \Phi=\sum_{n} \ell_{n}\left(\alpha, \Phi^{n-1}\right)
$$

- Dual to differential graded (commutative) algebras (Lada \& Stasheff '92)
- Deformation theory: Kontsevich's Formality Theorem based on L_{∞}-quasi-isomorphims of differential graded Lie algebras
- Any classical field theory with "generalized" gauge symmetries is determined by an L_{∞}-algebra, due to duality with BV-BRST
(Hohm \& Zwiebach '17; Jurčo, Raspollini, Sämann \& Wolf '18)

Goals \& Disclaimers

- Twisted diffeomorphism symmetry does not fit (nicely) into L_{∞}-algebra picture \Longrightarrow deform L_{∞}-algebra to make it compatible

Goals \& Disclaimers

- Twisted diffeomorphism symmetry does not fit (nicely) into L_{∞}-algebra picture \Longrightarrow deform L_{∞}-algebra to make it compatible
- In this talk: Define deformations of field theories with braided gauge symmetries, formulate through a general notion of braided L_{∞}-algebras which systematically constructs new examples

Goals \& Disclaimers

- Twisted diffeomorphism symmetry does not fit (nicely) into L_{∞}-algebra picture \Longrightarrow deform L_{∞}-algebra to make it compatible
- In this talk: Define deformations of field theories with braided gauge symmetries, formulate through a general notion of braided L_{∞}-algebras which systematically constructs new examples
- Disclaimers:
- I do not claim notion of 'braided gauge symmetry' is new - kinematical aspects of this idea have appeared before (Brzezinkski \& Majid '92; ...) - ideas and techniques borrowed from twisted noncommutative gravity
- I do not know anything yet about corresponding QFTs they should be related to Oeckl's 'braided QFT'
(Oeckl '99; Sasai \& Sasakura '07)
- I'll only discuss diffeomorphism-invariant field theories here for simplicity - Yang-Mills theory, scalar field theories, ... also fit
- Physical realizations? To be looked into ...

What is a Gauge Symmetry?

- Consider the example of Chern-Simons theory on a 3D manifold M : Let \mathfrak{g} be a quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$, then the Chern-Simons action for a gauge field $A \in \Omega^{1}(M, \mathfrak{g})$ is

$$
S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge \mathrm{~d} A+\frac{1}{3!} A \wedge[A, A]_{\mathfrak{g}}\right)
$$

What is a Gauge Symmetry?

- Consider the example of Chern-Simons theory on a 3D manifold M : Let \mathfrak{g} be a quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$, then the Chern-Simons action for a gauge field $A \in \Omega^{1}(M, \mathfrak{g})$ is

$$
S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge \mathrm{~d} A+\frac{1}{3!} A \wedge[A, A]_{\mathfrak{g}}\right)
$$

- This action is invariant under the gauge transformations $\delta_{\lambda} A=\mathrm{d} \lambda-[\lambda, A]_{\mathfrak{g}}$ for any $\lambda \in \Omega^{0}(M, \mathfrak{g}): \quad \delta_{\lambda} S=0$

What is a Gauge Symmetry?

- Consider the example of Chern-Simons theory on a 3D manifold M : Let \mathfrak{g} be a quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$, then the Chern-Simons action for a gauge field $A \in \Omega^{1}(M, \mathfrak{g})$ is

$$
S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge \mathrm{~d} A+\frac{1}{3!} A \wedge[A, A]_{\mathfrak{g}}\right)
$$

- This action is invariant under the gauge transformations $\delta_{\lambda} A=\mathrm{d} \lambda-[\lambda, A]_{\mathfrak{g}}$ for any $\lambda \in \Omega^{0}(M, \mathfrak{g}): \quad \delta_{\lambda} S=0$
- The Euler-Lagrange equations $\delta S=0$ (for arbitrary variations δA) are $F_{A}=0$, where $F_{A}=\mathrm{d} A+\frac{1}{2}[A, A]_{\mathfrak{g}} \in \Omega^{2}(M, \mathfrak{g})$ is the curvature of the connection A, which is covariant: $\delta_{\lambda} F_{A}=\left[\lambda, F_{A}\right]_{\mathfrak{g}}$

What is a Gauge Symmetry?

- Consider the example of Chern-Simons theory on a 3D manifold M : Let \mathfrak{g} be a quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$, then the Chern-Simons action for a gauge field $A \in \Omega^{1}(M, \mathfrak{g})$ is

$$
S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge \mathrm{~d} A+\frac{1}{3!} A \wedge[A, A]_{\mathfrak{g}}\right)
$$

- This action is invariant under the gauge transformations $\delta_{\lambda} A=\mathrm{d} \lambda-[\lambda, A]_{\mathfrak{g}}$ for any $\lambda \in \Omega^{0}(M, \mathfrak{g}): \quad \delta_{\lambda} S=0$
- The Euler-Lagrange equations $\delta S=0$ (for arbitrary variations δA) are $F_{A}=0$, where $F_{A}=\mathrm{d} A+\frac{1}{2}[A, A]_{\mathfrak{g}} \in \Omega^{2}(M, \mathfrak{g})$ is the curvature of the connection A, which is covariant: $\delta_{\lambda} F_{A}=\left[\lambda, F_{A}\right]_{\mathfrak{g}}$
- Gauge symmetry acts on classical solutions:
$F_{A+\delta_{\lambda} A}=F_{A}+\delta_{\lambda} F_{A}+O\left(\lambda^{2}\right)$, so there are gauge redundancies in the classical degrees of freedom

What is a Gauge Symmetry?

- Consider the example of Chern-Simons theory on a 3D manifold M : Let \mathfrak{g} be a quadratic Lie algebra with pairing $\operatorname{Tr}_{\mathfrak{g}}$, then the Chern-Simons action for a gauge field $A \in \Omega^{1}(M, \mathfrak{g})$ is

$$
S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge \mathrm{~d} A+\frac{1}{3!} A \wedge[A, A]_{\mathfrak{g}}\right)
$$

- This action is invariant under the gauge transformations $\delta_{\lambda} A=\mathrm{d} \lambda-[\lambda, A]_{\mathfrak{g}}$ for any $\lambda \in \Omega^{0}(M, \mathfrak{g}): \delta_{\lambda} S=0$
- The Euler-Lagrange equations $\delta S=0$ (for arbitrary variations δA) are $F_{A}=0$, where $F_{A}=\mathrm{d} A+\frac{1}{2}[A, A]_{\mathfrak{g}} \in \Omega^{2}(M, \mathfrak{g})$ is the curvature of the connection A, which is covariant: $\delta_{\lambda} F_{A}=\left[\lambda, F_{A}\right]_{\mathfrak{g}}$
- Gauge symmetry acts on classical solutions:
$F_{A+\delta_{\lambda} A}=F_{A}+\delta_{\lambda} F_{A}+O\left(\lambda^{2}\right)$, so there are gauge redundancies in the classical degrees of freedom
- Space of physical states: Moduli space of classical solutions (flat connections) modulo gauge transformations

What is a Gauge Symmetry?

- An equivalent perspective on gauge redundancies: gauge transformations $\delta_{\lambda} A$ are special cases of general field variations δA :

$$
\begin{gathered}
\delta_{\lambda} S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\delta_{\lambda} A \wedge F_{A}\right)=-\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\lambda \mathrm{d}^{A} F_{A}\right) \\
\mathrm{d}^{A} F_{A}=\mathrm{d} F_{A}+\left[F_{A}, A\right]_{\mathfrak{g}} \in \Omega^{3}(M, \mathfrak{g}) \text { covariant derivative of } F_{A}
\end{gathered}
$$

What is a Gauge Symmetry?

- An equivalent perspective on gauge redundancies: gauge transformations $\delta_{\lambda} A$ are special cases of general field variations δA :

$$
\begin{gathered}
\delta_{\lambda} S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\delta_{\lambda} A \wedge F_{A}\right)=-\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\lambda \mathrm{d}^{A} F_{A}\right) \\
\mathrm{d}^{A} F_{A}=\mathrm{d} F_{A}+\left[F_{A}, A\right]_{\mathfrak{g}} \in \Omega^{3}(M, \mathfrak{g}) \text { covariant derivative of } F_{A}
\end{gathered}
$$

- Bianchi identity $\mathrm{d}^{A} F_{A}=0$ is equivalent to gauge invariance of the action $\delta_{\lambda} S=0$ for all $\lambda \in \Omega^{0}(M, \mathfrak{g})$

What is a Gauge Symmetry?

- An equivalent perspective on gauge redundancies: gauge transformations $\delta_{\lambda} A$ are special cases of general field variations δA :

$$
\begin{gathered}
\delta_{\lambda} S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\delta_{\lambda} A \wedge F_{A}\right)=-\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\lambda \mathrm{d}^{A} F_{A}\right) \\
\mathrm{d}^{A} F_{A}=\mathrm{d} F_{A}+\left[F_{A}, A\right]_{\mathfrak{g}} \in \Omega^{3}(M, \mathfrak{g}) \quad \text { covariant derivative of } F_{A}
\end{gathered}
$$

- Bianchi identity $\mathrm{d}^{A} F_{A}=0$ is equivalent to gauge invariance of the action $\delta_{\lambda} S=0$ for all $\lambda \in \Omega^{0}(M, \mathfrak{g})$
- This is just a simple example of the more general statement of Noether's Second Theorem: Gauge symmetries are in 1-1 correspondence with differential identities among the equations of motion (off-shell)

What is a Gauge Symmetry?

- An equivalent perspective on gauge redundancies: gauge transformations $\delta_{\lambda} A$ are special cases of general field variations δA :

$$
\begin{gathered}
\delta_{\lambda} S=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\delta_{\lambda} A \wedge F_{A}\right)=-\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\lambda \mathrm{d}^{A} F_{A}\right) \\
\mathrm{d}^{A} F_{A}=\mathrm{d} F_{A}+\left[F_{A}, A\right]_{\mathfrak{g}} \in \Omega^{3}(M, \mathfrak{g}) \quad \text { covariant derivative of } F_{A}
\end{gathered}
$$

- Bianchi identity $\mathrm{d}^{A} F_{A}=0$ is equivalent to gauge invariance of the action $\delta_{\lambda} S=0$ for all $\lambda \in \Omega^{0}(M, \mathfrak{g})$
- This is just a simple example of the more general statement of Noether's Second Theorem: Gauge symmetries are in 1-1 correspondence with differential identities among the equations of motion (off-shell)
- Noether identities exhibit interdependence of degrees of freedom due to gauge symmetries

What is a Gauge Symmetry?

- To describe the classical moduli space of Chern-Simons theory, we relied on 3 ingredients:
- The graded vector space $V=\Omega^{\bullet}(M, \mathfrak{g})=V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3}$, where $V_{p}=\Omega^{p}(M, \mathfrak{g}) \quad(p=0$ are gauge parameters, $p=1$ are fields, $p=2$ are field equations, $p=3$ are Noether identities)

What is a Gauge Symmetry?

- To describe the classical moduli space of Chern-Simons theory, we relied on 3 ingredients:
- The graded vector space $V=\Omega^{\bullet}(M, \mathfrak{g})=V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3}$, where $V_{p}=\Omega^{p}(M, \mathfrak{g}) \quad(p=0$ are gauge parameters, $p=1$ are fields, $p=2$ are field equations, $p=3$ are Noether identities)
- The 'brackets' $\ell_{1}=\mathrm{d}, \ell_{2}=[-,-]_{\mathfrak{g}}$ on $V ; \ell_{1}$ makes V into a cochain complex, which is a derivation of ℓ_{2}, while ℓ_{2} is a graded Lie bracket on V (antisymmetric and satisfies Jacobi identity)

What is a Gauge Symmetry?

- To describe the classical moduli space of Chern-Simons theory, we relied on 3 ingredients:
- The graded vector space $V=\Omega^{\bullet}(M, \mathfrak{g})=V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3}$, where $V_{p}=\Omega^{p}(M, \mathfrak{g}) \quad(p=0$ are gauge parameters, $p=1$ are fields, $p=2$ are field equations, $p=3$ are Noether identities)
- The 'brackets' $\ell_{1}=\mathrm{d}, \ell_{2}=[-,-]_{\mathfrak{g}}$ on $V ; \ell_{1}$ makes V into a cochain complex, which is a derivation of ℓ_{2}, while ℓ_{2} is a graded Lie bracket on V (antisymmetric and satisfies Jacobi identity)
- The action is constructed by pairing A with $\ell_{1}(A)$ and $\ell_{2}(A, A)$ through the 'cyclic pairing' $\langle\alpha, \beta\rangle=\int_{M} \operatorname{Tr}_{\mathfrak{g}}(\alpha \wedge \beta)$ on V

What is a Gauge Symmetry?

- To describe the classical moduli space of Chern-Simons theory, we relied on 3 ingredients:
- The graded vector space $V=\Omega^{\bullet}(M, \mathfrak{g})=V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3}$, where $V_{p}=\Omega^{p}(M, \mathfrak{g}) \quad(p=0$ are gauge parameters, $p=1$ are fields, $p=2$ are field equations, $p=3$ are Noether identities)
- The 'brackets' $\ell_{1}=\mathrm{d}, \ell_{2}=[-,-]_{\mathfrak{g}}$ on $V ; \ell_{1}$ makes V into a cochain complex, which is a derivation of ℓ_{2}, while ℓ_{2} is a graded Lie bracket on V (antisymmetric and satisfies Jacobi identity)
- The action is constructed by pairing A with $\ell_{1}(A)$ and $\ell_{2}(A, A)$ through the 'cyclic pairing' $\langle\alpha, \beta\rangle=\int_{M} \operatorname{Tr}_{\mathfrak{g}}(\alpha \wedge \beta)$ on V
- Chern-Simons gauge theory is organised by a (cyclic) differential graded Lie algebra

What is a Gauge Symmetry?

- To describe the classical moduli space of Chern-Simons theory, we relied on 3 ingredients:
- The graded vector space $V=\Omega^{\bullet}(M, \mathfrak{g})=V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3}$, where $V_{p}=\Omega^{p}(M, \mathfrak{g}) \quad(p=0$ are gauge parameters, $p=1$ are fields, $p=2$ are field equations, $p=3$ are Noether identities)
- The 'brackets' $\ell_{1}=\mathrm{d}, \ell_{2}=[-,-]_{\mathfrak{g}}$ on $V ; \ell_{1}$ makes V into a cochain complex, which is a derivation of ℓ_{2}, while ℓ_{2} is a graded Lie bracket on V (antisymmetric and satisfies Jacobi identity)
- The action is constructed by pairing A with $\ell_{1}(A)$ and $\ell_{2}(A, A)$ through the 'cyclic pairing' $\langle\alpha, \beta\rangle=\int_{M} \operatorname{Tr}_{\mathfrak{g}}(\alpha \wedge \beta)$ on V
- Chern-Simons gauge theory is organised by a (cyclic) differential graded Lie algebra
- This is the prototypical example of a more general statement: Any classical field theory with "generalized" gauge symmetries is organised by a (cyclic) L_{∞}-algebra

What is an L_{∞}-Algebra?

- Graded vector space: $V=\cdots \oplus V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots$, with graded exterior algebra $\Lambda_{V}=\Lambda^{\bullet}(V[1])$ viewed as a free cocommutative coalgebra
$-L: \Lambda_{V} \longrightarrow \Lambda_{V}$ coderivation of degree $|L|=1$, with $L^{2}=0$

What is an L_{∞}-Algebra?

- Graded vector space: $V=\cdots \oplus V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots$, with graded exterior algebra $\Lambda_{V}=\Lambda^{\bullet}(V[1])$ viewed as a free cocommutative coalgebra
- $L: \Lambda_{V} \longrightarrow \Lambda_{V}$ coderivation of degree $|L|=1$, with $L^{2}=0$
- Write $L^{2}=0$ in 'components' $L=\left\{\ell_{n}\right\}$ where $\ell_{n}: \wedge^{n}(V[1]) \longrightarrow V[1]$ with $\left|\ell_{n}\right|=1$, or restoring original grading $\ell_{n}: \wedge^{n} V \longrightarrow V$ with $\left|\ell_{n}\right|=2-n:$

$$
\begin{aligned}
\ell_{1}\left(\ell_{1}(v)\right) & =0 \quad\left(V, \ell_{1}\right) \text { is a cochain complex } \\
\ell_{1}\left(\ell_{2}(v, w)\right) & =\ell_{2}\left(\ell_{1}(v), w\right) \pm \ell_{2}\left(v, \ell_{1}(w)\right) \quad \ell_{1} \text { is a derivation of } \ell_{2}
\end{aligned}
$$

$\ell_{2}\left(v, \ell_{2}(w, u)\right)+$ cyclic $=\left(\ell_{1} \circ \ell_{3} \pm \ell_{3} \circ \ell_{1}\right)(v, w, u)$ Jacobi up to homotopy
plus "higher homotopy Jacobi identities"

What is an L_{∞}-Algebra?

- Graded vector space: $V=\cdots \oplus V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots$, with graded exterior algebra $\Lambda_{V}=\Lambda^{\bullet}(V[1])$ viewed as a free cocommutative coalgebra
$-L: \Lambda_{V} \longrightarrow \Lambda_{V}$ coderivation of degree $|L|=1$, with $L^{2}=0$
- Write $L^{2}=0$ in 'components' $L=\left\{\ell_{n}\right\}$ where $\ell_{n}: \wedge^{n}(V[1]) \longrightarrow V[1]$ with $\left|\ell_{n}\right|=1$, or restoring original grading $\ell_{n}: \wedge^{n} V \longrightarrow V$ with $\left|\ell_{n}\right|=2-n:$

$$
\begin{aligned}
\ell_{1}\left(\ell_{1}(v)\right) & =0 \quad\left(V, \ell_{1}\right) \text { is a cochain complex } \\
\ell_{1}\left(\ell_{2}(v, w)\right) & =\ell_{2}\left(\ell_{1}(v), w\right) \pm \ell_{2}\left(v, \ell_{1}(w)\right) \quad \ell_{1} \text { is a derivation of } \ell_{2}
\end{aligned}
$$

$\ell_{2}\left(v, \ell_{2}(w, u)\right)+$ cyclic $=\left(\ell_{1} \circ \ell_{3} \pm \ell_{3} \circ \ell_{1}\right)(v, w, u)$ Jacobi up to homotopy
plus "higher homotopy Jacobi identities"

- L_{∞}-algebras are generalizations of differential graded Lie algebras

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{n}, \ell_{n}\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)\right\rangle
$$

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{n}, \ell_{n}\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)\right\rangle
$$

- Cyclic L_{∞}-algebras generalize quadratic Lie algebras

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{n}, \ell_{n}\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)\right\rangle
$$

- Cyclic L_{∞}-algebras generalize quadratic Lie algebras
- Dualizing gives graded commutative algebra derivation $Q=L^{*}: \Lambda_{V}^{*} \longrightarrow \Lambda_{V}^{*}$ with $|Q|=1, Q^{2}=0$ (Chevalley-Eilenberg algebra)

Cyclic L_{∞}-Algebras

- Cyclic pairing $\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}$ is non-degenerate, graded symmetric, bilinear and satisfies cyclicity:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{n}, \ell_{n}\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)\right\rangle
$$

- Cyclic L_{∞}-algebras generalize quadratic Lie algebras
- Dualizing gives graded commutative algebra derivation $Q=L^{*}: \Lambda_{V}^{*} \longrightarrow \Lambda_{V}^{*}$ with $|Q|=1, Q^{2}=0$ (Chevalley-Eilenberg algebra)
- Cyclic pairing is dually a graded symplectic 2-form $\omega \in \Omega^{2}(V[1])$ which is Q-invariant

L_{∞}-Algebras of Classical Field Theories

- BV formalism constructs a dg algebra $\left(C_{\bullet}^{\infty}(V[1]), Q_{\mathrm{BV}}\right)$ on graded vector space V of BV fields (ghosts, fields and antifields)
- Translate coordinate functions ξ to elements of vector spaces, then action of Q_{BV} is a polynomial in ghosts, fields and antifields and their derivatives, dual to sum over all brackets ℓ_{n} on V :

$$
Q_{\mathrm{BV}} \xi=\ell_{1}(\xi)+\frac{1}{2} \ell_{2}(\xi, \xi)+\cdots
$$

- BV symplectic form (inducing antibracket) of degree -1 on V induces cyclic pairing of degree -3

- V_{-k} encode 'higher gauge transformations' (ghosts-for-ghosts, etc.) for reducible symmetries

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $F_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $F_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Gauge covariance: $\delta_{\lambda} F_{A}=\ell_{2}\left(\lambda, F_{A}\right)+\ell_{3}\left(\lambda, F_{A}, A\right)+\cdots$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $F_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Gauge covariance: $\delta_{\lambda} F_{A}=\ell_{2}\left(\lambda, F_{A}\right)+\ell_{3}\left(\lambda, F_{A}, A\right)+\cdots$
- Noether ids: $\mathcal{I}_{A} F_{A}=\ell_{1}\left(F_{A}\right)+\ell_{2}\left(F_{A}, A\right)+\cdots \equiv 0$ (off-shell)

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $F_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Gauge covariance: $\delta_{\lambda} F_{A}=\ell_{2}\left(\lambda, F_{A}\right)+\ell_{3}\left(\lambda, F_{A}, A\right)+\cdots$
- Noether ids: $\mathcal{I}_{A} F_{A}=\ell_{1}\left(F_{A}\right)+\ell_{2}\left(F_{A}, A\right)+\cdots \equiv 0$ (off-shell)
- Action: $S=\frac{1}{2}\left\langle A, \ell_{1}(A)\right\rangle-\frac{1}{3!}\left\langle A, \ell_{2}(A, A)\right\rangle+\cdots$

$$
\delta S=\left\langle\delta A, F_{A}\right\rangle \quad, \quad \delta_{\lambda} S=\left\langle\delta_{\lambda} A, F_{A}\right\rangle=-\left\langle\lambda, \mathcal{I}_{A} F_{A}\right\rangle
$$

L_{∞}-Algebras of Classical Field Theories

- Gauge transformations of fields $A \in V_{1}$ by $\lambda \in V_{0}$:

$$
\delta_{\lambda} A=\ell_{1}(\lambda)+\ell_{2}(\lambda, A)+\cdots
$$

- Closure of gauge algebra: $\left[\delta_{\lambda_{1}}, \delta_{\lambda_{2}}\right] A=\delta_{C\left(\lambda_{1}, \lambda_{2} ; A\right)} A$

$$
C\left(\lambda_{1}, \lambda_{2} ; A\right)=\ell_{2}\left(\lambda_{1}, \lambda_{2}\right)+\ell_{3}\left(\lambda_{1}, \lambda_{2}, A\right)+\cdots
$$

- Field equations: $F_{A}=\ell_{1}(A)-\frac{1}{2} \ell_{2}(A, A)+\cdots$
- Gauge covariance: $\delta_{\lambda} F_{A}=\ell_{2}\left(\lambda, F_{A}\right)+\ell_{3}\left(\lambda, F_{A}, A\right)+\cdots$
- Noether ids: $\mathcal{I}_{A} F_{A}=\ell_{1}\left(F_{A}\right)+\ell_{2}\left(F_{A}, A\right)+\cdots \equiv 0$ (off-shell)
- Action: $S=\frac{1}{2}\left\langle A, \ell_{1}(A)\right\rangle-\frac{1}{3!}\left\langle A, \ell_{2}(A, A)\right\rangle+\cdots$

$$
\delta S=\left\langle\delta A, F_{A}\right\rangle \quad, \quad \delta_{\lambda} S=\left\langle\delta_{\lambda} A, F_{A}\right\rangle=-\left\langle\lambda, \mathcal{I}_{A} F_{A}\right\rangle
$$

- Moduli space $=$ field equations / gauge transformations

Conventional Star-Gauge Symmetry

- Consider noncomm. field theory defined with the Moyal-Weyl star-product, for a constant Poisson bivector θ on $M=\mathbb{R}^{d}$:

$$
f \star g=\sum_{n=0}^{\infty}\left(\frac{\mathrm{i}}{2}\right)^{n} \frac{1}{n!} \theta^{\mu_{1} \nu_{1}} \cdots \theta^{\mu_{n} \nu_{n}} \partial_{\mu_{1}} \cdots \partial_{\mu_{n}} f \partial_{\nu_{1}} \cdots \partial_{\nu_{n}} g
$$

Conventional Star-Gauge Symmetry

- Consider noncomm. field theory defined with the Moyal-Weyl star-product, for a constant Poisson bivector θ on $M=\mathbb{R}^{d}$:

$$
f \star g=\sum_{n=0}^{\infty}\left(\frac{\mathrm{i}}{2}\right)^{n} \frac{1}{n!} \theta^{\mu_{1} \nu_{1}} \cdots \theta^{\mu_{n} \nu_{n}} \partial_{\mu_{1}} \cdots \partial_{\mu_{n}} f \partial_{\nu_{1}} \cdots \partial_{\nu_{n}} g
$$

- Let \mathfrak{g} be a matrix Lie algebra, $\lambda \in \Omega^{0}(M, \mathfrak{g})$ gauge parameter, $A \in \Omega^{1}(M, \mathfrak{g})$ gauge field

Conventional Star-Gauge Symmetry

- Consider noncomm. field theory defined with the Moyal-Weyl star-product, for a constant Poisson bivector θ on $M=\mathbb{R}^{d}$:

$$
f \star g=\sum_{n=0}^{\infty}\left(\frac{\mathrm{i}}{2}\right)^{n} \frac{1}{n!} \theta^{\mu_{1} \nu_{1}} \cdots \theta^{\mu_{n} \nu_{n}} \partial_{\mu_{1}} \cdots \partial_{\mu_{n}} f \partial_{\nu_{1}} \cdots \partial_{\nu_{n}} g
$$

- Let \mathfrak{g} be a matrix Lie algebra, $\lambda \in \Omega^{0}(M, \mathfrak{g})$ gauge parameter, $A \in \Omega^{1}(M, \mathfrak{g})$ gauge field
- A star-gauge transformation is the naive deformation of a classical gauge transformation: $\delta_{\lambda}^{\star} A=\mathrm{d} \lambda-[\lambda, A]_{\mathfrak{g}}$

Conventional Star-Gauge Symmetry

- Consider noncomm. field theory defined with the Moyal-Weyl star-product, for a constant Poisson bivector θ on $M=\mathbb{R}^{d}$:

$$
f \star g=\sum_{n=0}^{\infty}\left(\frac{\mathrm{i}}{2}\right)^{n} \frac{1}{n!} \theta^{\mu_{1} \nu_{1}} \cdots \theta^{\mu_{n} \nu_{n}} \partial_{\mu_{1}} \cdots \partial_{\mu_{n}} f \partial_{\nu_{1}} \cdots \partial_{\nu_{n}} g
$$

- Let \mathfrak{g} be a matrix Lie algebra, $\lambda \in \Omega^{0}(M, \mathfrak{g})$ gauge parameter, $A \in \Omega^{1}(M, \mathfrak{g})$ gauge field
- A star-gauge transformation is the naive deformation of a classical gauge transformation: $\delta_{\lambda}^{\star} A=\mathrm{d} \lambda-[\lambda, A]_{\mathfrak{g}}$
- Problem: These gauge variations do not close on \mathfrak{g} : $\left[\delta_{\lambda_{1}}^{\star}, \delta_{\lambda_{2}}^{\star}\right]=\delta_{\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}}^{\star}$, but star-commutator does not close:

$$
\left[\lambda_{1}{ }^{\star} \lambda_{2}\right]_{\mathfrak{g}}:=\lambda_{1} \star \lambda_{2}-\lambda_{2} \star \lambda_{1} \notin \Omega^{0}(M, \mathfrak{g})
$$

(Exception: $\mathfrak{g}=\mathfrak{u}(N)$ in fundamental representation)

Closing Star-Gauge Transformations

- Enveloping alg-valued gauge symm: Closure takes place in universal enveloping algebra $U \mathfrak{g}$, so extend $\lambda \in \Omega^{0}(M, U \mathfrak{g}), \quad A \in \Omega^{1}(M, U \mathfrak{g})$
(Jurčo, Schraml, Schupp \& Wess '00; Aschieri \& Castellani '09)
Introduces (infinitely many) new degrees of freedom, no good classical limit

Closing Star-Gauge Transformations

- Enveloping alg-valued gauge symm: Closure takes place in universal enveloping algebra $U \mathfrak{g}$, so extend $\lambda \in \Omega^{0}(M, U \mathfrak{g}), \quad A \in \Omega^{1}(M, U \mathfrak{g})$
(Jurčo, Schraml, Schupp \& Wess '00; Aschieri \& Castellani '09)
Introduces (infinitely many) new degrees of freedom, no good classical limit
- Seiberg-Witten map: Noncommutative gauge orbits induced by classical gauge orbits: $\hat{A}\left(A+\delta_{\lambda} A\right)=\hat{A}(A)+\delta_{\hat{\lambda}(\lambda, A)}^{\star} \hat{A}(A)$; no new degrees of freedom, new interactions appear
(Seiberg \& Witten '99)
Seiberg-Witten map not known in closed form, describes star-gauge transformations only to lowest orders in θ

Closing Star-Gauge Transformations

- Enveloping alg-valued gauge symm: Closure takes place in universal enveloping algebra $U \mathfrak{g}$, so extend $\lambda \in \Omega^{0}(M, U \mathfrak{g}), \quad A \in \Omega^{1}(M, U \mathfrak{g})$
(Jurčo, Schraml, Schupp \& Wess '00; Aschieri \& Castellani '09)
Introduces (infinitely many) new degrees of freedom, no good classical limit
- Seiberg-Witten map: Noncommutative gauge orbits induced by classical gauge orbits: $\hat{A}\left(A+\delta_{\lambda} A\right)=\hat{A}(A)+\delta_{\hat{\lambda}(\lambda, A)}^{\star} \hat{A}(A)$; no new degrees of freedom, new interactions appear
(Seiberg \& Witten '99)
Seiberg-Witten map not known in closed form, describes star-gauge transformations only to lowest orders in θ
- Gravity? If ξ_{1}, ξ_{2} are vector fields, then $\left[\xi_{1} \star \xi_{2}\right]$ is not a vector field No analog of Seiberg-Witten map for deformed diffeomorphisms, naturally defined using Drinfel'd twist techniques

Drinfel'd Twist Deformation Quantization

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist;
e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{\mathrm{i}}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$

Drinfel'd Twist Deformation Quantization

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist;
e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{\mathrm{i}}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra (functions, forms, tensors on M), then $\Gamma(T M)$ acts on \mathcal{A} via Lie derivative and Leibniz rule

Drinfel'd Twist Deformation Quantization

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist;
e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{\mathrm{i}}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra (functions, forms, tensors on M), then $\Gamma(T M)$ acts on \mathcal{A} via Lie derivative and Leibniz rule
- Deform product on \mathcal{A} into a star-product:

$$
a \star b=\cdot \mathcal{F}^{-1}(a \otimes b)=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

Drinfel'd Twist Deformation Quantization

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist;
e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{\mathrm{i}}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra (functions, forms, tensors on M), then $\Gamma(T M)$ acts on \mathcal{A} via Lie derivative and Leibniz rule
- Deform product on \mathcal{A} into a star-product:

$$
a \star b=\cdot \mathcal{F}^{-1}(a \otimes b)=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

- Defines noncommutative algebra \mathcal{A}_{\star} carrying representation of twisted Hopf algebra $U_{\mathcal{F}} \Gamma(T M)$:

$$
\xi(a \star b)=\xi_{(1)}(a) \star \xi_{(2)}(b) \quad, \quad \Delta(\xi)=\xi_{(1)} \otimes \xi_{(2)}
$$

Drinfel'd Twist Deformation Quantization

- Let $\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha} \in U \Gamma(T M) \otimes U \Gamma(T M)$ be a Drinfel'd twist;
e.g. Moyal-Weyl twist $\mathcal{F}=\exp \left(-\frac{\mathrm{i}}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)$
- If \mathcal{A} is a $U \Gamma(T M)$-module algebra (functions, forms, tensors on M), then $\Gamma(T M)$ acts on \mathcal{A} via Lie derivative and Leibniz rule
- Deform product on \mathcal{A} into a star-product:

$$
a \star b=\cdot \mathcal{F}^{-1}(a \otimes b)=\overline{\mathrm{f}}^{\alpha}(a) \cdot \overline{\mathrm{f}}_{\alpha}(b)
$$

- Defines noncommutative algebra \mathcal{A}_{\star} carrying representation of twisted Hopf algebra $U_{\mathcal{F}} \Gamma(T M)$:

$$
\xi(a \star b)=\xi_{(1)}(a) \star \xi_{(2)}(b) \quad, \quad \Delta(\xi)=\xi_{(1)} \otimes \xi_{(2)}
$$

- If \mathcal{A} is commutative, then \mathcal{A}_{\star} is braided-commutative:

$$
a \star b=\overline{\mathrm{R}}^{\alpha}(b) \star \overline{\mathrm{R}}_{\alpha}(a)
$$

$\mathcal{R}=\mathcal{F}^{-2}=\mathrm{R}^{\alpha} \otimes \mathrm{R}_{\alpha}=$ triangular \mathcal{R}-matrix

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{g}): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}:=[-,-]_{\mathfrak{g}} \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{g}): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}:=[-,-]_{\mathfrak{g}} \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetry and braided Jacobi identity:

$$
\begin{gathered}
{\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}} \\
{\left[\lambda_{1},\left[\lambda_{2}, \lambda_{3}\right]_{\mathfrak{g}}^{\star}\right]_{\mathfrak{g}}^{\star}=\left[\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}, \lambda_{3}\right]_{\mathfrak{g}}^{\star}+\left[\overline{\mathrm{R}}^{\alpha}\left(\lambda_{2}\right),\left[\overline{\mathrm{R}}_{\alpha}\left(\lambda_{1}\right), \lambda_{3}\right]_{\mathfrak{g}}^{\star}\right]_{\mathfrak{g}}^{\star}}
\end{gathered}
$$

(Woronowicz '89; Majid '93; ...)

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{g}): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}:=[-,-]_{\mathfrak{g}} \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetry and braided Jacobi identity:

$$
\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}
$$

$$
\left[\lambda_{1},\left[\lambda_{2}, \lambda_{3}\right]_{\mathfrak{g}}^{\star}\right]_{\mathfrak{g}}^{\star}=\left[\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}, \lambda_{3}\right]_{\mathfrak{g}}^{\star}+\left[\overline{\mathrm{R}}^{\alpha}\left(\lambda_{2}\right),\left[\overline{\mathrm{R}}_{\alpha}\left(\lambda_{1}\right), \lambda_{3}\right]_{\mathfrak{q}}^{\star}\right]_{\mathfrak{\mathfrak { g }}}^{\star}
$$

(Woronowicz '89; Majid '93; . . .)

- For matrix $\mathfrak{g : ~}\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}=\lambda_{1} \star \lambda_{2}-\overline{\mathrm{R}}^{\alpha}\left(\lambda_{2}\right) \star \overline{\mathrm{R}}_{\alpha}\left(\lambda_{1}\right) \neq\left[\lambda_{1} \star \lambda_{2}\right]_{\mathfrak{g}}$

Braided Gauge Symmetry

- Braided Lie algebra $\Omega_{\star}^{0}(M, \mathfrak{g}): \quad\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}:=[-,-]_{\mathfrak{g}} \circ \mathcal{F}^{-1}\left(\lambda_{1} \otimes \lambda_{2}\right)$
- Braided antisymmetry and braided Jacobi identity:

$$
\begin{gathered}
{\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}=-\left[\overline{\mathrm{R}}^{\alpha} \lambda_{2}, \overline{\mathrm{R}}_{\alpha} \lambda_{1}\right]_{\star}} \\
{\left[\lambda_{1},\left[\lambda_{2}, \lambda_{3}\right]_{\mathfrak{q}}^{\star}\right]_{\mathfrak{g}}^{\star}=\left[\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}, \lambda_{3}\right]_{\mathfrak{g}}^{\star}+\left[\overline{\mathrm{R}}^{\alpha}\left(\lambda_{2}\right),\left[\overline{\mathrm{R}}_{\alpha}\left(\lambda_{1}\right), \lambda_{3}\right]_{\mathfrak{g}}^{\star}\right]_{\mathfrak{g}}^{\star}}
\end{gathered}
$$

(Woronowicz '89; Majid '93; . . .)

- For matrix $\mathfrak{g}: \quad\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}=\lambda_{1} \star \lambda_{2}-\overline{\mathrm{R}}^{\alpha}\left(\lambda_{2}\right) \star \overline{\mathrm{R}}_{\alpha}\left(\lambda_{1}\right) \neq\left[\lambda_{1}{ }^{\star} \lambda_{2}\right]_{\mathfrak{g}}$
- Braided gauge fields, matter fields $A \in \Omega_{\star}^{1}(M, \mathfrak{g}), \phi \in \Omega_{\star}^{p}(M, W)$ transform in left/right braided representations:

$$
\begin{gathered}
\delta_{\lambda}^{\star \mathrm{L}} \phi=-\lambda \star \phi \quad, \quad \delta_{\lambda}^{\star \mathrm{L}} A=\mathrm{d} \lambda-[\lambda, A]_{\mathfrak{g}}^{\star} \\
\delta_{\lambda}^{\star \mathrm{R}} \phi=-\overline{\mathrm{R}}^{\alpha}(\lambda) \star \overline{\mathrm{R}}_{\alpha}(\phi) \quad, \quad \delta_{\lambda}^{\star \mathrm{R}} A=\mathrm{d} \lambda+[A, \lambda]_{\mathfrak{g}}^{\star}
\end{gathered}
$$

Star-gauge transformations don't see left/right distinction

- we'll only consider left ones from now on

Braided Gauge Symmetry

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(\phi \otimes A)=\delta_{\lambda}^{\star} \phi \otimes A+\overline{\mathrm{R}}^{\alpha} \phi \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} A
$$

Braided Gauge Symmetry

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(\phi \otimes A)=\delta_{\lambda}^{\star} \phi \otimes A+\overline{\mathrm{R}}^{\alpha} \phi \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} A
$$

- They close a braided Lie algebra:

$$
\left[\delta_{\lambda_{1}}^{\star}, \delta_{\lambda_{2}}^{\star}\right]^{\star}:=\delta_{\lambda_{1}}^{\star} \circ \delta_{\lambda_{2}}^{\star}-\delta_{\overline{\mathrm{R}}^{\alpha} \lambda_{2}}^{\star} \circ \delta_{\overline{\mathrm{R}}_{\alpha} \lambda_{1}}^{\star}=\delta_{\left[\lambda_{1}, \lambda_{2}\right]_{\mathfrak{g}}^{\star}}^{\star}
$$

Braided Gauge Symmetry

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(\phi \otimes A)=\delta_{\lambda}^{\star} \phi \otimes A+\overline{\mathrm{R}}^{\alpha} \phi \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} A
$$

- They close a braided Lie algebra:

$$
\left[\delta_{\lambda_{1}}^{\star}, \delta_{\lambda_{2}}^{\star}\right]^{\star}:=\delta_{\lambda_{1}}^{\star} \circ \delta_{\lambda_{2}}^{\star}-\delta_{\hat{\mathrm{R}}^{\alpha} \lambda_{2}}^{\star} \circ \delta_{\mathrm{R}_{\alpha} \lambda_{1}}^{\star}=\delta_{\left.\left[\lambda_{1}, \lambda_{2}\right]\right]_{\mathrm{g}}^{\star}}^{\star}
$$

- Braided left/right covariant derivatives:
$\mathrm{d}_{\star \mathrm{L}}^{A} \phi:=\mathrm{d} \phi+A \wedge_{\star} \phi \quad, \quad \mathrm{d}_{\star \mathrm{R}}^{A} \phi:=\mathrm{d} \phi+\overline{\mathrm{R}}^{\alpha}(A) \wedge_{\star} \overline{\mathrm{R}}_{\alpha}(\phi)$
Braided covariance: $\delta_{\lambda}^{\star}\left(\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{A} \phi\right)=-\lambda \star\left(\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{A} \phi\right)$

Braided Gauge Symmetry

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(\phi \otimes A)=\delta_{\lambda}^{\star} \phi \otimes A+\overline{\mathrm{R}}^{\alpha} \phi \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} A
$$

- They close a braided Lie algebra:

$$
\left[\delta_{\lambda_{1}}^{\star}, \delta_{\lambda_{2}}^{\star}\right]^{\star}:=\delta_{\lambda_{1}}^{\star} \circ \delta_{\lambda_{2}}^{\star}-\delta_{\hat{\mathrm{R}}^{\alpha} \lambda_{2}}^{\star} \circ \delta_{\mathrm{R}_{\alpha} \lambda_{1}}^{\star}=\delta_{\left.\left[\lambda_{1}, \lambda_{2}\right]\right]_{\mathrm{g}}^{\star}}^{\star}
$$

- Braided left/right covariant derivatives:

$$
\mathrm{d}_{\star \mathrm{L}}^{A} \phi:=\mathrm{d} \phi+A \wedge_{\star} \phi \quad, \quad \mathrm{d}_{\star \mathrm{R}}^{A} \phi:=\mathrm{d} \phi+\overline{\mathrm{R}}^{\alpha}(A) \wedge_{\star} \overline{\mathrm{R}}_{\alpha}(\phi)
$$

Braided covariance: $\delta_{\lambda}^{\star}\left(\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{A} \phi\right)=-\lambda \star\left(\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{A} \phi\right)$

- Braided curvature:

$$
F_{A}^{\star}:=\mathrm{d} A+\frac{1}{2}[A, A]_{\mathfrak{g}}^{\star} \quad, \quad \delta_{\lambda}^{\star} F_{A}^{\star}=-\left[\lambda, F_{A}^{\star}\right]_{\mathfrak{g}}^{\star}
$$

Braided Gauge Symmetry

- Braided gauge transformations satisfy braided Leibniz rule:

$$
\delta_{\lambda}^{\star}(\phi \otimes A)=\delta_{\lambda}^{\star} \phi \otimes A+\overline{\mathrm{R}}^{\alpha} \phi \otimes \delta_{\overline{\mathrm{R}}_{\alpha} \lambda}^{\star} A
$$

- They close a braided Lie algebra:

$$
\left[\delta_{\lambda_{1}}^{\star}, \delta_{\lambda_{2}}^{\star}\right]^{\star}:=\delta_{\lambda_{1}}^{\star} \circ \delta_{\lambda_{2}}^{\star}-\delta_{\mathrm{R}^{\alpha} \lambda_{2}}^{\star} \circ \delta_{\mathrm{R}_{\alpha} \lambda_{1}}^{\star}=\delta_{\left[\lambda_{1}, \lambda_{2}\right]_{\mathrm{G}}^{\star}}^{\star}
$$

- Braided left/right covariant derivatives:
$\mathrm{d}_{\star \mathrm{L}}^{A} \phi:=\mathrm{d} \phi+A \wedge_{\star} \phi \quad, \quad \mathrm{d}_{\star \mathrm{R}}^{A} \phi:=\mathrm{d} \phi+\overline{\mathrm{R}}^{\alpha}(A) \wedge_{\star} \overline{\mathrm{R}}_{\alpha}(\phi)$
Braided covariance: $\delta_{\lambda}^{\star}\left(\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{A} \phi\right)=-\lambda \star\left(\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{A} \phi\right)$
- Braided curvature:

$$
F_{A}^{\star}:=\mathrm{d} A+\frac{1}{2}[A, A]_{\mathfrak{g}}^{\star} \quad, \quad \delta_{\lambda}^{\star} F_{A}^{\star}=-\left[\lambda, F_{A}^{\star}\right]_{\mathfrak{g}}^{\star}
$$

- Braided diffeomorphisms $\Gamma_{\star}(T M)$:

$$
\mathcal{L}_{\xi}^{\star} T:=\mathcal{L}_{\overline{\mathrm{f}}^{\alpha} \xi}\left(\overline{\mathrm{f}}_{\alpha} T\right) \quad, \quad\left[\mathcal{L}_{\xi_{1}}^{\star}, \mathcal{L}_{\xi_{2}}^{\star}\right]^{\star}=\mathcal{L}_{\left[\xi_{1}, \xi_{2}\right]^{\star}}^{\star}
$$

$$
\begin{gathered}
\text { Braided Chern-Simons Theory } \\
S^{\star}=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge_{\star} \mathrm{d} A+\frac{1}{3!} A \wedge_{\star}[A, A]_{\mathfrak{g}}^{\star}\right)
\end{gathered}
$$

- Invariant under braided gauge transformations from $\Omega_{\star}^{0}(M, \mathfrak{g})$ No extra degrees of freedom introduced

Braided Chern-Simons Theory

$$
S^{\star}=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge_{\star} \mathrm{d} A+\frac{1}{3!} A \wedge_{\star}[A, A]_{\mathfrak{g}}^{\star}\right)
$$

- Invariant under braided gauge transformations from $\Omega_{\star}^{0}(M, \mathfrak{g})$ No extra degrees of freedom introduced
- Field equations: $F_{A}^{\star}=0$

Braided Chern-Simons Theory

$$
S^{\star}=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge_{\star} \mathrm{d} A+\frac{1}{3!} A \wedge_{\star}[A, A]_{\mathfrak{g}}^{\star}\right)
$$

- Invariant under braided gauge transformations from $\Omega_{\star}^{0}(M, \mathfrak{g})$ No extra degrees of freedom introduced
- Field equations: $F_{A}^{\star}=0$
- Field equations are braided covariant, but braided gauge symmetries do not produce new solutions:

$$
\delta_{\lambda}^{\star} F_{A}^{\star} \neq F_{A+\delta_{\lambda}^{\star} A}^{\star}-F_{A}^{\star}
$$

There is no "moduli space" of classical solutions

Braided Chern-Simons Theory

$$
S^{\star}=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge_{\star} \mathrm{d} A+\frac{1}{3!} A \wedge_{\star}[A, A]_{\mathfrak{g}}^{\star}\right)
$$

- Invariant under braided gauge transformations from $\Omega_{\star}^{0}(M, \mathfrak{g})$ No extra degrees of freedom introduced
- Field equations: $F_{A}^{\star}=0$
- Field equations are braided covariant, but braided gauge symmetries do not produce new solutions:

$$
\delta_{\lambda}^{\star} F_{A}^{\star} \neq F_{A+\delta_{\lambda}^{\star} A}^{\star}-F_{A}^{\star}
$$

There is no "moduli space" of classical solutions

- Bianchi identities are modified:

$$
\frac{1}{2}\left(\mathrm{~d}_{\star \mathrm{L}}^{A} F_{A}^{\star}+\mathrm{d}_{\star \mathrm{R}}^{A} F_{A}^{\star}\right)=-\frac{1}{4}\left[\overline{\mathrm{R}}^{\alpha}(A),\left[\overline{\mathrm{R}}_{\alpha}(A), A\right]_{\mathfrak{g}}^{\star}\right]_{\mathfrak{g}}^{\star}
$$

Braided Chern-Simons Theory

$$
S^{\star}=\int_{M} \operatorname{Tr}_{\mathfrak{g}}\left(\frac{1}{2} A \wedge_{\star} \mathrm{d} A+\frac{1}{3!} A \wedge_{\star}[A, A]_{\mathfrak{g}}^{\star}\right)
$$

- Invariant under braided gauge transformations from $\Omega_{\star}^{0}(M, \mathfrak{g})$ No extra degrees of freedom introduced
- Field equations: $F_{A}^{\star}=0$
- Field equations are braided covariant, but braided gauge symmetries do not produce new solutions:

$$
\delta_{\lambda}^{\star} F_{A}^{\star} \neq F_{A+\delta_{\lambda}^{\star} A}^{\star}-F_{A}^{\star}
$$

There is no "moduli space" of classical solutions

- Bianchi identities are modified:

$$
\frac{1}{2}\left(\mathrm{~d}_{\star \mathrm{L}}^{A} F_{A}^{\star}+\mathrm{d}_{\star \mathrm{R}}^{A} F_{A}^{\star}\right)=-\frac{1}{4}\left[\overline{\mathrm{R}}^{\alpha}(A),\left[\overline{\mathrm{R}}_{\alpha}(A), A\right]_{\mathfrak{g}}^{\star}\right]_{\mathfrak{g}}^{\star}
$$

- Braided Noether identity off-shell: justifies interpretation of local braided symmetries as "gauge"

Braided L_{∞}-Algebras

- If $\left(V,\left\{\ell_{n}\right\}\right)$ is a classical L_{∞}-algebra in the category of $U \Gamma(T M)$-modules, then $\left(V,\left\{\ell_{n}^{\star}\right\}\right)$ is a braided L_{∞}-algebra in the category of $U_{\mathcal{F}} \Gamma(T M)$-modules, where

$$
\ell_{n}^{\star}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=\ell_{n}\left(v_{1} \wedge_{\star} \cdots \wedge_{\star} v_{n}\right)
$$

Braided L_{∞}-Algebras

- If $\left(V,\left\{\ell_{n}\right\}\right)$ is a classical L_{∞}-algebra in the category of $U \Gamma(T M)$-modules, then $\left(V,\left\{\ell_{n}^{\star}\right\}\right)$ is a braided L_{∞}-algebra in the category of $U_{\mathcal{F}} \Gamma(T M)$-modules, where

$$
\ell_{n}^{\star}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=\ell_{n}\left(v_{1} \wedge_{\star} \cdots \wedge_{\star} v_{n}\right)
$$

- Braided graded antisymmetry:

$$
\ell_{n}^{\star}\left(\ldots, v, v^{\prime}, \ldots\right)=-(-1)^{|v|\left|v^{\prime}\right|} \ell_{n}^{\star}\left(\ldots, \overline{\mathrm{R}}^{\alpha}\left(v^{\prime}\right), \overline{\mathrm{R}}_{\alpha}(v), \ldots\right)
$$

+ braided homotopy Jacobi identities (unchanged for $n=1,2$)

Braided L_{∞}-Algebras

- If $\left(V,\left\{\ell_{n}\right\}\right)$ is a classical L_{∞}-algebra in the category of $U \Gamma(T M)$-modules, then $\left(V,\left\{\ell_{n}^{\star}\right\}\right)$ is a braided L_{∞}-algebra in the category of $U_{\mathcal{F}} \Gamma(T M)$-modules, where

$$
\ell_{n}^{\star}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=\ell_{n}\left(v_{1} \wedge_{\star} \cdots \wedge_{\star} v_{n}\right)
$$

- Braided graded antisymmetry:

$$
\ell_{n}^{\star}\left(\ldots, v, v^{\prime}, \ldots\right)=-(-1)^{|v|\left|v^{\prime}\right|} \ell_{n}^{\star}\left(\ldots, \overline{\mathrm{R}}^{\alpha}\left(v^{\prime}\right), \overline{\mathrm{R}}_{\alpha}(v), \ldots\right)
$$

+ braided homotopy Jacobi identities (unchanged for $n=1,2$)
- Cyclic pairing: $\langle-,-\rangle_{\star}:=\langle-,-\rangle \circ \mathcal{F}^{-1}$

Braided L_{∞}-Algebras

- If $\left(V,\left\{\ell_{n}\right\}\right)$ is a classical L_{∞}-algebra in the category of $U \Gamma(T M)$-modules, then $\left(V,\left\{\ell_{n}^{\star}\right\}\right)$ is a braided L_{∞}-algebra in the category of $U_{\mathcal{F}} \Gamma(T M)$-modules, where

$$
\ell_{n}^{\star}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=\ell_{n}\left(v_{1} \wedge_{\star} \cdots \wedge_{\star} v_{n}\right)
$$

- Braided graded antisymmetry:

$$
\ell_{n}^{\star}\left(\ldots, v, v^{\prime}, \ldots\right)=-(-1)^{|v|\left|v^{\prime}\right|} \ell_{n}^{\star}\left(\ldots, \overline{\mathrm{R}}^{\alpha}\left(v^{\prime}\right), \overline{\mathrm{R}}_{\alpha}(v), \ldots\right)
$$

+ braided homotopy Jacobi identities (unchanged for $n=1,2$)
- Cyclic pairing: $\langle-,-\rangle_{\star}:=\langle-,-\rangle \circ \mathcal{F}^{-1}$
- Example: Braided Chern-Simons theory built on dg braided Lie algebra with $V_{p}=\Omega^{p}(M, \mathfrak{g})$ and

$$
\ell_{1}^{\star}=\ell_{1}=\mathrm{d}, \quad \ell_{2}^{\star}=[-,-]_{\mathfrak{g}}^{\star}
$$

Braided L_{∞}-Algebras of Braided Field Theories

- Braided gauge transformations $\delta_{\lambda}^{\star} A=\ell_{1}^{\star}(\lambda)+\ell_{2}^{\star}(\lambda, A)+\cdots$ close a braided Lie algebra under braided commutator $[-,-]^{\star}$

Braided L_{∞}-Algebras of Braided Field Theories

- Braided gauge transformations $\delta_{\lambda}^{\star} A=\ell_{1}^{\star}(\lambda)+\ell_{2}^{\star}(\lambda, A)+\cdots$ close a braided Lie algebra under braided commutator $[-,-]^{\star}$
- Braided field eqs $F_{A}^{\star}=\ell_{1}^{\star}(A)-\frac{1}{2} \ell_{2}^{\star}(A, A)+\cdots$ are covariant:

$$
\delta_{\lambda}^{\star} F_{A}^{\star}=\ell_{2}^{\star}\left(\lambda, F_{A}^{\star}\right)+\frac{1}{2}\left(\ell_{3}^{\star}\left(\lambda, F_{A}^{\star}, A\right)-\ell_{3}^{\star}\left(\lambda, A, F_{A}^{\star}\right)\right)+\cdots
$$

Braided L_{∞}-Algebras of Braided Field Theories

- Braided gauge transformations $\delta_{\lambda}^{\star} A=\ell_{1}^{\star}(\lambda)+\ell_{2}^{\star}(\lambda, A)+\cdots$ close a braided Lie algebra under braided commutator $[-,-]^{\star}$
- Braided field eqs $F_{A}^{\star}=\ell_{1}^{\star}(A)-\frac{1}{2} \ell_{2}^{\star}(A, A)+\cdots$ are covariant:

$$
\delta_{\lambda}^{\star} F_{A}^{\star}=\ell_{2}^{\star}\left(\lambda, F_{A}^{\star}\right)+\frac{1}{2}\left(\ell_{3}^{\star}\left(\lambda, F_{A}^{\star}, A\right)-\ell_{3}^{\star}\left(\lambda, A, F_{A}^{\star}\right)\right)+\cdots
$$

- No moduli space of solutions to $F_{A}^{\star}=0$, but braided Noether ids from weighted sum over all braided homotopy relations on $\left(A^{n}\right)$:

$$
\begin{aligned}
\mathcal{I}_{A}^{\star} F_{A}^{\star}= & \ell_{1}^{\star}\left(F_{A}^{\star}\right)+\frac{1}{2}\left(\ell_{2}^{\star}\left(F_{A}^{\star}, A\right)-\ell_{2}^{\star}\left(A, F_{A}^{\star}\right)\right) \\
& +\frac{1}{3!} \ell_{1}^{\star}\left(\ell_{3}^{\star}\left(A^{3}\right)\right)+\frac{1}{4}\left(\ell_{2}^{\star}\left(\ell_{2}^{\star}\left(A^{2}\right), A\right)-\ell_{2}^{\star}\left(A, \ell_{2}^{\star}\left(A^{2}\right)\right)\right)+\cdots \equiv 0
\end{aligned}
$$

Braided L_{∞}-Algebras of Braided Field Theories

- Braided gauge transformations $\delta_{\lambda}^{\star} A=\ell_{1}^{\star}(\lambda)+\ell_{2}^{\star}(\lambda, A)+\cdots$ close a braided Lie algebra under braided commutator $[-,-]^{\star}$
- Braided field eqs $F_{A}^{\star}=\ell_{1}^{\star}(A)-\frac{1}{2} \ell_{2}^{\star}(A, A)+\cdots$ are covariant:

$$
\delta_{\lambda}^{\star} F_{A}^{\star}=\ell_{2}^{\star}\left(\lambda, F_{A}^{\star}\right)+\frac{1}{2}\left(\ell_{3}^{\star}\left(\lambda, F_{A}^{\star}, A\right)-\ell_{3}^{\star}\left(\lambda, A, F_{A}^{\star}\right)\right)+\cdots
$$

- No moduli space of solutions to $F_{A}^{\star}=0$, but braided Noether ids from weighted sum over all braided homotopy relations on $\left(A^{n}\right)$:

$$
\begin{aligned}
\mathcal{I}_{A}^{\star} F_{A}^{\star}= & \ell_{1}^{\star}\left(F_{A}^{\star}\right)+\frac{1}{2}\left(\ell_{2}^{\star}\left(F_{A}^{\star}, A\right)-\ell_{2}^{\star}\left(A, F_{A}^{\star}\right)\right) \\
& +\frac{1}{3!} \ell_{1}^{\star}\left(\ell_{3}^{\star}\left(A^{3}\right)\right)+\frac{1}{4}\left(\ell_{2}^{\star}\left(\ell_{2}^{\star}\left(A^{2}\right), A\right)-\ell_{2}^{\star}\left(A, \ell_{2}^{\star}\left(A^{2}\right)\right)\right)+\cdots \equiv 0
\end{aligned}
$$

- Action: $S=\frac{1}{2}\left\langle A, \ell_{1}^{\star}(A)\right\rangle_{\star}-\frac{1}{3!}\left\langle A, \ell_{2}^{\star}(A, A)\right\rangle_{\star}+\cdots$

$$
\delta S=\left\langle\delta A, F_{A}^{\star}\right\rangle_{\star} \quad, \quad \delta_{\lambda}^{\star} S=-\left\langle\lambda, \mathcal{I}_{A}^{\star} F_{A}^{\star}\right\rangle_{\star} \neq\left\langle\delta_{\lambda}^{\star} A, F_{A}^{\star}\right\rangle_{\star}
$$

Braided gauge variations not special directions of general field variations

Braided L_{∞}-Algebras of Braided Field Theories

- Braided gauge transformations $\delta_{\lambda}^{\star} A=\ell_{1}^{\star}(\lambda)+\ell_{2}^{\star}(\lambda, A)+\cdots$ close a braided Lie algebra under braided commutator $[-,-]^{\star}$
- Braided field eqs $F_{A}^{\star}=\ell_{1}^{\star}(A)-\frac{1}{2} \ell_{2}^{\star}(A, A)+\cdots$ are covariant:

$$
\delta_{\lambda}^{\star} F_{A}^{\star}=\ell_{2}^{\star}\left(\lambda, F_{A}^{\star}\right)+\frac{1}{2}\left(\ell_{3}^{\star}\left(\lambda, F_{A}^{\star}, A\right)-\ell_{3}^{\star}\left(\lambda, A, F_{A}^{\star}\right)\right)+\cdots
$$

- No moduli space of solutions to $F_{A}^{\star}=0$, but braided Noether ids from weighted sum over all braided homotopy relations on (A^{n}):

$$
\begin{aligned}
\mathcal{I}_{A}^{\star} F_{A}^{\star}= & \ell_{1}^{\star}\left(F_{A}^{\star}\right)+\frac{1}{2}\left(\ell_{2}^{\star}\left(F_{A}^{\star}, A\right)-\ell_{2}^{\star}\left(A, F_{A}^{\star}\right)\right) \\
& +\frac{1}{3!} \ell_{1}^{\star}\left(\ell_{3}^{\star}\left(A^{3}\right)\right)+\frac{1}{4}\left(\ell_{2}^{\star}\left(\ell_{2}^{\star}\left(A^{2}\right), A\right)-\ell_{2}^{\star}\left(A, \ell_{2}^{\star}\left(A^{2}\right)\right)\right)+\cdots \equiv 0
\end{aligned}
$$

- Action: $S=\frac{1}{2}\left\langle A, \ell_{1}^{\star}(A)\right\rangle_{\star}-\frac{1}{3!}\left\langle A, \ell_{2}^{\star}(A, A)\right\rangle_{\star}+\cdots$

$$
\delta S=\left\langle\delta A, F_{A}^{\star}\right\rangle_{\star} \quad, \quad \delta_{\lambda}^{\star} S=-\left\langle\lambda, \mathcal{I}_{A}^{\star} F_{A}^{\star}\right\rangle_{\star} \neq\left\langle\delta_{\lambda}^{\star} A, F_{A}^{\star}\right\rangle_{\star}
$$

Braided gauge variations not special directions of general field variations

- Systematic constructions of new noncomm. field theories with no new degrees of freedom, good classical limit, and some "surprises"

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}\left(\frac{1}{2} e \wedge e \wedge R+\frac{\wedge}{4} e \wedge e \wedge e \wedge e\right)
$$

- Fields: $e \in \Omega^{1}\left(M, \mathbb{R}^{1,3}\right), \omega \in \Omega^{1}(M, \mathfrak{s o}(1,3))$

$$
R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(M, \mathfrak{s o}(1,3)), \quad \operatorname{Tr}: \wedge^{4}\left(\mathbb{R}^{1,3}\right) \longrightarrow \mathbb{R}
$$

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}\left(\frac{1}{2} e \wedge e \wedge R+\frac{\Lambda}{4} e \wedge e \wedge e \wedge e\right)
$$

- Fields: $e \in \Omega^{1}\left(M, \mathbb{R}^{1,3}\right), \omega \in \Omega^{1}(M, \mathfrak{s o}(1,3))$

$$
R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(M, \mathfrak{s o}(1,3)), \quad \operatorname{Tr}: \wedge^{4}\left(\mathbb{R}^{1,3}\right) \longrightarrow \mathbb{R}
$$

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \ltimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}\left(\frac{1}{2} e \wedge e \wedge R+\frac{\Lambda}{4} e \wedge e \wedge e \wedge e\right)
$$

- Fields: $e \in \Omega^{1}\left(M, \mathbb{R}^{1,3}\right), \omega \in \Omega^{1}(M, \mathfrak{s o}(1,3))$

$$
R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(M, \mathfrak{s o}(1,3)), \quad \operatorname{Tr}: \wedge^{4}\left(\mathbb{R}^{1,3}\right) \longrightarrow \mathbb{R}
$$

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \ltimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

- Bianchi identities: $\mathrm{d}^{\omega} T=R \wedge e, \mathrm{~d}^{\omega} R=0$

$$
T=\mathrm{d}^{\omega} e=\mathrm{d} e+\omega \wedge e=\text { torsion of } \omega
$$

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}\left(\frac{1}{2} e \wedge e \wedge R+\frac{\Lambda}{4} e \wedge e \wedge e \wedge e\right)
$$

- Fields: $e \in \Omega^{1}\left(M, \mathbb{R}^{1,3}\right), \omega \in \Omega^{1}(M, \mathfrak{s o}(1,3))$

$$
R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(M, \mathfrak{s o}(1,3)), \quad \operatorname{Tr}: \wedge^{4}\left(\mathbb{R}^{1,3}\right) \longrightarrow \mathbb{R}
$$

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \ltimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

- Bianchi identities: $\mathrm{d}^{\omega} T=R \wedge e, \mathrm{~d}^{\omega} R=0$

$$
T=\mathrm{d}^{\omega} e=\mathrm{d} e+\omega \wedge e=\text { torsion of } \omega
$$

- Field equations: $e \wedge T=0, e \wedge R+\wedge e \wedge e \wedge e=0$

For e non-degenerate, equivalent to torsion-free + Einstein equations

Einstein-Cartan-Palatini Gravity (4d)

$$
S=\int_{M} \operatorname{Tr}\left(\frac{1}{2} e \wedge e \wedge R+\frac{\Lambda}{4} e \wedge e \wedge e \wedge e\right)
$$

- Fields: $e \in \Omega^{1}\left(M, \mathbb{R}^{1,3}\right), \omega \in \Omega^{1}(M, \mathfrak{s o}(1,3))$

$$
R=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(M, \mathfrak{s o}(1,3)), \quad \operatorname{Tr}: \wedge^{4}\left(\mathbb{R}^{1,3}\right) \longrightarrow \mathbb{R}
$$

- (Infinitesimal) gauge symmetries: Diffeos + local Lorentz

$$
\Gamma(T M) \ltimes \Omega^{0}(M, \mathfrak{s o}(1,3))
$$

- Bianchi identities: $\mathrm{d}^{\omega} T=R \wedge e, \mathrm{~d}^{\omega} R=0$

$$
T=\mathrm{d}^{\omega} e=\mathrm{d} e+\omega \wedge e=\text { torsion of } \omega
$$

- Field equations: $e \wedge T=0, e \wedge R+\Lambda e \wedge e \wedge e=0$

For e non-degenerate, equivalent to torsion-free + Einstein equations

- L_{∞}-algebra is not a dg Lie algebra $\left(\ell_{3} \neq 0\right)$
(Dimitrijević Ćirić, Giotopoulos, Radovanović \& Sz '20)

Braided Noncommutative Gravity (4d)

- Invariant under braided semi-direct product:

$$
\Gamma_{\star}(T M) \ltimes_{\star} \Omega_{\star}^{0}(M, \mathfrak{s o}(1,3))
$$

Braided Noncommutative Gravity (4d)

- Invariant under braided semi-direct product:

$$
\Gamma_{\star}(T M) \ltimes_{\star} \Omega_{\star}^{0}(M, \mathfrak{s o}(1,3))
$$

- Field equations: $T_{\mathrm{L}, \mathrm{R}}^{\star}:=\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{\omega} e=$ braided left/right torsion of ω

$$
\begin{aligned}
& e \wedge_{\star} T_{\mathrm{L}}^{\star}-T_{\mathrm{R}}^{\star} \wedge_{\star} e-\mathrm{d}_{\star \mathrm{L}}^{\omega}\left(e \wedge_{\star} e\right)-\mathrm{d}_{\star \mathrm{R}}^{\omega}\left(e \wedge_{\star} e\right)=0 \\
& 2 e \wedge_{\star} R^{\star}+2 R^{\star} \wedge_{\star} e+6 \wedge e \wedge_{\star} e \wedge_{\star} e \\
& \quad+e \wedge_{\star} \mathrm{d} \omega+\mathrm{d} \omega \wedge_{\star} e+\overline{\mathrm{R}}^{\alpha}(e) \wedge_{\star}\left[\overline{\mathrm{R}}_{\alpha}(\omega), \omega\right]^{\star}=0
\end{aligned}
$$

Covariant, classical limit is torsion-free + Einstein equations

Braided Noncommutative Gravity (4d)

- Invariant under braided semi-direct product:

$$
\Gamma_{\star}(T M) \ltimes_{\star} \Omega_{\star}^{0}(M, \mathfrak{s o}(1,3))
$$

- Field equations: $T_{\mathrm{L}, \mathrm{R}}^{\star}:=\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{\omega} e=$ braided left/right torsion of ω

$$
\begin{aligned}
& e \wedge_{\star} T_{\mathrm{L}}^{\star}-T_{\mathrm{R}}^{\star} \wedge_{\star} e-\mathrm{d}_{\star \mathrm{L}}^{\omega}\left(e \wedge_{\star} e\right)-\mathrm{d}_{\star \mathrm{R}}^{\omega}\left(e \wedge_{\star} e\right)=0 \\
& 2 e \wedge_{\star} R^{\star}+2 R^{\star} \wedge_{\star} e+6 \wedge e \wedge_{\star} e \wedge_{\star} e \\
& \quad+e \wedge_{\star} \mathrm{d} \omega+\mathrm{d} \omega \wedge_{\star} e+\overline{\mathrm{R}}^{\alpha}(e) \wedge_{\star}\left[\overline{\mathrm{R}}_{\alpha}(\omega), \omega\right]^{\star}=0
\end{aligned}
$$

Covariant, classical limit is torsion-free + Einstein equations

- Action:

$$
\begin{aligned}
S^{\star}= & \int_{M} \operatorname{Tr}\left(\frac{1}{2} e \wedge_{\star} e \wedge_{\star} R^{\star}+\frac{\Lambda}{4} e \wedge_{\star} e \wedge_{\star} e \wedge_{\star} e\right) \\
& -\frac{1}{24} \int_{M} \operatorname{Tr}\left(\omega \wedge_{\star}\left(2 e \wedge_{\star} T_{\mathrm{L}}^{\star}-2 T_{\mathrm{R}}^{\star} \wedge_{\star} e+\mathrm{d}_{\star \mathrm{L}}^{\omega}\left(e \wedge_{\star} e\right)+\mathrm{d}_{\star \mathrm{R}}^{\omega}\left(e \wedge_{\star} e\right)\right)\right)
\end{aligned}
$$

Gauge invariant with good classical limit

Braided Noncommutative Gravity (4d)

- Invariant under braided semi-direct product:

$$
\Gamma_{\star}(T M) \ltimes_{\star} \Omega_{\star}^{0}(M, \mathfrak{s o}(1,3))
$$

- Field equations: $T_{\mathrm{L}, \mathrm{R}}^{\star}:=\mathrm{d}_{\star \mathrm{L}, \mathrm{R}}^{\omega} e=$ braided left/right torsion of ω

$$
\begin{aligned}
& e \wedge_{\star} T_{\mathrm{L}}^{\star}-T_{\mathrm{R}}^{\star} \wedge_{\star} e-\mathrm{d}_{\star \mathrm{L}}^{\omega}\left(e \wedge_{\star} e\right)-\mathrm{d}_{\star \mathrm{R}}^{\omega}\left(e \wedge_{\star} e\right)=0 \\
& 2 e \wedge_{\star} R^{\star}+2 R^{\star} \wedge_{\star} e+6 \wedge e \wedge_{\star} e \wedge_{\star} e \\
& \quad+e \wedge_{\star} \mathrm{d} \omega+\mathrm{d} \omega \wedge_{\star} e+\overline{\mathrm{R}}^{\alpha}(e) \wedge_{\star}\left[\overline{\mathrm{R}}_{\alpha}(\omega), \omega\right]^{\star}=0
\end{aligned}
$$

Covariant, classical limit is torsion-free + Einstein equations

- Action:

$$
\begin{aligned}
S^{\star}= & \int_{M} \operatorname{Tr}\left(\frac{1}{2} e \wedge_{\star} e \wedge_{\star} R^{\star}+\frac{\Lambda}{4} e \wedge_{\star} e \wedge_{\star} e \wedge_{\star} e\right) \\
& -\frac{1}{24} \int_{M} \operatorname{Tr}\left(\omega \wedge_{\star}\left(2 e \wedge_{\star} T_{\mathrm{L}}^{\star}-2 T_{\mathrm{R}}^{\star} \wedge_{\star} e+\mathrm{d}_{\star \mathrm{L}}^{\omega}\left(e \wedge_{\star} e\right)+\mathrm{d}_{\star \mathrm{R}}^{\omega}\left(e \wedge_{\star} e\right)\right)\right)
\end{aligned}
$$

Gauge invariant with good classical limit

- Noether ids: complicated ... - New deformation of general relativity

