Topological Insulators at Strong Disorder

Emil Prodan

Yeshiva University, New York, USA

NCG \& Physics Seminar, Jan 2021

Many thanks to my collaborators and mentors.
Work supported by U.S. NSF grant DMR-1823800 and Keck Foundation

Part 1

Spectacular behavior at strong disorder

- An exactly solvable system
- Numerical simulations
- Experimental signature of such phenomena

Anderson Localization-Delocalization transition in 1D chiral model

The model defined:

Data:

- Ergodic dynamical system $(\tau: \mathbb{Z} \rightarrow \operatorname{Homeo}(\Omega), \mathrm{d} \mathbb{P})$
- Two functions $t: \Omega \rightarrow \mathbb{R}$ and $m: \Omega \rightarrow \mathbb{R}$.

From this data, we assemble a disordered Hamiltonian on $\mathbb{C}^{2} \otimes \ell^{2}(\mathbb{Z})$:

$$
H_{\omega}=\sum_{x \in \mathbb{Z}}\left\{\frac{1}{2} t_{x}\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes|x\rangle\langle x+1|+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes|x+1\rangle\langle x|\right]+m_{x}\left(\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right) \otimes|x\rangle\langle x| \cdot\right\}
$$

with

$$
t_{x}=t\left(\tau_{x} \omega\right), \quad m_{x}=m\left(\tau_{x} \omega\right)
$$

Key symmetry:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) H_{\omega}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=-H_{\omega} .
$$

Task: We are going to solve $H \psi=E \psi$ at $E=0$.

Lyapunov/Anderson localization length

The Schroedinger equation at $E=0$ reduces to ($\alpha= \pm 1$ indexes the top/bottom of ψ)

$$
t_{x} \psi_{x-\alpha}^{\alpha}+i \alpha m_{x} \psi_{x}^{\alpha}=0 \Rightarrow \psi_{x}^{\alpha}=\prod_{j=1}^{x}\left(\frac{t_{x}}{m_{x}}\right) \psi_{0}^{\alpha}
$$

The Lyapunov exponent (= inverse of Anderson localization length) comes to be

$$
\Lambda^{-1}=\max _{\alpha= \pm}\left[-\lim _{x \rightarrow \infty} \frac{1}{x} \log \left|\psi_{x}^{\alpha}\right|\right]=\left\lvert\, \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n=1}^{x}\left(\ln \left|t\left(\tau_{x} \omega\right)\right|-\ln \left|m\left(\tau_{x} \omega\right)\right| \mid\right.\right.
$$

Fromm Birkhoff's theorem

$$
\Lambda^{-1}=\left|\ln \frac{\int \mathrm{d} \mathbb{P}(\omega)|t(\omega)|}{\int \operatorname{dP}(\omega)|m(\omega)|}\right|
$$

A typical example

White noise disorder:
$\omega=\left[-\frac{1}{2}, \frac{1}{2}\right]^{\mathbb{Z}}, \quad \mathrm{d} \mathbb{P}(\omega)=d \omega, \quad t\left(\left\{\omega_{x}\right\}\right)=1+W_{1} \omega_{0}, \quad m\left(\left\{\omega_{x}\right\}\right)=m+W_{2} \omega_{0}$

Spectacular phenomenon:
The emergence of a manifold of zero Lyapunov exponent at very high levels of disorder.
It implies a sudden insulator/metal phase transition in dynamics of quasi 1-dimensional chain.

Experimental Observation

topological matter Science 362, 929-933 (2018)

Observation of the topological Anderson insulator in disordered atomic wires

Eric J. Meier ${ }^{1}$, Fangzhao Alex An ${ }^{1}$, Alexandre Dauphin ${ }^{2}$, Maria Maffei ${ }^{2,3}$, Pietro Massignan ${ }^{2,4 *}$, Taylor L. Hughes ${ }^{1+}$, Bryce Gadway ${ }^{1 *}$

Fig. 1. Synthetic chiral symmetric wires engineered with atomic momentum states.

Computing Pairings with Cyclic Cocycles at Strong Disorder

The generic models on $\mathbb{C}^{N} \otimes \ell^{2}\left(\mathbb{Z}^{d}\right)$:

$$
H_{\omega}=\sum_{q \in \mathbb{Z}^{d}} S_{q} \sum_{x \in \mathbb{Z}^{d}} w_{q}\left(\tau_{x} \omega\right) \otimes|x\rangle\langle x|
$$

come from $C(\Omega) \rtimes_{\tau} \mathbb{Z}^{d}$ via the GNS rep corresponding to the state $\mathcal{T}_{\omega}\left(\sum_{q} w_{q} u_{q}\right)=w_{q}(\omega)$.

This algebra comes with:

- A standard differential calculus

$$
\mathcal{T}\left(\sum_{q} w_{q} u_{q}\right)=\int d \mathbb{P}(\omega) w_{0}(\omega), \quad \partial_{i}=\imath \sum_{q} q_{i} w_{q} u_{q}, \quad i=1, \ldots, d .
$$

- A standard finite-volume approximation (which carries the differential calculus!)

$$
\mathbb{Z} \mapsto \mathbb{Z}_{N}, \quad \Omega \mapsto \Omega_{N}, \tau_{x}^{\circ N}(\omega)=\omega \quad \forall x \in \mathbb{Z}^{d} \text { and } \omega \in \Omega_{N}
$$

There is an epi-morphism of C^{*}-algebras:

$$
\mathfrak{p}_{N}: C(\omega) \rtimes_{\tau} \mathbb{Z}^{d} \rightarrow C\left(\Omega_{N}\right) \rtimes_{\tau} \mathbb{Z}_{N}^{d}, \quad \mathfrak{p}\left(\sum_{q} w_{q} u_{q}\right)=\left.\sum_{q} w_{q}\right|_{\Omega_{N}} u_{q \bmod N}^{(N)}
$$

Computing Pairings with Cyclic Cocycles at Strong Disorder

Theorem [E. P. 2013, 2016] (some of the assumptions are not shown here)
Let h be a smooth element from $\in C(\Omega) \rtimes_{\tau} \mathbb{Z}^{d}$ and $\hat{h}=\mathfrak{p}_{N}(h)$ etc. Then

$$
\lim _{N \rightarrow \infty} N^{m}\left|\mathcal{T}\left(\partial^{\alpha_{1}} G_{1}(h) \ldots \partial^{\alpha_{n}} G_{n}(h)\right)-\widehat{\mathcal{T}}\left(\hat{\partial}^{\alpha_{1}} G_{1}(\hat{h}) \ldots \hat{\partial}^{\alpha_{n}} G_{n}(\hat{h})\right)\right| \leq \infty, \quad \forall m>1
$$

The estimates also hold if h is taken from appropriate Sobolev spaces.

Example: For models with chiral symmetry in odd dimension:

$$
\operatorname{sign}(h)=\left(\begin{array}{cc}
0 & u^{*} \\
u & 0
\end{array}\right)
$$

and we can compute the pairing of u and an odd cyclic-cocycle

$$
\nu_{d}(u)=\Lambda_{d} \sum_{\sigma}(-1)^{\sigma} \mathcal{T}\left(\prod_{j=1}^{d} u^{-1} \partial_{\sigma_{j}} u\right)
$$

The amazing fact is that, since $0 \in \operatorname{Spec}(h), u \notin C(\Omega) \rtimes_{\tau} \mathbb{Z}^{d}$.

$$
H_{\omega}=\sum_{\langle x, y\rangle}|x\rangle\langle y|+0.6 \imath \sum_{\langle\langle x, y\rangle\rangle}(|x\rangle\langle y|-|y\rangle\langle x|)+W \sum_{x} \omega_{x}|x\rangle\langle x|, \quad(\langle,\rangle /\langle\langle,\rangle\rangle=\text { first/second neighbors })
$$

A manifold of critical extended states develops again.

Computation of Even Pairings

$$
\mathrm{Ch}_{d}\left(p_{E}\right)=\Lambda_{d} \sum_{\sigma}(-1)^{\sigma} \mathcal{T}\left(p_{E} \prod_{j=1}^{N} \partial_{\sigma_{j}} p_{E}\right), \quad p_{E}=\chi_{(-\infty, E]}(h)
$$

(b)

(d)

Fermi energy	-		60×60	80×80
-0.7000000000000000	0.8672349391630054	0.9079791895178040	0.9301639459675241	0.9432234611493278
-0.6000000000000000	0.9392873717233425	0.9636994770114942	0.9802652381114992	0.9872940741308633
-0.5000000000000000	0.9784417158133359	0.9935074963179980	0.9974987656403326	0.9988846769813913
-0.4000000000000000	0.9958865415757685	0.9992024708366942	0.9998527876642247	0.9999656328302596
-0.3000000000000000	0.9998184404341747	0.9999824660477071	0.9999988087144891	0.9999996457562911
-0.2000000000000000	0.9999952917010211	0.9999977443008894	0.9999999997655000	0.9999999999862120
-0.1000000000000000	0.9999999046002306	0.9999999998972079	0.9999999999998473	0.9999999999999849
0.0000000000000000	0.9999999963422543	0.9999999999988873	0.9999999999999996	0.9999999999999999

Integer Quantum Hall Effect [Song et al, Euro. Phys. Lett. 2014]

- $h \in C^{*}\left(C(\Omega), u_{1}, u_{2}\right), \quad u_{1} u_{2}=e^{2 \pi \imath \Phi} u_{2} u_{1}, \quad f u_{j}=u_{j}\left(f \circ \tau_{j}\right)$.
- $h=u_{1}+u_{1}^{*}+u_{2}+u_{2}^{*}+W f, \quad f\left(\left\{\omega_{x, y}\right\}\right)=\omega_{0,0}$.

An Amorphous System under Magentic Field [Bourne et al, J. Phys. A (2018)]

- $H: \ell^{2}(\mathcal{L}) \rightarrow \ell^{2}(\mathcal{L}), \quad H=\sum_{x, x^{\prime} \in \mathcal{L}} e^{2 \theta \times \wedge x^{\prime}} e^{-3\left|x-x^{\prime}\right|}|x\rangle\left\langle x^{\prime}\right|$
- H can be generated from a grupoid algebra canonically associated to \mathcal{L}.

3-Dimensional Model with Chiral Symmetry [Song et al, Phys. Rev. B (2014)]

- $C(\Omega) \rtimes \mathbb{Z}^{3} \ni h=\frac{1}{2 \imath} \sum_{j=1}^{3} \Gamma_{j} \otimes\left(u_{j}-u_{j}^{*}\right)+\Gamma_{4} \otimes\left[M+\frac{1}{2} \sum_{j=1}\left(u_{j}+u_{j}^{*}\right)+t \imath \Gamma_{1} \Gamma_{3}+W f\right]$

- System from All class (time-reversal symmetric) in $d=2$

$$
\begin{aligned}
H_{0}^{\mathrm{OSH}}=\sum_{\langle\boldsymbol{m} \boldsymbol{m}\rangle, \sigma} & |\boldsymbol{n}, \sigma\rangle\langle\boldsymbol{m}, \sigma|+\sum_{\langle(\boldsymbol{n} m\rangle\rangle, \sigma} \alpha_{n}\left(t / 2+\mathrm{i} \eta\left[\hat{\boldsymbol{S}} \cdot \underline{\mathbf{d}_{k \boldsymbol{m}} \times \mathbf{d}_{n k}}\right]_{\sigma, \sigma}\right)|\boldsymbol{n}, \sigma\rangle\langle\boldsymbol{m}, \sigma| \\
& +\mathrm{i} \lambda \sum_{\langle\boldsymbol{n} \boldsymbol{m}\rangle, \sigma \sigma^{\prime}}\left[\mathbf{e}_{z} \cdot\left(\hat{\boldsymbol{S}} \times \underline{\mathbf{d}_{n \boldsymbol{m}}}\right)\right]_{\sigma, \sigma^{\prime}}|\boldsymbol{n}, \sigma\rangle\left\langle\boldsymbol{m}, \sigma^{\prime}\right| .
\end{aligned}
$$

Bi2Se3 Model [Leung et al, Phys. Rev. B (2012)]

- A system from All class (time-reversal symmetry) in $d=3$

Evaluation of the Z2-invariant at strong disorder

For the cases with time-reversal and/or particle-hole symmetries the relevant pairing is
$K K O\left(C \ell_{j, 0}, C(\Omega) \rtimes_{\alpha, \theta} \mathbb{Z}^{d}\right) \times K K O\left(C(\Omega) \rtimes_{\alpha, \theta} \mathbb{Z}^{d} \hat{\otimes} C \ell_{0, d}, C(\Omega)\right) \rightarrow K K O\left(C \ell_{j, d}, C(\Omega)\right)$
Generating a local formula for this Clifford index is still open problem.
Bourne et al, AHP (2017)

The Conjectured Topological Classification Table

j	TRS	PHS	CHS	CAZ	0,8	1	2	3	4	5	6	7
0	0	0	0	A	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
1	0	0	1	AIII		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
0	+1	0	0	AI	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
1	+1	+1	1	BDI	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
2	0	+1	0	D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
3	-1	+1	1	DIII		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
4	-1	0	0	AII	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
5	-1	-1	1	CII		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
6	0	-1	0	C			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
7	+1	-1	1	Cl				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}

- A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).
- A. Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau Memorial Conference) AIP Conference Proceedings 1134, 22-30 (2009).
- S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010).

Part 2

Index Theorems for the cyclic cocycles to explain

- The quantization of the pairings in the extreme disorder regime
- The emergence of the critical manifolds of extended states
[Following here E.P, Leung, Bellissard, J. Phys. A (2013)]

The Setting ($d=$ even)

The C^{*}-algebra and its differential calculus

- $\left(\Omega, \tau, \mathbb{Z}^{d}, \mathrm{~d} \mathbb{P}\right)$ ergodic dynamical system
- $\mathcal{A}=C(\Omega) \rtimes \mathbb{Z}^{d}, d=\operatorname{even} \quad\left(\mathcal{A} \ni a=\sum_{q \in \mathbb{Z}^{d}} a_{q} u_{q}, a_{q} \in C(\Omega)\right)$
- $\pi_{\omega}(a)=\sum_{q}\left(\sum_{x} a_{q}\left(\tau_{x} \omega\right)|x\rangle\langle x|\right) S_{q} \quad$ (\mathbb{P}-almost sure faithful representations on $\left.\ell^{2}\left(\mathbb{Z}^{2}\right)\right)$
- $\partial_{j} a=\imath \sum_{q} q_{i} a_{q} u_{q}, \quad \mathcal{T}(a)=\int d \mathbb{P}(\omega) a_{0}(\omega)$

Initial data (a gentle start):

- $h \in \mathcal{A}^{\infty}, \quad h=h^{*}$
- $G \subset \mathbb{R} \backslash \operatorname{Spec}(h) \neq \emptyset$ (spectral gap condition)
- $p_{E}=\chi_{(-\infty, E]}(h), E \in G$ (spectral projection) [In general, E is fixed by the electron density]

The object of interest

$$
\xi\left(a_{0}, a_{1}, \ldots, a_{d}\right)=\Lambda_{d} \sum_{\sigma \in \mathcal{S}_{d}} \mathcal{T}\left(a_{0} \prod_{j=1}^{d} \partial_{\sigma_{j}} a_{j}\right)
$$

Key properties (following directly from $\mathcal{T}\left(\partial_{j} a\right)=0$):

- It is (even) cyclic

$$
\xi\left(a_{1}, \ldots, a_{d}, a_{0}\right)=\xi\left(a_{1}, \ldots, a_{d}, a_{0}\right)
$$

- It is closed $b \xi=0$ against the Hochschild coboundary map

$$
(b \xi)\left(a_{0}, a_{1}, \ldots, a_{d}, a_{d+1}\right)=\sum_{j=0}^{d}(-1)^{j} \xi\left(a_{0}, \ldots, a_{j} a_{j+1}, \ldots, a_{d+1}\right)-\xi\left(a_{d+1} a_{0}, \ldots, a_{d}\right)
$$

As a result (Connes 1985):

- There exists a pairing with the K_{0}-classes landing in a countable subgroup of the real axis:

$$
\left\langle[\xi],[p]_{0}\right\rangle:=\xi(p, \ldots, p)
$$

Physical Content

When applied to the spectral projection $p_{E}\left(\phi_{i j}=\right.$ magnetic flux through the $(i j)$-facet $)$:

- If $d=2$ (Bellissard et al 1994):

$$
\xi\left(p_{E}, p_{E}, p_{E}\right)=\sigma_{H} \quad \text { (the Hall conductance at zero temperature) }
$$

- If $d \geq 4$ (E. P. and Schulz-Baldes 2016):

$$
\xi\left(p_{E}, \ldots, p_{E}\right)=\partial_{\phi_{i_{1}, i_{2}}} \ldots \partial_{\phi_{i_{d-1}, i_{d}}} \sigma_{H} \quad \text { (non-linear transport coefficient) }
$$

Although the pairing assures the quantization of these transport coefficients, the experimental reality is harsh. Clearly, E is located in the essential spectrum!!!

$$
\begin{gathered}
\rho_{H}=\frac{U_{H}}{I} \approx 1 / \sigma_{H} \\
R_{D}=\frac{U_{P P}}{I}
\end{gathered}
$$

Time to Examine the Domain of the Co-Cycle

In the standard approach

- $\mathcal{D}(\xi)=\mathcal{A}^{\infty}$ (defined by the semi-norms $\left\|\partial^{\alpha} a\right\|$).

However, Hölder inequality gives:

- $\left|\xi\left(a_{0}, a_{1}, \ldots, a_{d}\right)\right| \leq\left\|a_{0}\right\|_{\infty} \prod_{j=1}^{d}\left(\sum_{k=1}^{d}\left\|\partial_{k} a_{j}\right\|_{d}\right), \quad\|a\|_{p}=\left[\mathcal{T}\left(|a|^{p}\right)\right]^{\frac{1}{p}}$
- $\left|\xi\left(a_{0}, a_{1}, \ldots, a_{d}\right)-\xi\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{d}^{\prime}\right)\right| \leq$ Factor $\times \sum_{j=0}^{d}\left(\sum_{k=1}^{d}\left\|\partial_{k}\left(a_{j}-a_{j}^{\prime}\right)\right\|_{d}\right)$

Important conclusion:
The natural domain for ξ is the Sobolev space $\mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T})$ defined by the norm

$$
\|a\|_{S}=\|a\|_{\infty}+\sum_{k=1}^{d}\left[\mathcal{T}\left(\left|\partial_{k} a_{j}\right|^{p}\right)\right]^{\frac{1}{p}}
$$

Furthermore, $p_{E} \in \mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T})$ in the experimental harsh setting.

Quantized Calculus

The tuple $\left(\eta_{\omega}: \mathcal{A} \rightarrow \mathbb{B}(\mathcal{H}), \widehat{D}_{x_{0}}=\frac{D_{x_{0}}}{\left|D_{x_{0}}\right|}, \Gamma_{0}\right)$ is an even Fredholm module, where

- $\mathcal{H}=\mathbb{C}^{2^{d}} \otimes \ell^{2}\left(\mathbb{Z}^{d}\right), \quad \eta_{\omega}=1 \otimes \pi_{\omega}$
- $\Gamma_{i}=$ Clifford matrices and $\Gamma_{0}=-i^{n} \Gamma_{1} \cdots \Gamma_{d}$
- $D_{x_{0}}=\sum_{i=1}^{d} \Gamma_{i} \otimes\left(X_{i}-x_{0}\right)$

If the module is (d, ∞) - summable, then Connes-Chern character comes into play:

$$
\operatorname{Tr}_{\mathrm{s}}\left(\Gamma_{0}\left[\widehat{D}_{x_{0}}, \eta_{\omega}\left(p_{E}\right)\right]^{d}\right)=\operatorname{Ind}\left(\eta_{\omega}^{-}\left(p_{E}\right) \widehat{D}_{x_{0}} \eta_{\omega}^{+}\left(p_{E}\right)\right)
$$

Note, however, that we need to push into the Sobolev setting.

\mathbb{P}-Almost Sure Summability

For $a \in \mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T})$, the following identity holds \mathbb{P}-almost surely $(\Gamma(\hat{x})=\Gamma-\hat{x}(\hat{x} \cdot \Gamma))$:

$$
\operatorname{Tr}_{\operatorname{Dix}}\left(\left(\imath\left[\widehat{D}_{x_{0}}, \eta_{\omega}(a)\right]\right)^{d}\right)=\frac{1}{d} \int_{S_{d-1}} \mathrm{~d} \hat{x} \operatorname{tr}_{\Gamma} \otimes \mathcal{T}\left((\Gamma(\hat{x}) \cdot \nabla(a))^{d}\right)
$$

Corollary: \mathbb{P}-almost surely, the module

$$
\left(\eta_{\omega}: L^{\infty}(\mathcal{A}) \rightarrow \mathbb{B}(\mathcal{H}), \widehat{D}_{x_{0}}=\frac{D_{x_{0}}}{\left|D_{x_{0}}\right|}, \Gamma_{0}\right)
$$

is (d, ∞)-summable over $\mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T})$. As a result, \mathbb{P}-almost surely,

$$
\operatorname{Tr}_{\mathrm{s}}\left(\Gamma_{0}\left[\widehat{D}_{x_{0}}, \eta_{\omega}\left(p_{E}\right)\right]^{d}\right)=\operatorname{Ind}\left(\eta_{\omega}^{-}\left(p_{E}\right) \widehat{D}_{x_{0}} \eta_{\omega}^{+}\left(p_{E}\right)\right) \in \mathbb{Z}
$$

Using quantized calculus, we produced a family \mathbb{Z}-valued cyclic co-cycles over $\mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T})$.

Local Formula for the Connes-Chern Character

Connes-Moscovici local-index formula:

$$
\begin{gathered}
\text { Index PUP }= \\
\sum_{n \leq p}(-1)^{\frac{n-1}{2}}\left(\frac{n-1}{2}\right)!\sum_{k, q} \frac{(-1)^{|k|}}{k_{1}!\ldots k_{n}!} \alpha_{k} \frac{1}{q!} \sigma_{m-q}(m) \operatorname{Res}_{s=0} s^{q} \zeta_{(k, n)}(s)
\end{gathered}
$$

However, in our particular context, we can use some remarkable identities

- In $d=2$, the identity is due to Alain Connes (1985)

$$
\sum_{q}\left(1-\frac{x \overline{\left(x+x_{1}\right)}}{\left|q\left(q+x_{1}\right)\right|}\right)\left(1-\frac{\left(x+x_{1}\right) \overline{\left(x+x_{2}\right)}}{\left|\left(x+x_{1}\right)\left(q+x_{2}\right)\right|}\right)\left(1-\frac{\left(x+x_{2}\right) \bar{q}}{\left|\left(x+x_{2}\right) x\right|}\right)=2 \pi \imath x_{1} \wedge x_{2}
$$

- The generalization to $d>2$ looks like this $\left(\boldsymbol{x}_{d+1}=\mathbf{0}\right)$

$$
\int_{\mathbb{R}^{d}} \mathrm{~d} \boldsymbol{x} \operatorname{tr}\left\{\Gamma_{0} \prod_{i=1}^{d}\left(\frac{\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i}+\boldsymbol{x}\right)}{\left|\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i}+\boldsymbol{x}\right)\right|}-\frac{\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i+1}+\boldsymbol{x}\right)}{\left|\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i+1}+\boldsymbol{x}\right)\right|}\right)\right\}=\frac{(2 \imath \pi)^{d / 2}}{(d / 2)!} \sum_{\rho \in \mathcal{S}_{d}}(-1)^{\rho} \prod_{i=1}^{d} x_{i, \rho_{i}}
$$

Sketch of Proof of the Geometric Identity

- Left side generates terms like $\operatorname{tr}\left\{\Gamma_{0} \prod_{i=1}^{d} \boldsymbol{\Gamma} \cdot \boldsymbol{y}_{\alpha_{i}}\right\}=(2 \imath)^{d / 2} d!\operatorname{Vol}\left[0, \boldsymbol{y}_{\alpha_{1}}, \ldots, \boldsymbol{y}_{\alpha_{d}}\right]$

- $\int \mathrm{d} \boldsymbol{x} \sum_{\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}} \operatorname{Vol}\left[\mathbf{0}, \boldsymbol{y}_{\alpha_{1}}, \ldots, \boldsymbol{x}_{\alpha_{d}}\right]=\operatorname{Vol}($ unit $\operatorname{ball}) \times \operatorname{Vol}\left(\mathbf{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d}\right)$
- The volume on the right is expressed as a determinant.

The Index Theorem for Even Dimension

Theorem: For any $p \in \mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T}), \mathbb{P}$-almost surely

- $\eta_{\omega}^{-}(p) \widehat{D}_{x_{0}} \eta_{\omega}^{+}(p)$ is a Fredholm operator.
- $\operatorname{Ind}\left(\eta_{\omega}^{-}(p) \widehat{D}_{x_{0}} \eta_{\omega}^{+}(p)\right)=\xi(p, \ldots, p)$

If $p(t) \in \mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T})$ varies continuously w.r.t. the norm $\sum_{k=1}^{d}\left\|\partial_{k}(\cdot)\right\|_{d}$, then

- $\xi(p(t), \ldots, p(t))=\mathrm{constant} \in \mathbb{Z}$.

Proof:

- $\eta_{\omega}^{-}(p) \widehat{D}_{x_{0}} \eta_{\omega}^{+}(p)-\eta_{\tau_{x} \omega}^{-}(p) \widehat{D}_{x_{0}} \eta_{\tau_{x} \omega}^{+}(p)=$ compact operator
- $\eta_{\omega}^{-}(p) \widehat{D}_{x_{0}} \eta_{\omega}^{+}(p)-\eta_{\omega}^{-}(p) \widehat{D}_{x_{0}^{\prime}} \eta_{\omega}^{+}(p)=$ compact operator
- $\operatorname{Ind}\left(\eta_{\omega}^{-}\left(p_{E}\right) \widehat{D}_{x_{0}} \eta_{\omega}^{+}\left(p_{E}\right)\right)=\int \mathrm{dP}(\omega) \int \mathrm{d} x_{0} \operatorname{Tr}_{\mathrm{S}}\left(\Gamma_{0}\left[\widehat{D}_{x_{0}}, \eta_{\omega}\left(p_{E}\right)\right]^{d}\right)$
- Evaluate the right side using the geometric identity.

The Index Theorem for Odd Dimensions [E.P, Schulz-Baldes J. Func. Anal. (2016)]

Theorem: For any $u \in \mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T}), \mathbb{P}$-almost surely

- $E_{x_{0}} \eta_{\omega}(u) E_{x_{0}}\left(E_{x_{0}}=\chi_{(-\infty, 0]}\left(D_{x_{0}}\right)\right)$ is a Fredholm operator.
- $\operatorname{Ind}\left(E_{x_{0}} \eta_{\omega}(u) E_{x_{0}}\right)=\xi\left(u^{-1}, u, \ldots, u\right)$

If $u(t) \in \mathcal{W}_{1, d}(\mathcal{A}, \mathcal{T})$ varies continuously w.r.t. the norm $\sum_{k=1}^{d}\left\|\partial_{k}(\cdot)\right\|_{d}$, then

- $\xi\left(u(t)^{-1}, \ldots, u(t)\right)=$ constant $\in \mathbb{Z}$.

$$
\begin{aligned}
(H \boldsymbol{\psi})_{x}= & m_{x} \hat{\sigma}_{2} \boldsymbol{\psi}_{x} \\
& +1 / 2 t_{x}\left[\left(\hat{\sigma}_{1}+i \hat{\sigma}_{2}\right) \boldsymbol{\psi}_{x+1}+\left(\hat{\sigma}_{1}-i \hat{\sigma}_{2}\right) \boldsymbol{\psi}_{x-1}\right] \\
& +1 / 2 t^{\prime}\left[\left(\hat{\sigma}_{1}+i \hat{\sigma}_{2}\right) \boldsymbol{\psi}_{x+2}+\left(\hat{\sigma}_{1}-i \hat{\sigma}_{2}\right) \boldsymbol{\psi}_{x-2}\right],
\end{aligned}
$$

