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Part 1

Spectacular behavior at strong disorder
@ An exactly solvable system

@ Numerical simulations

@ Experimental signature of such phenomena

Emil Prodan (Yeshiva University) Tls at Strong Disorder March 2021 2/29



Anderson Localization-Delocalization transition in 1D chiral model

The model defined:
Data:
@ Ergodic dynamical system (7’ 1L — Homeo(Q),dIP)

@ Two functions t: Q2 — R and m: Q — R.

From this data, we assemble a disordered Hamiltonian on C? ® ¢3(Z):

Ho= S {50 [0 5) omecrat+ (9 g) @b +me () @}

XEZL

with
te = t(xw), mx = m(Txw)

Key symmetry:
1 0 1 0
(0 5)rels &)-n

Task: We are going to solve HyY = Ev at E = 0.
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Lyapunov/Anderson localization length

The Schroedinger equation at E = 0 reduces to (a« = £1 indexes the top/bottom of 1))

X
b +iamapd =0 = ¢ =[] (

Jj=1

t—*) g

x

The Lyapunov exponent (= inverse of Anderson localization length) comes to be

A l=m
a—

Fromm Birkhoff’s theorem
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A typical example

White noise disorder:

w=[-3117 dP(w)=dw, t({w})=1+Wiwo, m({wi})=m+ Wawp

10

A= [2 4 W, |VWH1/2 12 — W, |/ Wam1/2
/ =|In ‘Z_Wl‘l/wrl/z ‘2,71+W2‘m/wz+l/2

Spectacular phenomenon:

‘ The emergence of a manifold of zero Lyapunov exponent at very high levels of disorder.

It implies a sudden insulator/metal phase transition in dynamics of quasi 1-dimensional chain.
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Experimental Observation

TOPOLOGICAL MATTER  Science 362, 929-933 (2018) B

Observation of the topological
Anderson insulator in disordered
atomic wires

Eric J. Meier', Fangzhao Alex An', Alexandre Dauphin®, Maria Maffei®?,
Pietro Massignan®**, Taylor L. Hughes'*, Bryce Gadway"*

Fig. 1. Synthetic chiral symmetric wires
engineered with atomic momentum states.
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Computing Pairings with Cyclic Cocycles at Strong Disorder

The generic models on CN ® ¢£2(29):

Ho= 3 S0 3 walrw) ® x|

qud xezd

come from C(Q) - Z? via the GNS rep corresponding to the state Tos (3 Waug) = we(w).

This algebra comes with:

@ A standard differential calculus
T(X, wauq) = [dP(w)wo(w), 8 =123, qiwqug, i=1,...,d.
@ A standard finite-volume approximation (which carries the differential calculus!)

T Ty, Q= Qu, V(W) =w VY x€Z9 and w € Qp

There is an epi-morphism of C*-algebras:

pn : C(w) xr 29 — C(Qn) %+ Z‘,{,, p(z unq) = ZWQ‘QN”‘(;I\deN
q q
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Computing Pairings with Cyclic Cocycles at Strong Disorder

Theorem [E. P. 2013, 2016] (some of the assumptions are not shown here)

Let h be a smooth element from € C(2) x, Z? and h = py(h) etc. Then

N— oo

lim N™ ‘T(a“l Gi(h)...0% Ga(h)) = T (8% Gy(h)... 5 G,,(E))‘ <oo, Vm>1.

The estimates also hold if h is taken from appropriate Sobolev spaces.

Example: For models with chiral symmetry in odd dimension:

. 0 u*

h) =

sign(h) (u 0)

and we can compute the pairing of u and an odd cyclic-cocycle
va(u) = Ay Z(—l)"T( [Tu o, u) .
o j=1
v
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Numerical Results for the 1-Dimensional Model [Mondragon, Phys. Rev. Lett. 2014]

The amazing fact is that, since 0 € Spec(h), u ¢ C(Q) x, Z7.
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Further Numerical Results for the 1-Dimensional Models [song et al, Phys. Rev. B 2014]

(HY)y = my 629,
+124[(61 +i62)Y x41 + (61 — i62)P 1]
+120'[(81 +i62)¥ 42 + (61 — i62)¥ 2],
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Numerical Results for a 2-Dimensional Model (honeycomb lattice) [EP. J. Phys. A (2011)]

Ho =Y [)y[+0.60 > (b yI=Iy)(x)+W D wilx)(xl,  (()/((,)) = first/second neighbors)
(xy) () x

Er Extended
Bulk States

Spectrum

Normal
Insulator

(O} o (0]

e

A manifold of critical extended states develops again.
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Computation of Even Pairings

Chal(pe) = Ay > (-1)7T(

j=1

N
PE HaojPE>7 PE = X(—o0,£](h)-
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|nteger Quantum Hall Effect [Song et al, Euro. Phys. Lett. 2014]

@ he C*(C(Q),u1,wm), wtu =e*Puu, fu; = uj(f o ;).

@ h=w+uf+w+u;+WTF, F({wxy})=woo-

m’é 03|
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An Amorphous System under Magentic Field [Bourne et al, J. Phys. A (2018)]

@ H: K2(L‘,) — Zz(ﬁ), H= ZX,X/EL ezex/\x’e73\xfx’|lx><xll

@ H can be generated from a grupoid algebra canonically associated to L.

Amorphous Lattice Spec(H) The even pairing
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3-Dimensional Model with Chiral Symmetry [song et al, Phys. Rev. B (2014)]

@ CNZP3h=2L32 T@w—u)+Te [M+%Zj:1(UJ+uJT‘)+tzr1r3+ Wf]
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Kane-Mele Model [Ep, J. Phys. A (2011)]

@ System from All class (time-reversal symmetric) in d = 2

HS = 3" Inoymool+ Y an@/2+inl8 - dim X duloo)ln. o) (m, o

(nm),o ((nm)).0

+ik Z le. - (8 x dpm) oo, 0) (M, 07|

(nm),o0

|
Metallic
Phase

A

Normal
Insulator

=

-
A
A
A
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Bi2Se3 Model [Leung et al, Phys. Rev. B (2012)]

@ A system from All class (time-reversal symmetry) ind =3

[ /[wm\_A.,/’ ‘ !
el
Evaluation of the Z2-invariant at strong disorder =~ ‘ mf‘
R PRt A8 ol Aol P R e F\ /\ ‘F\\,//‘
i EaN /‘
[

2 924 [ 1024

Generating a local formula for this Clifford index is still open problem.

1
1‘:.“‘«;\ (mev) ‘ ” ‘ ,,.\,\ Metallic M'\ / |‘
|\ -

5, Incal

For the cases with time-reversal and/or particle-hole symmetries R — l
the relevant pairing is (S | ©3) P 4 300

NI L |

KKO(Cljp,C(Q) %ap Z%) x KKO(C(Q) Xap Z'&Cly.4,C(Q)) = KKO(Clig, C(Q)) | L H J = N& j
|

Bourne et al, AHP (2017)
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-
The Conjectured Topological Classification Table

[J[TRSTPHSTCHS[[CAZJo8] 1 [ 2 [ 3] 4]5([6T]7]
0 0 0 0 A 7 Z Z

1 0 0 1 Alll Z Z Z Z
0] +1 0 0 Al Z 27 Zo | Zo
1| +1 +1 1 BDI Zs Z 27 Zs
2 0 +1 0 D Zo | Zp | Z 27

3| —1 +1 1 DI Zo | Zo | Z 27
4| -1 0 0 All 27 Zo | Zo | Z

5| —1 -1 1 cll 27 Zs | Zo | Z

6 0 -1 0 C 27 Zo | Zo | Z

7] 41 -1 1 Cl 27 Zy | Zo | Z

@ A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

@ A Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau
Memorial Conference) AIP Conference Proceedings 1134, 22-30 (2009).

@ S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).
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Part 2

Index Theorems for the cyclic cocycles to explain
@ The quantization of the pairings in the extreme disorder regime

@ The emergence of the critical manifolds of extended states

[Following here E.P, Leung, Bellissard, J. Phys. A (2013)]
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The Setting (d = even)

The C*-algebra and its differential calculus
@ (Q, 7,29, dP) ergodic dynamical system
@ A=C(Q)xZ9 d=even ( A3 a=Y cp0aquq ag € C(Q) )
@ mu(a)=3, <ZX ag(Txw) \x}(x\)Sq (P-almost sure faithful representations on ¢2(Z?))

@ Jja=13,4qiaquq, T(a)= [dP(w)ao(w)

Initial data (a gentle start):
@ he A®, h=h*

@ G C R\ Spec(h) # 0 (spectral gap condition)

Q@ pe = X(—oo,£](h), E € G (spectral projection) [In general, E is fixed by the electron density]
v
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The object of interest

d
(a0, a1,---,aq) = Ay Z T(30H80j3j>
oESy Jj=1

Key properties (following directly from 7(9;a) = 0):

@ It is (even) cyclic
€(a1, ..., ad,a0) = &(a1, .-, ad; a0)

@ It is closed b§ = 0 against the Hochschild coboundary map

d
(b&)(a0,a1,---,ad,ads1) = Z(—l)Jﬁ(ao, oy 3jaj11, -5 ad41) — §(ad41a0, - - -5 aq)
=0

As a result (Connes 1985):

@ There exists a pairing with the Kp-classes landing in a countable subgroup of the real axis:

<[£]7[p]0> = g(p»7p) )
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-
Physical Content

When applied to the spectral projection pg (¢ = magnetic flux through the (ij)-facet):
@ If d =2 (Bellissard et al 1994):
&(pe, PE, PE) = on  (the Hall conductance at zero temperature)
@ If d > 4 (E. P. and Schulz-Baldes 2016):

&(pE,- - PE) = 6(1,[1,[2 .. oy (non-linear transport coefficient)

'8"5'}171#}/

Although the pairing assures the quantization Uynvishs Von Kiitzing, Phys.
.. Rev. Lett. (1980)
of these transport coefficients, the
experimental reality is harsh. Clearly, E is
. . 10110
located in the essential spectrum!!!
5105
0 5 ) 3 20 2
(dimension function of p) Vo IV
POTENTIAL PROBES
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Time to Examine the Domain of the Co-Cycle

In the standard approach
@ D(&) = A (defined by the semi-norms [|0“al|).

However, Holder inequality gives:
1
@ [€(a0, 1, 20)] < laolloo Ty (S8 19kaylla).  llallp = [T(IalP)]?

® [(0,a1,- -, 2) — &(ap, 3, -, 3l)| < Factor x S (S5, 19(a; — )lla)

v
Important conclusion:
The natural domain for £ is the Sobolev space W 4(A, T') defined by the norm
1
lalls = llallo + Z [T(0ea317)]?
Furthermore, pg € Wy 4(A, T) in the experimental harsh setting.
v
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Quantized Calculus

The tuple (nw A — B(H), on =15 ‘,Fg) is an even Fredholm module, where
0

0 H=C¥®r2Y), n=1®m

@ [; = Clifford matrices and g = —i"l1--- Ty

@ Dy =37,Ti® (X —x)

If the module is (d, 00) — summable, then Connes-Chern character comes into play:

Trs (ro [Dso> Tiw(PE)]d> = Ind(n; (pe) Do n5 (PE))

Note, however, that we need to push into the Sobolev setting.

Emil Prodan (Yeshiva University) Tls at Strong Disorder March 2021 24/29



P-Almost Sure Summability

For a € Wy 4(A, T), the following identity holds P-almost surely (I'(R) =T —

x>
—
x>
-
—
=

TrDix<(z[5X0,nw(a)])d> — %/S dx trr ®T((I’(f<) . V(a))d>

d—1

Corollary: P-almost surely, the module
~ D.
(mo : L(A) = B(H), Dy = -2, To)
|Dx|

is (d, 00)-summable over Wi 4(.A, T). As a result, P-almost surely,

Tra (Fo[Dro 1 (pe)] ) = Ind (n (pe) Do 5 (pE)) € .

‘ Using quantized calculus, we produced a family Z-valued cyclic co-cycles over Wi 4(A, T).
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Local Formula for the Connes-Chern Character
Connes-Moscovici local-index formula:

Index PUP =
(—1)IH 1

S0 (Mg )Z By b T O glm) Resuco 57 G (5)

n<p

(see C. Bourne’s PhD thesis)

However, in our particular context, we can use some remarkable identities

@ In d = 2, the identity is due to Alain Connes (1985)

Z(l_ xm)(l_ |(X+X1)m)(1_M) =2mx; A X

7 la(q + x1)l (x +x1)(q + x)| |(x + x2)x]

@ The generalization to d > 2 looks like this (x4+1 = 0)

[ axe{rol T (F e R e N L e B H

IT-(xi +x) T (xip1 + x)| PESy

v
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Sketch of Proof of the Geometric Identity

@ Left side generates terms like tr{ro e, r- ya,} = (20)9/2d! Vol[0, Yoy, - - -, Yol

X3

d=3

Butimagine is 4

Xy
@ [dx Z{ahm’ad} Vol [0, Yo, - - -, Xay] = Vol(unit ball) x Vol(0,xy,..., xq)

@ The volume on the right is expressed as a determinant. O
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The Index Theorem for Even Dimension

Theorem: For any p € Wy 4(A, T), P-almost surely

7, (p)ﬁxonj;(p) is a Fredholm operator.

® 1nd(n5 () Dl (p)) = £(ps -, p)

If p(t) € W1,4(A, T) varies continuously w.r.t. the norm Zzzl 10k()|la, then

@ £(p(t),...,p(t)) = constant € Z.

Proof:
@ 15 (P) D (P) — Mo (P) Digit o (P) = compact operator

® 1. (P)Dxon (P) — nes (P) Dy it (p) = compact operator

o Ind(m?(pE) Dx, nZ(pE)) = [dP(w) [ dxo Trs(ro [BxOmw(PE)Jd)

@ Evaluate the right side using the geometric identity.
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The Index Theorem for Odd Dimensions [E.P, Schulz-Baldes J. Func. Anal. (2016)]
Theorem: For any u € Wi 4(A, T), P-almost surely

@ Eqnw(u)Exy (Exp = X(—00,01(Dx)) is a Fredholm operator.

) Ind(EXOr]w(u)EX()) =¢w ..., u)

If u(t) € W1, 4(A, T) varies continuously w.r.t. the norm zzzl 10k()|la, then

@ £(u(t)L,...,u(t)) = constant € Z.

(HY)y = my 629«
+12 4061 +i6)Y xi1 + (61 — i62)P 1]
+121'(81 + i62)¥ x40 + (61 — i62)¢ 2],
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