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Motivation

Quantum Gravity

↓

Quantum Geometry

↓

Classical Geometry
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Noncommutative geometry - generalised notion of geometry

The noncommutative nature allows for obtaining quantum
gravitational corrections to the classical solutions.

Can be helpful in providing the phenomenological models
quantifying the effects of quantum gravity.

One of the mostly studied possible phenomenological effects
of quantum gravity is the modification in wave dispersion.
Such investigations were inspired by the observations of
gamma ray bursts (GRBs).

Noncommutative differential geometry based on Drinfeld twist
deformation canonically gives NC wave equations - A
top-down geometric approach to dispersion relations
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Differential Geometry vs NC Differential Geometry

M - manifold and
C∞(M) = A - functions on a
manifold

→ A⋆ - NC deformation of the
algebra of functions on a
manifold

and

Ω1 space of 1-forms, e.g.
differentials:

df =
∑
i

∂f

∂xµ
dxµ

f dg = (dg)f

→ noncommutative differential
structure:
differential bimodule (Ω1, d) of
1-forms with d - obeying the
Leibniz rule and
→ f ⋆ dg ̸= (dg) ⋆ f
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Lie algebra of vector fields as Hopf algebra

Deformations of spacetime symmetries - Lie algebra g of
vector fields ξ

Ug as Hopf algebra H = (Ug ,∆0, ϵ,S0)

In the coordinate basis ξ ∈ g : ξ = ξµ ∂
∂xµ = ξµ∂µ.

This algebra generates the diffeomorphism symmetry; one can
also consider subalgebras of g like Poincaré algebra or
conformal algebra as symmetry.
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Twisting

(H,A)
**
(HF ,A⋆)mm

The twist F is an invertible element of H ⊗ H.

F = 1 ⊗ 1 + O(h),

which provides an undeformed case at the zero-th order in the
deformation parameter h.

Notation:
F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α,

(sum over α = 1, 2, ...∞ assumed)
f̄α ∈ H and fα ∈ H
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Quantum spacetime: star-product

A = (C∞(M), ·) =⇒ A⋆ = (C∞(M), ⋆)

the algebra of smooth functions becomes a noncommutative
spacetime with the twisted ⋆-product

xµ ⋆ xν = · F−1(xµ ⊗ xν) = f̄α(xµ)̄fα(xν)

xµ, xν ∈ C∞(M).

such ⋆-product is noncommutative and associative.

AF can be represented by deformed, ⋆-commutators of
noncommutative coordinates:

[xµ, xν ] = xµ ⋆ xν − xµ ⋆ xµ
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Quantum (noncommutative) spacetimes

1 Canonical (Moyal-Weyl) spacetime Aθ:
[xµ, xν ] = ihθµν

with deformation parameter h of length2 (LP) dim.
S. Doplicher, K. Fredenhagen, J. E. Roberts,

Commun. Math. Phys. 172 (1995),
[arXiv:hep-th/0303037].

2 Lie-algebraic type spacetime:
[xµ, xν ] = ihθµνρ xρ

with deformation parameter h of mass (MP) dim.

Special case: Aκ

[x0, xk ] =
i

κ
xk , [x i , xk ] = 0

- the so-called: κ-Minkowski spacetime.
S. Majid, H. Ruegg Phys.Lett. B334

(1994) [hep-th/9405107] ;
S. Zakrzewski J. Phys. A 127 (1994).
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Drinfeld Twists - examples

The canonical (Moyal-Weyl) noncommutative spacetime can
be obtained by twist deformation:

F = exp

(
− i

2
hθµν∂µ ⊗ ∂ν

)
The twist has support in the Poincaré algebra, i.e.
F ∈ Uiso(1,n−1) ⊗ Uiso(1,n−1). (The minimal algebra F ∈ Utn ⊗ Utn .)

The Moyal-Weyl ⋆-product of functions on Rn:

f ⋆ g = e
i
2
hθµν ∂

∂xµ
∂

∂yν f (x)g(y)|x=y = f (x)g(x) +
i

2
hθµν

∂

∂xµ
f

∂

∂xν
g + ...

giving
[xµ, xν ] = xµ ⋆ xν − xµ ⋆ xµ = ihθµν
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Drinfeld Twists - examples

[J. Lukierski, V. Lyakhovsky, M. Mozrzymas, Phys.Lett. B538 (2002)
A. Borowiec, A.P, EPJ C 74, 3 (2014)]

The light-cone κ-Minkowski spacetime can be implemented by
the extended Jordanian twist

F = exp

(
i

κ
(x+∂a − xa∂+)⊗ ∂a

)
exp

(
i(x+∂− − x−∂+)⊗ ln(1 +

1

κ
∂+)

)
The twist has support in the (null-plane) Poincare algebra.

(leading to the ’Null-Plane Quantum Poincare Algebra’
[A. Ballesteros, F. J. Herranz, M. A. del Olmo, M. Santander, PLB351’95])

giving the light-cone κ-Minkowski spacetime:
[x±, xa] = ± i

κ
x± , [xa, xb] = 0 , [x+, x−] = i

κ
(x+ − x−)
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Drinfeld Twists - examples

[Jong-Gepn Bu, Hyeong-Chan Kim, Youngone Lee, Chang Hyon Vac, Jae
Hyung Yee, Phys. Lett. B665 (2008), [arXiv:hep-th/0611175]

A. Borowiec, A.P. SIGMA 6 (2010), 086 [arXiv:1005.4429]]

The κ-Minkowski spacetime can be implemented by the Abelian
twist

F = exp

[
− i

2κ

(
∂0 ⊗ xk∂k − xk∂k ⊗ ∂0

)]
(1)

The smallest subalgebra generated by D = xk∂k ,P0 = −i∂0 and
the Lorentz generators turns out to be entire igl(n) algebra.

f ⋆ g = e
i
2κ

(
∂

∂x0
yk ∂

∂yk
−xk ∂

∂xk
∂

∂y0

)
f (x)g(y)|x=y

giving:

[x0, xk ] =
i

κ
xk , [x i , xk ] = 0
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Drinfeld Twists - examples

[A. Borowiec, A.P, Phys.Rev.D79 (2009) [arXiv:0812.0576]]

The κ-Minkowski spacetime can be implemented by the
Jordanian twist

F = exp

(
−xµ∂µ ⊗ ln(1 − i

κ
∂0)

)
The twist has support in Upw of the Poincaré-Weyl algebra
pw = span{Mµν ,Pµ,D = −ixµ∂µ}.

f ⋆ g = exp(xµ
∂

∂xµ
⊗ ln(1 − i

κ

∂

∂y0
))f (x)g(y)|x=y

giving:

[x0, xk ] =
i

κ
xk , [x i , xk ] = 0
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Twisted differential geometry

Noncommutative (twisted) differential geometry approach is
based on Drinfeld twist F deformation.

Can be implemented for any twist F and any curved
background (g).

Noncommutative differential geometry based on Drinfeld twist
deformation canonically gives NC wave equations - Allows
for a study of the corresponding dispersion relations

Aim: wave equation for the Jordanian twist - giving
k-Minkowski spacetime - in the presence of a FLRW
cosmological background & dispersion relations [ P. Aschieri, A.

Borowiec, A.P., JCAP 04 (2021) [arXiv:2009.01051]].
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Twisted differential calculus
[ P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp , J. Wess, Class.

Quant. Grav. 22 (2005) [arXiv:hep- th/0504183]
P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Class. Quant. Grav. 23 (2006)

[arXiv:hep-th/0510059]]

Take:

Algebra A (of smooth functions on spacetime M) and the
action of the Lie algebra g on A via the Lie derivative.

and the algebra: Ω• = A⊕ Ω1 ⊕ Ω2 ⊕ ... of exterior forms on
M.

Then:

Twist deform this to A⋆ and Ω•
⋆ (same as Ω• as a vector

space) with the new product

ω ∧⋆ ω
′ = f̄α(ω) ∧ f̄α(ω′)

with the action of f̄α on ω via the Lie derivative along the
vector fields defining F−1.
If ω = f ∈ C∞(M):

f ⋆ ω′ = f̄α(f )̄fα(ω′)
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The Lie derivative commutes with the exterior derivative: the
usual (undeformed) exterior derivative satisfies the Leibniz
rule

d(f ⋆ g) = df ⋆ g + f ⋆ dg ,

and
d2 = 0,

for forms of homogeneous degree ω ∈ Ωr ,

d(ω ∧⋆ ω
′) = dω ∧⋆ ω

′ + (−1)rω ∧⋆ ω
′

This gives a differential calculus on the deformed algebra of
exterior forms Ω•

⋆.
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Hodge star operator

Key ingredient on a spacetime M is a metric.
For an n−dimensional manifold M with metric g the Hodge
∗-operation is a linear map ∗ : Ωr (M) → Ωn−r (M).

In local coordinates an r -form is given by ω = 1
r !
ωµ1....µr dx

µ1 ∧ . . .dxµr

and the Hodge ∗-operator reads

∗ω =

√
g

r ! (n − r)!
ωµ1....µr ϵ

µ1....µr
νr+1......νndx

νr+1 ∧ . . .dxνn

the Hodge ∗-operator is A-linear: ∗(ωf ) = ∗(ω)f , for any
form ω and function f

There is a one to one correspondence between metrics and
Hodge star operators.
Given a Hodge star, the metric is recovered via
dxµ ∧ ∗dxν = gµνVol
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Twisted Hodge star operator
We define the corresponding Hodge star operator on the
⋆-algebra of exterior forms Ω•

⋆.

The deformed (twisted) Hodge operator ∗F on Ω•
⋆ is required

to map r -forms into n − r -forms, and to be right A⋆-linear

∗F (ω ⋆ f ) = ∗F (ω) ⋆ f

for any form ω and function f .

Canonical way to deform A-linear maps to right A⋆-linear
maps - the “quantization map” D:

m → D(m) : f̄α1 ▷ ◦m ◦ S (̄fα2 ) ▷ ◦f̄α▷

G. Fiore, J. Math. Phys. 39 (1998), J. Phys. A 43 (2010);
P. Kulish, A. Mudrov, Lett. Math. Phys. 95 (2011);

P. Aschieri, A. Schenkel, Adv. Theor. Math. Phys. 18 (2014).
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The deformed or quantum Hodge ∗-operator:

∗F = D(∗) : Ω•
⋆ −→ Ω•

⋆

ω 7−→ ∗F (ω) = f̄α1

(
∗
(
S (̄fα2 )̄fα(ω)

))

For any exterior form ω and function f we have the right
A⋆-linearity property ∗F (ω ⋆ f ) = ∗F (ω) ⋆ f .
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Wave equation in curved spacetime

The Laplace-Beltrami operator is a generalization to curved
spacetime of the D’Alembert operator.

The wave equation in curved spacetime is governed by the
Laplace-Beltrami operator □ = δd + dδ.

In the case of even dimensional Lorenzian manifolds (like
Minkowski spacetime) the adjoint of the exterior derivative is
defined by δ = ∗d∗
For a scalar field φ we have (using local coordinates)

□LBφ = ∗d ∗ dφ =
1
√
g
∂ν [

√
ggνµ∂µφ]
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Deformed Laplace-Beltrami operator

P. Aschieri, A. Borowiec, A.P., JHEP 152 (2017) [arXiv:1703.08726]
JCAP 04 (2021) [arXiv:2009.01051].

Deformation of the Laplace-Beltrami operator for any twist:

□F
LBφ = ∗Fd ∗F dφ

κ-deformed wave equation by the Jordanian twist in curved
background

√
ggµν ⋆ (1− i

κ
∂0)n−2∂µ∂νφ+ ∂ν(

√
ggµν) ⋆ (1− i

κ
∂0)n−1∂µφ = 0

21/35



Dispersion relations in κ-FRWL case

P. Aschieri, A. Borowiec, A.P., JCAP 04 (2021) [arXiv:2009.01051].

Setting:

a distant source that emits a gamma ray burst

emitter and observer in first approximation do not have peculiar velocities
and can be considered at rest with respect to the usual comoving
coordinate system (t, x i ) of Friedman-Robertson-Walker-Lemaitre
(FRWL) cosmology

Friedman-Robertson-Walker-Lemaitre (FRWL) metric:

g = −dt2 + a2 (t)
∑
i

(dx i )2

where a (t) - scale factor
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2-dim twisted κ-wave equation

√
ggµν ⋆ ∂µ∂νφ + ∂ν(

√
ggµν) ⋆ (1 − i

κ
∂0)∂µφ = 0

2-dim twisted κ-wave equation in FRWL background

−a ⋆ ∂2
0φ− (∂0a) ⋆

(
1 − i

κ
∂0

)
∂0φ + a−1 ⋆ ∂2

xφ = 0

In the classical limit it reduces to:
−a∂2

0φ− ȧ∂0φ + 1
a∂

2
i φ = 0 where ȧ = ∂0a(t)
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Classical version of equation

−a∂2
0φ− ȧ∂0φ +

1

a
∂2
i φ = 0

separation of variables: φ = λ (t) e−ikx

aλ̈ + λ̇ȧ + k2λ
1

a
= 0

it corresponds (in conformal time) to harmonic oscillator type
equation

(∂2
η + k2)λ = 0
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Twisted wave equation

a ⋆ ∂2
0φ + (∂0a) ⋆

(
1 − i

κ
∂0

)
∂0φ− a−1 ⋆ ∂2

xφ = 0

In the noncommutative case in 2 dimensions we consider the
solution of the form: φ = λ (t) ⋆ e−ikx = λ (t) e−ikx

We simplify the equation as:

a ⋆ ∂2
0λ + ∂0 (a) ⋆

(
1 − i

κ
∂0

)
∂0λ + a−1 ⋆ k2λ = 0

Expand star-product in the first order of 1
κ

a∂2
0λ+∂0 (a)

(
1− i

κ
∂0

)
∂0λ+a−1k2λ− i

κ
t
(
∂0a ∂

3
0λ+ ∂2

0a ∂
2
0λ+ k2∂0a

−1∂0λ
)
= 0
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Conformal time - classical case strategy

As in the classical case - change the coordinates into
conformal time η, and ′ = ∂η

Introduce simplified notation s = ln a; s ′ = a′

a ; a′′

a = s ′′ + (s ′)2;

Look for the solution of the type:

λ = exp

(
iωη +

i

κ
F

)
Classical part (at 0-th order) remains:(

ω2 − k2
)
λ = 0

And equation on F (η) becomes:

(using the zero-th order solution ω = k),

F ′′+2ikF ′ =
ikt(η)

a2

(
2
(
s ′
)3 − 2s ′s ′′ − 2k2s ′ + ik

(
s ′′ − 3

(
s ′
)2 ))− ik

a
s ′
(
s ′ − ik

)
.
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Group velocity for the wave

Starting from

φk(x , t) = λ(t)⋆e−ikx = λ(t)e−ikx = exp
(
ikη+

i

κ
F
)
e−ikx = e i(fk (t)−kx)

we get:

fk (t) =

(
kη +

1

κ
F

)
(t)

Group velocity expression

vg =
∂x

∂t
=

∂

∂k

∂fk(t)

∂t

=⇒ we need to compute Ḟ = ∂F/∂t.



28/35

=⇒ we need to compute Ḟ = ∂F/∂t

can be obtained from the differential equation for F in the
physical regime we are interested in:
- cosmic time related to large scale structure formation,
- and high frequency waves.

There are three frequency parameters in the differential
equation on F : ω = k , t−1 and the Hubble parameter H;

we have ω >> t−1 for the present cosmic time as well as the
cosmic time of emission of the travelling γ-ray, typically at
redshift below z = 10.

Similarly ω >> H ∼ t−1

In this regime equation for F simplifies to

2ikF ′ = −2ik3ts ′

a2

Ḟ = −k2tȧ

a3
.
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The group velocity, at the first order in the 1
κ deformation,

results

vg =
∂x

∂t
=

∂

∂k

∂fk(t)

∂t
=

1

a
+

1

κ

∂Ḟ

∂k
=

1

a

(
1−2

κ

ktȧ

a2

)
=

1

a

(
1−2

κ

ωtȧ

a2

)
.

Taking into account the 1
a factor due to the comoving

coordinates and inserting the flat spacetime speed of light c
we see that κ-spacetime noncommutativity in the
presence of a FLRW metric leads to a velocity of photons
vph = vga given by

vph = c(1 − 2

κ

ωtȧ

a2
) .
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4-d case κ-FLRW case

√
ggµν⋆(1− i

κ
∂0)2∂ν∂µφ+∂ν(

√
ggµν)⋆(1− i

κ
∂0)3∂µφ−

1

6
(
√
gR)⋆φ = 0 .

gives the same result:

vph = c(1 − 2

κ

ωtȧ

a2
)
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If we define the energy where the Planck scale (- Lorentz
deformation) is manifested EP := |κ|ℏ.

The variation of the speed of light vph with respect to the
usual one c (of photons in flat spacetime, or of low energetic
photons) is then given by

|1 − vph/c | ∼
Eph

EP

2tȧ

a2
.

One can estimate the fractional variation of the speed of light
by using:

δv/c ≡ |1 − vph/c | ∼ 2(1 + z)tH Eph/EP
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Comments on the results

vph = c(1 − 2

κ

ωtȧ

a2
) = c(1 −

Eph

EP

2tȧ

a2
)

The combined effects of noncommutativity and gravity
affect the velocity of light by:
- a term linearly dependent on the frequency ω,
- the cosmic time t,
- the Hubble parameter H = ȧ/a
- and it is inversely proportional to the scale factor.

In flat spacetime (ȧ = 0) as well as in commutative spacetime
(κ → ∞) there are no modified dispersion relations.

This result offers an explicit cosmological correction to the
usually considered models, which assume as the leading power
for the correction to the light speed the expression

vph ∼ c(1 − Eph

EP
).
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Time lag ∆t between the arrival of a low energetic and a high
energetic photon emitted simultaneously during a gamma ray
burst:

Considering only first order corrections - time delay ∆t is

∆t =
2Eph

ELV

∫ t0

tem

tȧ

a3
dt =

2Eph

ELV

∫ z

0

t (1 + z ′)dz ′ .

For the range of redshifts we are interested into (up to z ∼ 10) we can
use the analytic solution a(t) = (1 + z)−1 = (Ωm

ΩΛ
)1/3 sinh2/3(t/tΛ),

tΛ = 2

3H0

√
ΩΛ

and obtain the time lag

∆t = 2
Eph

ELV
tΛ

∫ z

0

arcsinh

√
ΩΛ

Ωm
(1 + z ′)−3 (1 + z ′)dz ′ .

Our model gives a time lag that is ∼ 3 times the ones considered in the typical
’Lorentz invariance violation’ literature.
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Conclusions

In the present work, as a first approximation, we have
considered a commutative gravity background, hence
noncommutativity affects only propagation of light.

In a noncommutative theory of gravity consistently coupled to
light, one could consider the backreaction effects of turning
on noncommutativity also on the gravitational field.

Framework is valid for any curved background and any
noncommutative spacetime (provided by twist).

The result that the combined effects of noncommutativity and
curvature produce modified dispersion relations is expected to
be a general feature of wave equations in noncommutative
curved spacetime.
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