Twisted differential geometry and dispersion relations in κ－deformed cosmology

Anna Pachoł

Noncommutative Geometry and Physics Seminar series

Motivation

Quantum Gravity

\downarrow

Quantum Geometry
\square
Classical Geometry

- Noncommutative geometry - generalised notion of geometry
- The noncommutative nature allows for obtaining quantum gravitational corrections to the classical solutions.
－Noncommutative geometry－generalised notion of geometry
－The noncommutative nature allows for obtaining quantum gravitational corrections to the classical solutions．
－Can be helpful in providing the phenomenological models quantifying the effects of quantum gravity．
－One of the mostly studied possible phenomenological effects of quantum gravity is the modification in wave dispersion． Such investigations were inspired by the observations of gamma ray bursts（GRBs）．
－Noncommutative differential geometry based on Drinfeld twist deformation canonically gives NC wave equations－A top－down geometric approach to dispersion relations

Differential Geometry vs NC Differential Geometry

M - manifold and
$C^{\infty}(M)=A$ - functions on a manifold
$\rightarrow A_{\star}$ - NC deformation of the algebra of functions on a manifold and
Ω^{1} space of 1 -forms, e.g. differentials:

$$
\begin{gathered}
\mathrm{d} f=\sum_{i} \frac{\partial f}{\partial x^{\mu}} \mathrm{d} x^{\mu} \\
f \mathrm{~d} g=(\mathrm{d} g) f
\end{gathered}
$$

\rightarrow noncommutative differential
structure:
differential bimodule $\left(\Omega^{1}, \mathrm{~d}\right)$ of
1 -forms with d-obeying the
Leibniz rule and
$\rightarrow f \star \mathrm{~d} g \neq(\mathrm{d} g) \star f$

Quantum deformations

Twist deformation

Classical

$\xrightarrow[\text { Symmetry }]{\text { deformation = quantization }} \quad$| Noncommutative |
| :---: |
| (quantum) |

Lie Algebra

Hopf Algebra
(Quantum Group)

$$
\mathrm{g} \longrightarrow H=\left(U g, \Delta_{0}, S_{0}, \epsilon\right) \longrightarrow \underset{\mathcal{F} \in U g \otimes U g}{ }\left(U g^{\mathcal{F}}, \Delta^{\mathcal{F}}, S^{\mathcal{F}}, \varepsilon\right)
$$

Space-time

$$
\left.\begin{array}{lcc}
\mathcal{A}=\left(C^{\infty}(M), \mu\right) \\
{\left[x^{\mu}, x^{\nu}\right]=0}
\end{array} \quad x^{\mu} \rightarrow \hat{X}^{\mu} \quad \begin{array}{c}
\mathcal{A}^{\mathcal{F}}=\left(C^{\infty}(M), \star\right) \\
\hline \mathcal{F} \in U g \otimes U g
\end{array} \begin{array}{l}
x^{\mu} \star x^{\nu}=\mu \circ \mathcal{F}^{-1}\left(x^{\mu} \otimes x^{\nu}\right) \\
\\
\end{array} x^{\mu}, x^{\nu}\right]=x^{\mu} \star x^{\nu}-x^{\nu} \star x^{\mu} .
$$

Lie algebra of vector fields as Hopf algebra

- Deformations of spacetime symmetries - Lie algebra g of vector fields ξ
- $U g$ as Hopf algebra $H=\left(U g, \Delta_{0}, \epsilon, S_{0}\right)$
- In the coordinate basis $\xi \in g: \xi=\xi^{\mu} \frac{\partial}{\partial x^{\mu}}=\xi^{\mu} \partial_{\mu}$.
- This algebra generates the diffeomorphism symmetry; one can also consider subalgebras of g like Poincaré algebra or conformal algebra as symmetry.

Twisting

$$
(H, \mathcal{A}) \longleftarrow\left(H^{\mathcal{F}}, \mathcal{A}_{\star}\right)
$$

The twist \mathcal{F} is an invertible element of $H \otimes H$.

$$
\mathcal{F}=1 \otimes 1+\mathcal{O}(h)
$$

which provides an undeformed case at the zero-th order in the deformation parameter h.

Notation:

$$
\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha}, \quad \mathcal{F}^{-1}=\overline{\mathrm{f}}^{\alpha} \otimes \overline{\mathrm{f}}_{\alpha},
$$

(sum over $\alpha=1,2, \ldots \infty$ assumed)
$\overline{\mathrm{f}}^{\alpha} \in H$ and $\mathrm{f}^{\alpha} \in H$

Quantum spacetime：star－product

$$
A=\left(C^{\infty}(M), \cdot\right) \quad \Longrightarrow \quad A_{\star}=\left(C^{\infty}(M), \star\right)
$$

the algebra of smooth functions becomes a noncommutative spacetime with the twisted \star－product

$$
x^{\mu} \star x^{\nu}=\cdot \mathcal{F}^{-1}\left(x^{\mu} \otimes x^{\nu}\right)=\overline{\mathrm{f}}^{\alpha}\left(x^{\mu}\right) \overline{\mathrm{f}}_{\alpha}\left(x^{\nu}\right)
$$

$x^{\mu}, x^{\nu} \in C^{\infty}(M)$ ．
－such \star－product is noncommutative and associative．
－$A^{\mathcal{F}}$ can be represented by deformed，\star－commutators of noncommutative coordinates：

$$
\left[x^{\mu}, x^{\nu}\right]=x^{\mu} \star x^{\nu}-x^{\mu} \star x^{\mu}
$$

Quantum (noncommutative) spacetimes

(1) Canonical (Moyal-Weyl) spacetime A_{θ} :

$$
\left[x^{\mu}, x^{\nu}\right]=i h \theta^{\mu \nu}
$$

with deformation parameter h of length ${ }^{2}\left(L_{P}\right)$ dim.
S. Doplicher, K. Fredenhagen, J. E. Roberts,

Commun. Math. Phys. 172 (1995),
[arXiv:hep-th/0303037].
(2) Lie-algebraic type spacetime:

$$
\left[x^{\mu}, x^{\nu}\right]=i h \theta_{\rho}^{\mu \nu} x^{\rho}
$$

with deformation parameter h of mass $\left(M_{P}\right)$ dim.
Special case: A_{κ}

$$
\left[x^{0}, x^{k}\right]=\frac{i}{\kappa} x^{k} \quad, \quad\left[x^{i}, x^{k}\right]=0
$$

- the so-called: κ-Minkowski spacetime.
S. Majid, H. Ruegg Phys.Lett. B334 (1994) [hep-th/9405107] ;
S. Zakrzewski J. Phys. A 127 (1994).

Drinfeld Twists－examples

The canonical（Moyal－Weyl）noncommutative spacetime can be obtained by twist deformation：

$$
\mathcal{F}=\exp \left(-\frac{i}{2} h \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)
$$

The twist has support in the Poincaré algebra，i．e． $\mathcal{F} \in \mathcal{U}_{\mathrm{iso}(1, n-1)} \otimes \mathcal{U}_{\mathrm{iso}(1, n-1)}$ ．$\left(\right.$ The minimal algebra $\left.\mathcal{F} \in \mathcal{U}_{\mathrm{t}^{n}} \otimes \mathcal{U}_{\mathrm{t}^{n}}.\right)$

The Moyal－Weyl \star－product of functions on \mathbb{R}^{n} ：

$$
f \star g=\left.e^{\frac{i}{2} h \theta^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial y^{\nu}}} f(x) g(y)\right|_{x=y}=f(x) g(x)+\frac{i}{2} h \theta^{\mu \nu} \frac{\partial}{\partial x^{\mu}} f \frac{\partial}{\partial x^{\nu}} g+\ldots
$$

giving

$$
\left[x^{\mu}, x^{\nu}\right]=x^{\mu} \star x^{\nu}-x^{\mu} \star x^{\mu}=i h \theta^{\mu \nu}
$$

Drinfeld Twists - examples

[J. Lukierski, V. Lyakhovsky, M. Mozrzymas, Phys.Lett. B538 (2002)
A. Borowiec, A.P, EPJ C 74, 3 (2014)]

The light-cone κ-Minkowski spacetime can be implemented by the extended Jordanian twist

$$
\mathcal{F}=\exp \left(\frac{i}{\kappa}\left(x_{+} \partial_{a}-x_{a} \partial_{+}\right) \otimes \partial_{a}\right) \exp \left(i\left(x_{+} \partial_{-}-x_{-} \partial_{+}\right) \otimes \ln \left(1+\frac{1}{\kappa} \partial_{+}\right)\right)
$$

The twist has support in the (null-plane) Poincare algebra.
(leading to the 'Null-Plane Quantum Poincare Algebra'
[A. Ballesteros, F. J. Herranz, M. A. del Olmo, M. Santander, PLB351'95])

- giving the light-cone κ-Minkowski spacetime:

$$
\left[x^{ \pm}, x^{2}\right]= \pm \frac{i}{\kappa} x^{ \pm} \quad, \quad\left[x^{a}, x^{b}\right]=0 \quad, \quad\left[x^{+}, x^{-}\right]=\frac{i}{\kappa}\left(x^{+}-x^{-}\right)
$$

Drinfeld Twists - examples

[Jong-Gepn Bu, Hyeong-Chan Kim, Youngone Lee, Chang Hyon Vac, Jae Hyung Yee, Phys. Lett. B665 (2008), [arXiv:hep-th/0611175]
A. Borowiec, A.P. SIGMA 6 (2010), 086 [arXiv:1005.4429]]

The κ-Minkowski spacetime can be implemented by the Abelian twist

$$
\begin{equation*}
\mathcal{F}=\exp \left[-\frac{i}{2 \kappa}\left(\partial_{0} \otimes x^{k} \partial_{k}-x^{k} \partial_{k} \otimes \partial_{0}\right)\right] \tag{1}
\end{equation*}
$$

The smallest subalgebra generated by $D=x^{k} \partial_{k}, P_{0}=-i \partial_{0}$ and the Lorentz generators turns out to be entire $\operatorname{ig} /(n)$ algebra.

$$
f \star g=\left.e^{\frac{i}{2 \kappa}\left(\frac{\partial}{\partial x^{0}} y^{k} \frac{\partial}{\partial y^{k}}-x^{k} \frac{\partial}{\partial x^{k}} \frac{\partial}{\partial y^{0}}\right)} f(x) g(y)\right|_{x=y}
$$

giving:

$$
\left[x^{0}, x^{k}\right]=\frac{i}{\kappa} x^{k} \quad, \quad\left[x^{i}, x^{k}\right]=0
$$

Drinfeld Twists - examples

> [A. Borowiec, A.P, Phys.Rev.D79 (2009) [arXiv:0812.0576]]

The κ-Minkowski spacetime can be implemented by the Jordanian twist

$$
\mathcal{F}=\exp \left(-x^{\mu} \partial_{\mu} \otimes \ln \left(1-\frac{i}{\kappa} \partial_{0}\right)\right)
$$

The twist has support in $U_{p w}$ of the Poincaré-Weyl algebra $p w=\operatorname{span}\left\{M_{\mu \nu}, P_{\mu}, D=-i x^{\mu} \partial_{\mu}\right\}$.

$$
f \star g=\left.\exp \left(x^{\mu} \frac{\partial}{\partial x^{\mu}} \otimes \ln \left(1-\frac{i}{\kappa} \frac{\partial}{\partial y^{0}}\right)\right) f(x) g(y)\right|_{x=y}
$$

giving:

$$
\left[x^{0}, x^{k}\right]=\frac{i}{\kappa} x^{k} \quad, \quad\left[x^{i}, x^{k}\right]=0
$$

Twisted differential geometry

－Noncommutative（twisted）differential geometry approach is based on Drinfeld twist \mathcal{F} deformation．
－Can be implemented for any twist \mathcal{F} and any curved background（g）．
－Noncommutative differential geometry based on Drinfeld twist deformation canonically gives NC wave equations－Allows for a study of the corresponding dispersion relations

Twisted differential geometry

- Noncommutative (twisted) differential geometry approach is based on Drinfeld twist \mathcal{F} deformation.
- Can be implemented for any twist \mathcal{F} and any curved background (g).
- Noncommutative differential geometry based on Drinfeld twist deformation canonically gives NC wave equations - Allows for a study of the corresponding dispersion relations
- Aim: wave equation for the Jordanian twist - giving k-Minkowski spacetime - in the presence of a FLRW cosmological background \& dispersion relations [P. Aschieri, A. Borowiec, A.P., JCAP 04 (2021) [arXiv:2009.01051]].

Twisted differential calculus

[P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quant. Grav. 22 (2005) [arXiv:hep- th/0504183]
P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Class. Quant. Grav. 23 (2006) [arXiv:hep-th/0510059]]
Take:

- Algebra A (of smooth functions on spacetime M) and the action of the Lie algebra g on A via the Lie derivative.
- and the algebra: $\Omega^{\bullet}=A \oplus \Omega^{1} \oplus \Omega^{2} \oplus \ldots$ of exterior forms on M.
Then:
- Twist deform this to A_{\star} and Ω_{\star}^{\bullet} (same as Ω^{\bullet} as a vector space) with the new product

$$
\omega \wedge_{\star} \omega^{\prime}=\overline{\mathrm{f}}^{\alpha}(\omega) \wedge \overline{\mathrm{f}}_{\alpha}\left(\omega^{\prime}\right)
$$

with the action of $\overline{\mathrm{f}}_{\alpha}$ on ω via the Lie derivative along the vector fields defining \mathcal{F}^{-1}.
If $\omega=f \in C^{\infty}(M)$:

$$
f \star \omega^{\prime}=\overline{\mathrm{f}}^{\alpha}(f) \overline{\mathrm{f}}_{\alpha}\left(\omega^{\prime}\right)
$$

- The Lie derivative commutes with the exterior derivative: the usual (undeformed) exterior derivative satisfies the Leibniz rule

$$
\mathrm{d}(f \star g)=\mathrm{d} f \star g+f \star \mathrm{~d} g,
$$

and

$$
\mathrm{d}^{2}=0
$$

- for forms of homogeneous degree $\omega \in \Omega^{r}$,

$$
\mathrm{d}\left(\omega \wedge_{\star} \omega^{\prime}\right)=\mathrm{d} \omega \wedge_{\star} \omega^{\prime}+(-1)^{r} \omega \wedge_{\star} \omega^{\prime}
$$

This gives a differential calculus on the deformed algebra of exterior forms Ω_{\star}^{\bullet}.

Hodge star operator

- Key ingredient on a spacetime M is a metric. For an n-dimensional manifold M with metric g the Hodge *-operation is a linear map $*: \Omega^{r}(M) \rightarrow \Omega^{n-r}(M)$.
- In local coordinates an r-form is given by $\omega=\frac{1}{r!} \omega_{\mu_{1} \ldots, \mu_{r}} \mathrm{~d} x^{\mu_{1}} \wedge \ldots \mathrm{~d} x^{\mu_{r}}$ and the Hodge *-operator reads

$$
* \omega=\frac{\sqrt{g}}{r!(n-r)!} \omega_{\mu_{1} \ldots, \mu_{r}} \epsilon^{\mu_{1} \ldots} \mu_{\nu_{r+1} \ldots \ldots \nu_{n}}^{\mu_{r}} \mathrm{~d} x^{\nu_{r+1}} \wedge \ldots \mathrm{~d} x^{\nu_{n}}
$$

- the Hodge $*$-operator is A-linear: $*(\omega f)=*(\omega) f$, for any form ω and function f
- There is a one to one correspondence between metrics and Hodge star operators.
Given a Hodge star, the metric is recovered via $d x^{\mu} \wedge * d x^{\nu}=g^{\mu \nu} V o l$

Twisted Hodge star operator

- We define the corresponding Hodge star operator on the \star-algebra of exterior forms Ω_{\star}^{\bullet}.
- The deformed (twisted) Hodge operator $*^{\mathcal{F}}$ on Ω_{\star}^{\bullet} is required to map r-forms into $n-r$-forms, and to be right A_{\star}-linear

$$
^{\mathcal{F}}(\omega \star f)=^{\mathcal{F}}(\omega) \star f
$$

for any form ω and function f.

- Canonical way to deform A-linear maps to right A_{\star}-linear maps - the "quantization map" \mathcal{D} :

$$
m \rightarrow \mathcal{D}(m): \quad \overline{\mathrm{f}}_{1}^{\alpha} \triangleright \circ m \circ S\left(\overline{\mathrm{f}}_{2}^{\alpha}\right) \triangleright \circ \overline{\mathrm{f}}_{\alpha} \triangleright
$$

G. Fiore, J. Math. Phys. 39 (1998), J. Phys. A 43 (2010);
P. Kulish, A. Mudrov, Lett. Math. Phys. 95 (2011);
P. Aschieri, A. Schenkel, Adv. Theor. Math. Phys. 18 (2014).
－The deformed or quantum Hodge $*$－operator：

$$
\begin{aligned}
^{\mathcal{F}}=\mathcal{D}(): \Omega_{\star}^{\bullet} & \longrightarrow \Omega_{\star}^{\bullet} \\
\omega & \longmapsto *^{\mathcal{F}}(\omega)=\overline{\mathrm{f}}_{1}^{\alpha}\left(*\left(S\left(\overline{\mathrm{f}}_{2}^{\alpha}\right) \overline{\mathrm{f}}_{\alpha}(\omega)\right)\right)
\end{aligned}
$$

－For any exterior form ω and function f we have the right A_{\star}－linearity property $*^{\mathcal{F}}(\omega \star f)=*^{\mathcal{F}}(\omega) \star f$ ．

Wave equation in curved spacetime

The Laplace－Beltrami operator is a generalization to curved spacetime of the D＇Alembert operator．
－The wave equation in curved spacetime is governed by the Laplace－Beltrami operator $\square=\delta \mathrm{d}+\mathrm{d} \delta$ ．
－In the case of even dimensional Lorenzian manifolds（like Minkowski spacetime）the adjoint of the exterior derivative is defined by $\delta=* \mathrm{~d} *$
－For a scalar field φ we have（using local coordinates）

$$
\square_{L B} \varphi=* \mathrm{~d} * \mathrm{~d} \varphi=\frac{1}{\sqrt{g}} \partial_{\nu}\left[\sqrt{g} g^{\nu \mu} \partial_{\mu} \varphi\right]
$$

Deformed Laplace-Beltrami operator

P. Aschieri, A. Borowiec, A.P., JHEP 152 (2017) [arXiv:1703.08726] JCAP 04 (2021) [arXiv:2009.01051].

- Deformation of the Laplace-Beltrami operator for any twist:

$$
\square_{L B}^{\mathcal{F}} \varphi=*^{\mathcal{F}} d *^{\mathcal{F}} d \varphi
$$

- κ-deformed wave equation by the Jordanian twist in curved background

$$
\sqrt{g} g^{\mu \nu} \star\left(1-\frac{i}{\kappa} \partial_{0}\right)^{n-2} \partial_{\mu} \partial_{\nu} \varphi+\partial_{\nu}\left(\sqrt{g} g^{\mu \nu}\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right)^{n-1} \partial_{\mu} \varphi=0
$$

Dispersion relations in κ-FRWL case

P. Aschieri, A. Borowiec, A.P., JCAP 04 (2021) [arXiv:2009.01051].

Setting:

- a distant source that emits a gamma ray burst
- emitter and observer in first approximation do not have peculiar velocities and can be considered at rest with respect to the usual comoving coordinate system $\left(t, x^{i}\right)$ of Friedman-Robertson-Walker-Lemaitre (FRWL) cosmology
Friedman-Robertson-Walker-Lemaitre (FRWL) metric:

$$
g=-d t^{2}+a^{2}(t) \sum_{i}\left(d x^{i}\right)^{2}
$$

where $a(t)$ - scale factor

2-dim twisted κ-wave equation

$$
\sqrt{g} g^{\mu \nu} \star \partial_{\mu} \partial_{\nu} \varphi+\partial_{\nu}\left(\sqrt{g} g^{\mu \nu}\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{\mu} \varphi=0
$$

2-dim twisted κ-wave equation in FRWL background

$$
-a \star \partial_{0}^{2} \varphi-\left(\partial_{0} a\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \varphi+a^{-1} \star \partial_{x}^{2} \varphi=0
$$

2-dim twisted κ-wave equation

$$
\sqrt{g} g^{\mu \nu} \star \partial_{\mu} \partial_{\nu} \varphi+\partial_{\nu}\left(\sqrt{g} g^{\mu \nu}\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{\mu} \varphi=0
$$

2-dim twisted κ-wave equation in FRWL background

$$
-a \star \partial_{0}^{2} \varphi-\left(\partial_{0} a\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \varphi+a^{-1} \star \partial_{x}^{2} \varphi=0
$$

In the classical limit it reduces to:

$$
-a \partial_{0}^{2} \varphi-\dot{a} \partial_{0} \varphi+\frac{1}{a} \partial_{i}^{2} \varphi=0 \text { where } \dot{a}=\partial_{0} a(t)
$$

Classical version of equation

$$
-a \partial_{0}^{2} \varphi-\dot{a} \partial_{0} \varphi+\frac{1}{a} \partial_{i}^{2} \varphi=0
$$

- separation of variables: $\varphi=\lambda(t) e^{-i k x}$
-

$$
a \ddot{\lambda}+\dot{\lambda} \dot{a}+k^{2} \lambda \frac{1}{a}=0
$$

- it corresponds (in conformal time) to harmonic oscillator type equation

$$
\left(\partial_{\eta}^{2}+k^{2}\right) \lambda=0
$$

Twisted wave equation

$$
a \star \partial_{0}^{2} \varphi+\left(\partial_{0} a\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \varphi-a^{-1} \star \partial_{x}^{2} \varphi=0
$$

－In the noncommutative case in 2 dimensions we consider the solution of the form：$\varphi=\lambda(t) \star e^{-i k x}=\lambda(t) e^{-i k x}$

Twisted wave equation

$$
a \star \partial_{0}^{2} \varphi+\left(\partial_{0} a\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \varphi-a^{-1} \star \partial_{x}^{2} \varphi=0
$$

- In the noncommutative case in 2 dimensions we consider the solution of the form: $\varphi=\lambda(t) \star e^{-i k x}=\lambda(t) e^{-i k x}$

We simplify the equation as:

$$
a \star \partial_{0}^{2} \lambda+\partial_{0}(a) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \lambda+a^{-1} \star k^{2} \lambda=0
$$

Twisted wave equation

$$
a \star \partial_{0}^{2} \varphi+\left(\partial_{0} a\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \varphi-a^{-1} \star \partial_{\chi}^{2} \varphi=0
$$

- In the noncommutative case in 2 dimensions we consider the solution of the form: $\varphi=\lambda(t) \star e^{-i k x}=\lambda(t) e^{-i k x}$

We simplify the equation as:

$$
a \star \partial_{0}^{2} \lambda+\partial_{0}(a) \star\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \lambda+a^{-1} \star k^{2} \lambda=0
$$

Expand star-product in the first order of $\frac{1}{\kappa}$

$$
a \partial_{0}^{2} \lambda+\partial_{0}(a)\left(1-\frac{i}{\kappa} \partial_{0}\right) \partial_{0} \lambda+a^{-1} k^{2} \lambda-\frac{i}{\kappa} t\left(\partial_{0} a \partial_{0}^{3} \lambda+\partial_{0}^{2} a \partial_{0}^{2} \lambda+k^{2} \partial_{0} a^{-1} \partial_{0} \lambda\right)=0
$$

Conformal time－classical case strategy

－As in the classical case－change the coordinates into conformal time η ，and ${ }^{\prime}=\partial_{\eta}$
－Introduce simplified notation $s=\ln a ; s^{\prime}=\frac{a^{\prime}}{a} ; \frac{a^{\prime \prime}}{a}=s^{\prime \prime}+\left(s^{\prime}\right)^{2}$ ；

Conformal time－classical case strategy

－As in the classical case－change the coordinates into conformal time η ，and ${ }^{\prime}=\partial_{\eta}$
－Introduce simplified notation $s=\ln a ; s^{\prime}=\frac{a^{\prime}}{a} ; \frac{a^{\prime \prime}}{a}=s^{\prime \prime}+\left(s^{\prime}\right)^{2}$ ；
－Look for the solution of the type：

$$
\lambda=\exp \left(i \omega \eta+\frac{i}{\kappa} F\right)
$$

－Classical part（at 0－th order）remains：

$$
\left(\omega^{2}-k^{2}\right) \lambda=0
$$

－And equation on $F(\eta)$ becomes：
（using the zero－th order solution $\omega=k$ ），

$$
F^{\prime \prime}+2 i k F^{\prime}=\frac{i k t(\eta)}{a^{2}}\left(2\left(s^{\prime}\right)^{3}-2 s^{\prime} s^{\prime \prime}-2 k^{2} s^{\prime}+i k\left(s^{\prime \prime}-3\left(s^{\prime}\right)^{2}\right)\right)-\frac{i k}{a} s^{\prime}\left(s^{\prime}-i k\right) .
$$

Group velocity for the wave

Starting from
$\varphi_{k}(x, t)=\lambda(t) \star e^{-i k x}=\lambda(t) e^{-i k x}=\exp \left(i k \eta+\frac{i}{\kappa} F\right) e^{-i k x}=e^{i\left(f_{k}(t)-k x\right)}$
we get:

$$
f_{k}(t)=\left(k \eta+\frac{1}{\kappa} F\right)(t)
$$

Group velocity expression

$$
v_{g}=\frac{\partial x}{\partial t}=\frac{\partial}{\partial k} \frac{\partial f_{k}(t)}{\partial t}
$$

\Longrightarrow we need to compute $\dot{F}=\partial F / \partial t$.
\Longrightarrow we need to compute $\dot{F}=\partial F / \partial t$

- can be obtained from the differential equation for F in the physical regime we are interested in:
- cosmic time related to large scale structure formation,
- and high frequency waves.
- There are three frequency parameters in the differential equation on $F: \omega=k, t^{-1}$ and the Hubble parameter H;
- we have $\omega \gg t^{-1}$ for the present cosmic time as well as the cosmic time of emission of the travelling γ-ray, typically at redshift below $z=10$.
- Similarly $\omega \gg H \sim t^{-1}$

In this regime equation for F simplifies to

$$
\begin{aligned}
2 i k F^{\prime} & =-\frac{2 i k^{3} t s^{\prime}}{a^{2}} \\
\dot{F} & =-\frac{k^{2} t \dot{a}}{a^{3}}
\end{aligned}
$$

- The group velocity, at the first order in the $\frac{1}{\kappa}$ deformation, results

$$
v_{g}=\frac{\partial x}{\partial t}=\frac{\partial}{\partial k} \frac{\partial f_{k}(t)}{\partial t}=\frac{1}{a}+\frac{1}{\kappa} \frac{\partial \dot{F}}{\partial k}=\frac{1}{a}\left(1-\frac{2}{\kappa} \frac{k t \dot{a}}{a^{2}}\right)=\frac{1}{a}\left(1-\frac{2}{\kappa} \frac{\omega t \dot{a}}{a^{2}}\right)
$$

- Taking into account the $\frac{1}{a}$ factor due to the comoving coordinates and inserting the flat spacetime speed of light c we see that κ-spacetime noncommutativity in the presence of a FLRW metric leads to a velocity of photons
$v_{p h}=v_{g}$ a given by

$$
v_{p h}=c\left(1-\frac{2}{\kappa} \frac{\omega t \dot{a}}{a^{2}}\right) .
$$

4-d case κ-FLRW case
$\sqrt{g} g^{\mu \nu} \star\left(1-\frac{i}{\kappa} \partial_{0}\right)^{2} \partial_{\nu} \partial_{\mu} \varphi+\partial_{\nu}\left(\sqrt{g} g^{\mu \nu}\right) \star\left(1-\frac{i}{\kappa} \partial_{0}\right)^{3} \partial_{\mu} \varphi-\frac{1}{6}(\sqrt{g} R) \star \varphi=0$. gives the same result:

$$
v_{p h}=c\left(1-\frac{2}{\kappa} \frac{\omega t \dot{a}}{a^{2}}\right)
$$

- If we define the energy where the Planck scale (- Lorentz deformation) is manifested $E_{P}:=|\kappa| \hbar$.
- The variation of the speed of light $v_{p h}$ with respect to the usual one c (of photons in flat spacetime, or of low energetic photons) is then given by

$$
\left|1-v_{p h} / c\right| \sim \frac{E_{p h}}{E_{P}} \frac{2 t \dot{a}}{a^{2}}
$$

One can estimate the fractional variation of the speed of light by using:

$$
\delta v / c \equiv\left|1-v_{p h} / c\right| \sim 2(1+z) t H E_{p h} / E_{P}
$$

Comments on the results

$$
v_{p h}=c\left(1-\frac{2}{\kappa} \frac{\omega t \dot{a}}{a^{2}}\right)=c\left(1-\frac{E_{p h}}{E_{P}} \frac{2 t \dot{a}}{a^{2}}\right)
$$

- The combined effects of noncommutativity and gravity affect the velocity of light by:
- a term linearly dependent on the frequency ω,
- the cosmic time t,
- the Hubble parameter $H=\dot{a} / a$
- and it is inversely proportional to the scale factor.

Comments on the results

$$
v_{p h}=c\left(1-\frac{2}{\kappa} \frac{\omega t \dot{a}}{a^{2}}\right)=c\left(1-\frac{E_{p h}}{E_{P}} \frac{2 t \dot{a}}{a^{2}}\right)
$$

- The combined effects of noncommutativity and gravity affect the velocity of light by:
- a term linearly dependent on the frequency ω,
- the cosmic time t,
- the Hubble parameter $H=\dot{a} / a$
- and it is inversely proportional to the scale factor.
- In flat spacetime $(\dot{a}=0)$ as well as in commutative spacetime $(\kappa \rightarrow \infty)$ there are no modified dispersion relations.

Comments on the results

$$
v_{p h}=c\left(1-\frac{2}{\kappa} \frac{\omega t \dot{a}}{a^{2}}\right)=c\left(1-\frac{E_{p h}}{E_{P}} \frac{2 t \dot{a}}{a^{2}}\right)
$$

- The combined effects of noncommutativity and gravity affect the velocity of light by:
- a term linearly dependent on the frequency ω,
- the cosmic time t,
- the Hubble parameter $H=\dot{a} / a$
- and it is inversely proportional to the scale factor.
- In flat spacetime $(\dot{a}=0)$ as well as in commutative spacetime $(\kappa \rightarrow \infty)$ there are no modified dispersion relations.
- This result offers an explicit cosmological correction to the usually considered models, which assume as the leading power for the correction to the light speed the expression
$v_{p h} \sim c\left(1-\frac{E_{p h}}{E_{p}}\right)$.

Time lag Δt between the arrival of a low energetic and a high energetic photon emitted simultaneously during a gamma ray burst:

Considering only first order corrections - time delay Δt is

$$
\Delta t=\frac{2 E_{p h}}{E_{L V}} \int_{t_{e m}}^{t_{0}} \frac{t \dot{a}}{a^{3}} d t=\frac{2 E_{p h}}{E_{L V}} \int_{0}^{z} t\left(1+z^{\prime}\right) d z^{\prime}
$$

- For the range of redshifts we are interested into (up to $z \sim 10$) we can use the analytic solution $a(t)=(1+z)^{-1}=\left(\frac{\Omega_{m}}{\Omega_{\Lambda}}\right)^{1 / 3} \sinh ^{2 / 3}\left(t / t_{\Lambda}\right)$, $t_{\Lambda}=\frac{2}{3 H_{0} \sqrt{\Omega_{\Lambda}}}$ and obtain the time lag

$$
\Delta t=2 \frac{E_{p h}}{E_{L V}} t_{\Lambda} \int_{0}^{z} \operatorname{arcsinh} \sqrt{\frac{\Omega_{\Lambda}}{\Omega_{m}}\left(1+z^{\prime}\right)^{-3}}\left(1+z^{\prime}\right) d z^{\prime}
$$

Our model gives a time lag that is ~ 3 times the ones considered in the typical 'Lorentz invariance violation' literature.

Conclusions

- In the present work, as a first approximation, we have considered a commutative gravity background, hence noncommutativity affects only propagation of light.
- In a noncommutative theory of gravity consistently coupled to light, one could consider the backreaction effects of turning on noncommutativity also on the gravitational field.

Conclusions

- In the present work, as a first approximation, we have considered a commutative gravity background, hence noncommutativity affects only propagation of light.
- In a noncommutative theory of gravity consistently coupled to light, one could consider the backreaction effects of turning on noncommutativity also on the gravitational field.
- Framework is valid for any curved background and any noncommutative spacetime (provided by twist).

Conclusions

- In the present work, as a first approximation, we have considered a commutative gravity background, hence noncommutativity affects only propagation of light.
- In a noncommutative theory of gravity consistently coupled to light, one could consider the backreaction effects of turning on noncommutativity also on the gravitational field.
- Framework is valid for any curved background and any noncommutative spacetime (provided by twist).
- The result that the combined effects of noncommutativity and curvature produce modified dispersion relations is expected to be a general feature of wave equations in noncommutative curved spacetime.

Conclusions

－We used a top－down approach that complements the bottom－up one of phenomenological models
－noncommutative deformation of the wave equation in curved background
－modification of dispersion relations purely induced by noncommutativity and curvature of spacetime．

Conclusions

－We used a top－down approach that complements the bottom－up one of phenomenological models
－noncommutative deformation of the wave equation in curved background
－modification of dispersion relations purely induced by noncommutativity and curvature of spacetime．
－This is a first step toward a more comprehensive approach that encompasses both the dynamics of light and of gravity in a noncommutative spacetime．

Conclusions

－We used a top－down approach that complements the bottom－up one of phenomenological models
－noncommutative deformation of the wave equation in curved background
－modification of dispersion relations purely induced by noncommutativity and curvature of spacetime．
－This is a first step toward a more comprehensive approach that encompasses both the dynamics of light and of gravity in a noncommutative spacetime．
Thank you for your attention！

